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The essential nature of the reaction by which a virus unites with its host 
cell as the first step of its invasive metabolic cycle has remained obscure, 
despite several important discoveries in this field. The parasitism of Escherichia 
coli B by bacteriophage is particularly convenient for investigation of this 
mechanism, since the precise measurements which this system affords make 
possible quantitative study of the kinetics of virus-cell interaction. I t  has been 
previously demonstrated that the rate of adsorption of the phage particle on 
the host cell is directly proportional to the concentrations of both virus and 
bacteria; and that, for certain viruses, at least, the reaction in nutrient broth 
at 37°C. is so rapid as to make a relatively large proportion of the collisions 
between the phage and host cell effective in promoting attachment (1, 2). 
The reaction is highly specific, since mutant forms of susceptible cells can be 
produced which are immune to a given virus, though still susceptible to attack 
by the other strains Which parasitize the original host, and also by mutant 
progeny of the original virus. The T system of E. coli bacteriophages consists 
of seven different phage types, characterized on the basis of the existence of 
specific resistant host mutants, and in some cases by diffe~;en~iatin~ morpho- 
logical and antigenic properties as well (3). The adsorption on bacterial cells 
of some phages has occasionally been found to be accelerated by various 
cations, such as Na + (4, 5), although the conditions governing these require- 
ments have rarely been precisely defined. Finally, a few deficient strains of 
phage have been isolated which cannot attach to host cells unless they have 
first reacted with an organic cofactor, particularly/-tryptophane (6). 

In the present study, the rate of adsorption of various bacteriophages of the 
T system to cells of .E. coli B, and to inorganic substrates, has been quanti- 
tatively measured under various conditions. The results of these experiments 
yield evidence that the initial binding of the virus to the host cell is an electro- 
static one, determined by the presence of an appropriate configuration of 
ionic charges on the two bodies. 

* This work is part of a study of normal and radiation-induced metabolic processes, which 
has received support from the Division of Biology and Medicine of the Atomic Energy Com- 
mission, administered under contract with the Office of Naval Research. 
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Methods 

The methods employed for the preparation and storage of phage stocks, and the plaque- 
count technique for tltrating virus activity have already been described (7). In the present 
experiments, young cultures of E. coti B, grown at 37°C. for 2~ hours in aerated nutrient broth 
(Difco) were employed. Such suspensions, which contained approximately 10 s bacteria per 
cm.: were centrifuged, washed in distilled water, and, after a second centrifugation, resuspeuded 
in a freshly prepared solution which served as the adsorption medium. I t  was necessary to use 
doubly distilled water for all solutions and to clean glassware with scrupulous care, since even 
trace amounts of impurities were often able to affect the experimental results. The rate of 
virus adsorption on cells of E. coti B was measured by adding 0.10 cc. aliquots of the virus, 
diluted approximately ten thousandfold in phosphate buffer or in the medium under test, to 
thermostated suspensions of cells in 0.9 ce. of the test medium. The cell concentration em- 
ployed was always several thousandfold greater than that  of the virus, so that  a pseudomono- 
molecular reaction resulted. The suspension was rapidly mixed, and 0.1 co. samples were 
removed at various times, and immediately added to tubes containing 0.9 cc. of broth in an 
icebath, where the resulting dilution of the virus-cell mixture, plus the low temperature, 
effectively stopped all further interaction. These tubes were titred for their total virus content, 
then centrifuged in the cold, and aliquots of the cell-free supernatant carefully withdrawn 
and fitred. From these two sets of plaque counts, the fraction of phage particles remainingun- 
attached to cells was obtained as a function of time. All the experiments described were car- 
ried out at  37°C., unless otherwise indicated. Fig. 1 illustrates the results of a typical test. The 

dP 
adsorption constant, (defined as k in the equation -- ~ -  ffi k PB where P - concentration of 

virus remaining unattached to cells at  the time t, in the presence of a bacterial concentration B 
is readily computed from the slope of such a curve, Reproduceable values of k were obtained 
for any bacterial concentrations up to 109/ec. Beyond this density, the value of k tended to 
drop, possibly because of mutual interference by the cells in such a dense suspension. 

EXPERIMENTAL RESULTS. 

1. Virus-Cell Attachment in  Nutrient Broth . - -The  ve loc i t y  of i n t e r a c t i o n  of 

g .  coli B w i t h  severa l  b a c t e r i o p h a g e s  was  m e a s u r e d  in  n u t r i e n t  b r o t h  a t  37°C.  

T h e  re su l t s  a re  s u m m a r i z e d  in  T a b l e  I ,  a n d  a t yp i ca l  c u r v e  s h o w n  in  Fig.  1. 

TABLE I 

Measurement of Velocity Constants for Attachment of Four Viruses to 1~. coli B in Media 
Indicated, at 37°C. 

Bacteriophage Medium k = adsorption constant 

T1 
T3 
T2 
T4 
T2 
T4 

Nutrient broth 

Cg ~c 

gc  Cc 

-t- .1 M KCI 
-b .1 ~r NaC1 

(cm.* mln.--~) 
310 X 10 - l l  

300 X I0 -n 

0* 
0* 
210 X 10 -n  
310 X I0 -n 

* Indicates no measurable reaction. 
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In plain broth, phages T1 and T3 exhibited the extremely rapid adsorption 
rate (k between 200 and 400 X 10 -11 cm.3/min.) which has been shown to be 
equivalent to a collision efficiency in the neighborhood of 100 per cent for such 
systems (1, 2). Phages T2 and T4, however, exhibited no reaction whatever, 
until NaC1 or KC1 was added to the medium (5). When salt concentrations 
of the magnitude indicated in the last two lines of Table I were attained, these 
viruses also exhibited the same very high rate of reaction. Throughout the 
course of this study, no attachment velocity greater than k = 450 X 10 -11 
cm) rain. -1 was ever observed in any experiment, despite the wide range of 
conditions employed, a fact which lends support to the theoretical analysis 
which predicts that this region of values should be the maximum attainable 
rate in aqueous solution for bodies with the geometrical relations which char- 
acterize these phages and their host (1, 2). 

90\ 
80 
7O 

60 \ \ ,., 
"' IE 
o 50  = 
o \ o 
~- ~ 3 0 0  

° .J 250  .J LIJ 30 ~ 7 , 0  
~z z 2 0 0  

2.0 o ~- 150 
:E \ ~ z 

O: ~ ~ i oo  

> >. 50 
1-- 

Io o o 
0 I 2 3 4 5 6 7 " '  > 

r •  (BI ca c 12 ] 
/ 

I0 "5 I0 -4  10"3 10"2 I0"1 

l -  

/o\ 

FIG. 1. Typical curve showing the linearly logarithmic relation obtained when the 
concentration of free TI phage in a tube also containing host cells is plotted against 
the time. The initial virus concentration in this experiment was 4 X 104 particles/cm.S. 
The cell concentration was 2.57 X 10*/era. s so that the adsorption velocity constant, 

2.3 100 
k = 6 X 2.57 X 10 s Log ~ = 130. X 10 -11 era. s mln. -1. 

Fro. 2. The effect of (A) NaC1 and (B) CaCh on the velocity of attachment of T1 bac- 
teriophage to host cells in buffered solutions of the pure salts. Curves essentially similar to 
(A) were obtained with KC1, LiC1, and NI-I4C1, while MgCI~, BaCh, and MnC12 produced 
behavior like that of (B). 

TIME.(MINUTES) LOG OF SALT MOLARITY 
FIG. 1 FIG. 2 
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The velocity of this reaction can be more readily appreciated when one considers the ex- 
treme dilutions employed in the experiments, in order to slow down the interaction to the 
point where it could be studied. Thus the concentration of cells employed was usually between 
l0 T and 10~/cc.; while the bacteriophage concentration was l0 -~ gm./cm, a or a virus molarity 
of 10-xL The fact that the reaction between cell and virus proceeds more than 90 per cent to 
completion within 5 to 10 minutes at such concentrations of the reactants makes clear the 
magnitude of this attachment rate, 

2. Rate of Reaction in Chemically Defined Media.--Analysis of the reaction 
kinetics of virus-cell attachment in media of known chemical composition was 
carried out, using T1 bacteriophage in particular, as a representative member 
of this virus group. No measurable attachment to E. coli B occurs when the 
two are suspended in distilled water, or in 10 -4 ~r phosphate buffer. In most of 
the experiments which follow, 10 -4 ~t phosphate buffer at pH 6.8 was used as 
the basic medium to which substances under test were added. 

(a) Effect of Univalent Ions.--The addition of NaC1 markedly raises the 
adsorption rate of T1 virus. When a concentration of approximately 0.005 

NaC1 is attained a reaction velocity is reached which is almost half that 
obtained in nutrient broth. However, if still greater concentrations of NaC1 
are employed, the reaction velocity becomes depressed, ultimately again reach- 
ing fairly low values at salt concentrations greater than 0.05 ~r. These experi- 
ments are summarized in Fig. 2 (A curve) in which the adsorption velocity 
constant is plotted as a function of the NaC1 concentration of the medium. 

Almost identical curves are obtained if the NaC1 is replaced by LiC1, KC1, 
or NH4C1 in these experiments. Furthermore, the depressing action of an excess 
of NaC1 is also exerted in nutrient broth. The addition to broth of 0.1 ~ NaC1, 
for example, markedly diminishes the rate of the attachment reaction to a 
value comparable to that obtained in synthetic medium at the same salt level 
as shown in Figure 2. 

(b) Effect of Divalent Ions: Ca, Mg, Ba, Mn.--As Fig. 2 also demonstrates, 
CaCI~ displays a general pattern similar to that of NaC1 in influencing the 
adsorption rate, except that the entire curve is.displaced to the left by a factor 
of about 10 in concentration, and a higher attachment rate is obtained. Thus, 
much lower concentrations of CaC12 are required, both to achieve the maximal 
adsorption rate, and later to inhibit this reaction, and at optimum concentra- 
tion of Ca ++ , the velocity constant is as high as that observed in nutrient broth. 
The difference in behavior of NaC1 and CaClz is obviously due to the cations, 
since the anion is the same. Moreover, the nitrate and sulfate behave exactly 
like the chloride. The small amount of phosphate buffer present in these ex- 
periments does not appreciably affect the adsorption velocity, as shown by 
the fact that solutions of pure CaCI~ produce effects identical with those of 
the buffered solution. As in the case of the univalent cations, the effect of Ca ++ 
ion was shown to have a charge specificity, but not to be otherwise unique, as 
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curves essentially the same as Fig. 2 (B curve) were obtained when CaCI~ 
was replaced by MgC12, BaC12, or MnC12. 

(c) Tri~'alent Ions . -  

It was not possible to observe the effect of trivalent cations like Fe t+, Cr *+, and AP + 
on this reaction, since salts of these ions, even in very high dilution, produced rapid and ir- 
reversible inactivation, both of the virus and the host cell. 

Since the extremely high reaction rate of nutrient broth suspensions can 
be duplicated by solutions of pure salts, and since the non-ionized constituents 
of broth fail to prevent the depression in reaction rate caused by an excessive 
ion concentration, it may be concluded that the rate of cell invasion by T1 
virus is controlled completely by the ionic constituents of the medium. More- 
over, for a large number of such ions the only specificity exhibited is related 
to the total charge, rather than to the chemical species of the ion. These con- 
siderations indicate that electrostatic forces play an important role in this 
attachment reaction. A search was directed, therefore, to determine whether, 
indeed, any other process like an enzyme transformation is also involved, or 
whether the union of the virus to the cell is, in its first stages, at least, com- 
pletely an ionic interaction, comparable perhaps, to the attachment of an 
organic molecule with acid or basic groups, to an ion-exchange resin. 

3. Rate of Activation of the Adsorption System by Metallic Cations.--Experi- 
ments were carried out to measure how quickly inorganic ions can convert 
a non-reacting mixture of virus and cells into a rapidly reacting one, since the 
demonstration of an appreciable lag period might be evidence for the existence 
of slower transformations, possible enzymic in nature, which must precede the 
actual attachment process. E. coli B and T1 bacteriophage were mixed in 
distilled water at 37°C. The mixture was sampled after various time intervals 
and the extent of adsorption at each moment determined. At the end of 3 
minutes, MgCI~ was rapidly added in an amount sufficient to make its final 
concentration in the adsorption tube 10 -3 •. A sample was removed immediately 
afterward, and others at subsequent intervals. The resulting curves, a sample of 
which is shown in Fig. 3, indicate that the rate of reaction of Mg ++ with the 
system is so rapid as to be beyond the resolving time of the experimental 
procedure. One can conclude that the half-life of activation of the system by 
Mg ++ is much shorter than 20 seconds. 

4. Temperature Coefftcient of Virus Attachment on Cells.--The effect of 
temperature on the rate of adsorption of T1 on E. coli B was studied, both in 
broth and in solutions containing only MgC12 and buffer. The curves obtained 
in these two media were practically identical, (Fig. 4) and exhibited a maximum 
adsorption rate in the neighborhood of 37°C., which falls off with increasing 
or decreasing temperature. The identity of the results in broth and in MgC12 
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solution indicates that  no organic cofactor dependence arises, even a t  a tem- 
perature as low as 5°C. The significance of the shape of this temperature curve 
will be discussed in a subsequent paper (12). 
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Fzo. 3. Experiment showing absence of any lag period when an inert mixture of T1 phage 
and host ceils in distilled water is activated by the addition of MgC12. Virus attachment to 
ceLls starts immediately at the maximum possible rate. (K = 230 X 10 -n cm- s rain.-1) • 

5. Attachment of Bacteriophage to Inorganic Surfaces.--The preceding ex- 
periments lend themselves to a simple interpretation, namely that  the union 
of a virus to its host' cell consists, for the first step at  least, of an electrostatic 
a t tachment  between points of opposite polarity distributed in complementary 
fashion over the two surfaces. The role of the inorganic ions may be visualized 
as simple addition to specific sites on the two bodies, thereby furnishing the 
charge distribution necessary for vires-cell at tachment.  Fig. 2 indicates that  
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in low concentration ranges the addition of cations increases the reaction 
velocity, while higher concentrations inhibit the process. This dual role of 
Ca++, for example, could indicate that it can become bound to two different 
kinds of sites in this system--at tachment  at the "first kind" of site aiding the 
course of ceU invasion, while attachment at the "second" blocks the process. 

In  distilled water, then, all the sites on both surfaces at which ion attach- 
ment  is possible, will be vacant. Hence no reaction between virus and cell 
takes place, because the electrostatic pattern necessary for attachment is not 
fulfilled. When a salt like CaClz is added to the medium in a concentration of 
10 --3 K, the Ca ~- ions become bound only to negative sites of the "first kind" 
(which may be distributed on one or both of the reacting bodies) with the 

K 
(xlO-IIG M.3 MIN.°I ) 

50a 
2 0 Q  
I00. 
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Fio. 4. Change of vdodty constant for virus-cell attachment with temperature. Solid clr- 
cles indicate experiments in phosphate buffer + 10 "t g MgCh. Open circles are nutrient 
broth. A significant rate of reaction is observed even at temperatures as low as 1.0°C. (Ab- 
scissa is reciprocal of the Absolute temperature.) 

result that the two surfaces present patterns which are geometrically and 
electrostatically complementary. Virus and cell will then adhere on contact. 
However, if an excess of CaC12 is added to the solution, the Ca ++ ions will 
begin to attach to sites of the "second kind" and so interfere with union of 
virus and bacterium. A highly diagrammatic scheme illustrating how the system 
might operate is shown in Fig. 5. The fact that a similar series of effects can 
also be achieved by univalent cations like Na +, provided that a much higher 
concentration is employed, is readily understood as evidence that the binding 
energy of Na + to the sites which require a positive charge for fulfillment of 
the necessary pattern, is smaller than that of Ca++. Hence, a greater concentra- 
tion of Na + in the external medium is required to achieve the same equilibrium 
charge distribution of attached ions on negative sites of virus and cell surfaces. 
Such a difference would be expected, in view of the usual differences of bond 
strengths for singly and doubly charged ions to most negatively charged 
organic radicals. 
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If  this formulat ion is valid, i t  should be possible to replace the host  bacter ia l  
cells by  a polar  inorganic surface with a sufficiently great  var ie ty  of electro- 
s tat ic  configurations so tha t  pa t t e rns  complementary  to those of specific virus- 

VIRUS CELL 
MEDIUM ,SURFACE SURFACE RESULT 

(A) H20 NO ATTACHMENT 
Y 

(e) 10"3M MoCl= ~:  , > I ATT, CHME.T 

Fro. 5. Highly schematic diagram showing one possible arrangement which would operate 
according to the proposed hypothesis. The essential assumption is that two kinds of sites for 
cation attachment exist on the surfaces of the cell and virus. Attachment of cations to sites 
of the first kind is necessary for virus adsorption on cells, while attachment of cations to sites 
of the second kind blocks the process. The cation-binding energy for all the ions studied here 
is greater for sites of the first kind than for those of the second. 

For the sake of diagrammatic simplicity, the sites of the first kind have been pictured as 
situated only on the virus, and those of the second kind only on the ceil. Further experiments 
are being carried out to clarify the actual distribution of these two kinds of sites on the two 
surfaces (12). In (A) and (C), the configurations on cell and virus will repel each other. 
In (B), an electrostatically complementary configuration has been attained permitting union. 

cat ion complexes will occur. In  tha t  case, i t  should be possible to duplicate  
many  of the phenomena of virus-cell a t tachment .  In  1940 Delbri ick repor ted  
experiments on a strain of bacter iophage tha t  could be made to a t t ach  reversibly 
to a Jena glass filter, a procedure he employed to concentrate  phage suspensions 



T. T. PUCK~ A. GAREN, AND ~'. CLINE 73 

(8). His results, however, were not always reproduceable when applied to other 
viruses (9). I t  was decided to reinvestigate this phenomenon since, if this 
adsorption could be shown to be basically similar to the interaction of phage 
with host cells, conclusions about the electrostatic nature of the biological 
reaction would be materially strengthened. 

Experiments revealed that T1 bacteriophage could readily be adsorbed onto 
glass filters. This finding by itself does not furnish a very searching test of 
the proposed theory. A more critical experiment was devised using a trypto- 
phane- requiring mutant of T4 bacteriophage. This phage, originally isolated 
by Anderson (6) can only attach to cells of E. coli B if it has first reacted with 
/-tryptophane in a concentration of approximately 10 to 20 "y/cc. I t  has been 
demonstrated that the activating effect of tryptophane is confined to the virus, 
no effect being exerted on the cell itself. Now, if the attachment of a virus to 
an inorganic polar surface of this kind is simply a non-specific type of ad- 
sorption between the glass and the multifold polar and non-polar chemical 
groupings present on the nucleoprotein virus molecule, tryptophane should 
not be expected to influence this reaction. But, if the union of the phage to 
the filter involves the same chemical groupings which determine virus-cell in- 
teraction, any biochemical specificities involved in the latter case should also 
be exhibited in the former. Experiments were performed comparing the 
effect of filtering this mutant virus when suspended (a) in phosphate buffer 
plus 2 X 10 -'4 M MgCI~, and (b) in the same medium to which tryptophane 
had been added. Such experiments revealed that this particular virus mutant 
is strongly adsorbed to the glass filter only in the presence of tryptophane. 
A typical protocol is presented in Table II. 

From this T4 virus stock (which had been prepared from a single plaque) 
a mutant requiring no tryptophane for cell invasion was isolated by plating 
a massive inoculum of the virus with E. coli B on an agar plate containing a 
synthetic medium lacking tryptophane 1 but capable of supporting growth of 
the bacterial host. A small number of plaques resulted, one of which was isolated 
and used to prepare a new stock. This strain of T4 phage did not require trypto- 
phane for cell invasion. Experiment showed that it is also adsorbed on glass 
filters with high efficiency in the absence of tryptophane. A representative 
experiment is shown in Table III, in which the action of sufficient and deficient 
mutants is compared. 

That this removal of phage by glass filters represents a true attachment of 
the virus to the filter, rather than some destructive action accompanying the 
filtration, was demonstrated by the fact that such virus could be reeluted by 
the use of an appropriate medium. Nutrient broth plus 0.5 per cent NaC1 

1 The composition of this synthetic medium i s  a s  follows: glucose, 4.0 gm.; (NI=I,) 2SO,, 1.0 
gin.; KH2PO4, 0.75 gin.; Na2HPO4 1.75 gin.; MgC12.6H20, 0.20 gin.; CaCI2.2H20, 0.15 gm.; 
bacto-agar 14 gm.; H20 to 1 liter. 
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proved to be an  excellent elution fluid for all the phages tested, presumably  
because the enormous excess of protein  in the bro th  is able by  mass act ion to 
replace virus molecules from the active a t t achment  sites on the filter. In  the 
experiment  described in Table I I I ,  for example, more than  50 per  cent of the 
virus  ac t iv i ty  removed from the original suspension in trials (a) and  (c) was 
reeluted when 5.0 cc. quanti t ies  of bro th  were passed twice through each 
filter. 

TABLE II  
Demonstration of Cofactor Artlon of Tryptophane for Attachment of Defic~en~ 7"4 Baclerlopkage 

to Glass Filters 

Concentration of 
tryptophane in suspend- T4 virus titre before Virus title in filtrate Virus removed 

ing medium filtration by filter 

per cent 

0 3.93 X lOe/cm, s 3.60 X 106 cc. 8* 
20 7/cc.  3.98 X lOe/cm, s 0.33 X 10 e ce. 90.5 

Two 50 cc. samples of a broth lysate of a tryptophane-requiring T4 mutants were diluted 
1:104 in 0.014 ~ phosphate buffer + 2 X 10 ~ ~ MgCI2. To one sample, t-tryptophane was 
added in a concentration of 20 7/ml. Each sample was filtered twice through a Coming 
fritted glass bacterial filter (catalog No. 33990). The virus titre of each suspension was de- 
termined before and after filtration. 

* Within experimental error. 
:~ Kindly supplied by Dr. Max Dellbriick. 

TABLE III  
Demonstration that Tryptophane Is Required for Attachment to Glass Filters Only by the Virus 

Mutant Which Also Requires Tryptophane for Invasion of Cells 

Mutant strain of T4 

(a) Sumcient form 
(b) Tryptophane-defieient form 
(c) . . . .  

Concentration 
of tryptophane in suS- 

pending medium 

0 
0 
10 v/cc. 

Virus 
titre before 
filtration 

2.45 X 105 
3.39 X 10 i 
2.01 X l0 b 

Virus titre of 
filtrate 

0.14 X 105 
3.20 X 105 
0.65 X 10 ~ 

6. Temperature and Salt Effects in Adsorption of T1 Bacteriopkage on Filters. 
- -S ince  the a t t achment  of bacter iophage to the highly polar  surface of a glass 
filter can par take  of the biochemical specificity of phage invasion of host  ceils, 
s tudy  of the kinetics of the former system should throw light on the mechanism 
of the lat ter .  The effect of tempera ture  was studied first. A prel iminary in- 
vest igat ion showed tha t  10 -3 ~ MgC12 solution is an excellent medium for 
adsorpt ion of T1 on the glass filters. To test  the effect of temperature  on this 
action, paral lel  fil trations were carried out  a t  temperatures  of 37 ° and  3.0 ° 
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C., in the latter case the entire procedure taking place in a cold room. As 
Table IV illustrates, practically complete adsorption occurred at b o t h  tem- 
peratures. 

Since effective adsorption is obtained at  low temperatures, s tudy of the salt 
effects was carried out at  a temperature near 0°C., to reduce still further the 
virus inactivation which occurs at  low ionic strengths (10). A slight excess of 

TABLE IV 
Demonstration of Completeness of Adsorption of T1 Virus on Glass Filters at Both High and 

Low Temperatures 

Filtration temperature T! fitre bdore filtration TI tltre of filtrate 

37 ° 1.53 X 10S/cc. 0.001 X 10 a 
3.0 ° 1.73 X 10S/cc. 0.001 X 108 

TABLE V 
The Effect of Mono- and Divalent Salts on the Adsorption Effwiency of T1 Bacteriophage on 

Glass Filters 

Filtration medium Ratio: titre of solution afterfiltration 
titre before filtration 

(,4) H20 

(B) I0 -~ xc CaCl~ 
10 s • CaCl2 

(C) 10 t ~¢ MgCI2 

(D) i0 -s ~r NaCl 

10 -s ~a NaC1 

lb¢r cen~ 

3 8 . 0 *  

17.0 
less than O. 1 

" " 0 . 1  

8.5 
less than 0.50 

* This value actually represents inactivation by the distilled water, rather than even a 
small amount of adsorption, as shown by the fact that no virus could be eluted when nutrient 
broth was poured through the filter after the water filtration, whereas, in the case of the 
other media listed in the table, a subsequent washing with broth resulted in recovery of almost 
all the virus which had disappeared from the original suspension. 

MgC12 was also added to the collecting tubes, so that  immediately after its 
passage through the filter, the virus was restored to an ionic atmosphere in 
which it is stable. Even with these precautions, appreciable inactivation occurred 
in the case in which distilled water or 10 -~ M NaC1 was used as the sus- 
pending medium. Despite this disturbing effect, it was possible to demonstrate 
markedly parallel action between the adsorption of T1 on glass filters and its 
a t tachment  to host cells. The experiments of Table V indicate (a) little or no 



76 VIRUS ATTACHMENT TO HOST CELLS. I 

virus adsorption on the glass occurs in distilled water; (b) CaCh produces some 
effect in a concentration of 10 -4 M, but  does not achieve optimum action until 
a concentration of 10 -~ M is attained; (c) other divalent salts like MgCI~ are 
effective in the same concentration as CaC12; (d) if monovalent salts are em- 
ployed, a tenfold greater concentration is required for maximum effectiveness, 
NaCI being only moderately efficient at 10 --3 x{, hut an excellent adsorption 
medium in a concentration of 10- ~ x~. 

In contrast to these noteworthy similarities in the action of a glass filter and 
ceils of E. coli B on T1 virus in dilute salt solutions, more concentrated solu- 
tions revealed an important difference in these two systems. Thus, whereas 
increase in the concentration of Ca ++ ultimately results in depression of the 
virus attachment to cells, (Fig. 2), no such action is observed in the case of 
the filters. Even 0.5 ~ CaC12 promoted rapid attachment of more than 99 per 

T A B L E  VI 

Per cent Reelution by Various Media of Virus Deposited on a Glass Filter 

Elution fluid Eluted 

ptr ce~ 

10-s M CaCl~ 0 (<0.03) 
H20 60 
Nutrient Broth -4- 1/2 per cent NaCI 70 

5.0 cc. quantities of each fluid were passed once through a filter on which virus had been 
deposited by previous filtration in 10 -a ~ CaC12 or 10 -s u MgCh solution. 

cent of the virus to the glass surface, almost all of which was subsequently re- 
coverable by broth elution. Experiments at still higher concentrations of CaC12 
were not feasible because of the onset of permanent inactivation of the phage 
in such solutions. 

7. Reversibility of Virus Attachment to Filters and to Cells.--The action of 
nutrient broth in causing reelution of bacteriophage attached to glass filters 
has already been described. In addition, however, it was found that virus 
adsorption on glass filters is readily reversible through control of the ionic 
constituents alone. Thus, a medium which promotes good attachment of T1 
to the glass filter will not produce any appreciable elution of phage previously 
deposited, whereas solutions from which adsorption does not take place are 
excellent eluting agents. As shown in Table VI, 10 -3 ~ CaCI~ will not liberate 
free phage which has been deposited on a glass filter, while a single passage of 
distilled water through the filter liberates most of the adsorbed virus. This 
kind of reversibility is exactly that expected for an ionic attachment of mole- 
cules with acid or basic groups to a complex silicate surface like that of the 
glass filter. The clarification of these relationships for a variety of viruses should 
make possible rapid and simple means for their purification and concentration. 
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The theory that  the pr imary a t tachment  of a virus to its host cell is essentially 
similar to its adsorption on an ion-exchange surface would demand that  virus- 
cell a t tachment  could also be reversed. Previous studies of such infected cells 

had failed to demonstrate any  appreciable detachment  of such virus with the 
result tha t  the union of bacteriophage and its host cell has come to be regarded 
as irreversible (1, 2). In  these earlier studies, however, the a t tempt  to reverse 
the reaction was carried out in the same medium in' which a t tachment  had 

TABLE VII 

Demonstration of the Reversibility of Virus Attachment to Host Cells; Removal of the Virus 
from Infected Cells Occurs Only in Media Where the Forward Reaction Does Not Proceed. 

Procedure.--It was necessary to employ T2 virus for these experiments, because distilled 
water, used as the reelution medium, causes extensive inactivation of T1. 

In a tube at 37 °, 5 X l0 s T2 virus particles were added to 5 X 109 cells of E. coli B in 1 
cc. of 10 -s M phosphate buffer + 0.02 M NaC1. 3 minutes was allowed for attachment to 
cells, after which the tube was chiUed suddenly in an ice bath, titred, and centrifuged in the 
cold. Virus titres of the total suspension and of the supernatant, respectively, revealed that 
99.5 per cent 6f the virus had become attached to cells. The supernatant, containing any free 
virus, was then discarded as completely as possible, and the remaining cells, both infected and 
non-infected resuspended in 0.$ cc. of distilled H,O. 0.1 cc. of this suspension was then added 
to (A) 1.9 cc. of distilled water, and to two media promoting very rapid cell invasion, one 
synthetic, (B), and the other nutrient broth, (C). After 5 minutes at 3.0°C., all the tubes 
were centrifuged and the virus titres of each total suspension, and of each supernatant de- 
t ermined. A second reelution procedure in each medium was also carried out. 

Original No. of No. of free virus particles liberated into superuatant after two 
virus-infected cells in 5-minute washings at  0oc. with: 

each tube 

(A) H,O (B) Synthetic medium 
promoting very 
rapid cell-attach- 
ment 

(10 -a M Phosphate + 0.1 
M NaCI + 10 "~ ~¢ Mg ++) 

(C) Nutrient broth + 
.1 ~ NaC1 

(Rapid attachment me- 
dium) 

4.98 X 10. 3.67 X 10. 0.16 X 10' 0.08 x 10" 

occurred, usually nut r ien t  broth. I n  the light of the present considerations, the 
failure to observe reversal under  these conditions is not  unexpected. A series 
of experiments was performed which revealed that,  whereas a medium which 
promotes rapid cell a t tachment  causes practically no elution of virus ' from the 
cells, a medium like distilled water will produce extensive liberation of virus 
from cells which had been previously infected in a favorable environment.  I n  
a procedure closely analogous to the elution of phage from glass filters, i t  was 
possible to remove more than  70 per cent of the bacteriophage from ceils to 
which it had become attached and to demonstrate their existence as free, active 
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virus particles. Table VII presents the results of a representative experiment, 
comparing the effects of various media on virus elution from infected cells. 
These relationships demonstrate that the primary step of union between a 
virus and its host cell is a reversible process? 

8. Relationship between Electrostatic Bindings and Host-Virus Specif ici ty.--  
The foregoing experiments indicate that the bacteriophage-cell system can 
enter into a binding which partakes of at least some of the characteristics of 
an electrostatic bond. I t  is most important to determine whether this bond 
contains within itself the basis for the specificity of the host-virus relationship, 
or whether it acts simply as a non-specific device for promoting rapid and 
intimate contact between the invading system and the cell, so that, if the virus 
and the host are correctly matched, more specific bonds will then be established. 

The first type of experiment designed to elucidate this problem deals with 
an attempt to measure whether any reaction whatever takes place when a 

TABLE VIII 
Demonstration tkat No Binding of T1 Bacteriophage Occurs on a Specifwally "Resistant Cdt 

Mutant Even in Concentrations a Thousandfold Greater Than That at Which the 
Wild Type Binds Virus Extensivdy. 

Bacteria in adsorption tube Bacterial concentration Total virus removed from supernatant 
after 10 mlnu~.s at 37* 

~er tee./ 

(a) E. cdiB/1,5  1.95 X 10 l° 0 
(b) E. ¢oli B 1.95 × l0  g 45.9 

virus is brought in contact with a resistant mutant of the original host cell. 
If the electrostatic forces here considered are non-specific ones, serving only 
to promote a preliminary attachment of the virus to susceptible or resistant 
cells alike, it should be possible to demonstrate some interaction between a 
given virus and mutants of the host cell which are resistant only to this par- 
ticular virus, but still sensitive to other viruses of the system. On the other 
hand, if these forces also determine virus specificity, one would expect that 
such resistant cells would have no tendency whatever to bind the virus. Ex- 
periment revealed that, in contrast to the very rapid, reversible, ion-controlled 
union of a virus and its specific host (Table VII), no detectable reaction occurs 
between a virus and a cell mutant specifically resistant to it, even at the highest 
cell concentration attainable. (Table VIII.) 

A mutant of E. coli B, resistant to T1 bacteriophage, was isolated by exposing a cell sus- 
pension to a large excess of the virus on a nturient agar plate. Colonies which appeared after 

Under certain conditions the infected cell loses its capacity to reelute the virus. These 
experiments will be described later. 
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incubation were picked and subcultured, and tested for their resistance to plaque formation 
by T1 bacteriophage. A pure strain of a form resistant to phages T1 and TS, but readily at- 
tacked by all the rest, was selected and young cultures prepared by incubation in broth at 
37°C. for 4 or 5 hours. Large volumes of such cells were centrifuged and concentrated several 
hundredfold by resuspension in very small volumes of fresh nutrient broth. To the resulting 
suspensions, aliquots of T1 virus were added. At intervals varying from 5 to 40 minutes the 
fraction of virus remaining unattached to cells was determined by titrating the virus content 
of the supernatant remaining after centrifugation of the cells. A typical experiment shown in 
Table VIII (a) reveals that even extremely concentrated suspensions of the resistant cells 
(designated B/I, 5) failed to bind any bacteriophage. By contrast, in line (b) it is shown that 
a thousandfold more dilute suspension of the wild-type host cell, prepared in exactly the same 
manner as the B/1, 5 cells, attached to itself approximately half of the virus particles present 
in the suspension. 

In other experiments, concentrations of B/ l ,  5 cells as high as 2.2 X 10n/cm. * 
failed to bind any detectable amount of T1 virus, even after incubation in 
broth at 37°C. for 25 minutes. This failure to observe any reaction whatever 
between a virus and a cell specifically resistant to it, makes almost inescapable 
the conclusion that the ion-controlled forces are also the seat of the biological 
specificity in virus-cell interaction. 

Another line of investigation also tends to support this conclusion. If the 
ion-controlled forces here described do determine virus-host specificity, one 
should expect to find marked differences in the pattern of ionic influence on 
cell-attachment rate in viruses which differ in their host specificity relation- 
ships. That is, if the electrostatic forces between virus and host cell are non- 
specific ones, one might expect similar influences of various ions on 
the attachment of the different bacteriophages to the same host cell. On the 
other hand, if these electrostatic bonds are characteristic for each virus type, 
marked differences in the ionic response of the different virus systems would 
be expected, since each virus must be attaching itself to different elements 
of the electrostatic configuration on the host-cell surface, and therefore a 
different ionic atmosphere might reasonably be expected, in order for 
each virus type to achieve the necessary patterns complementary to its own 
constellation of attachment points. Experiment readily revealed the existence 
of pronounced differences in the effects of various ions on the invasion of E. 
coli B by various members of the T system of bacteriophages. For example, 
under conditions which provide the maximum adsorption efficiency for T1 
virus on E. coli B--5 X 10-4 ~r MgCh solution--the T2 virus is completely 
inert toward the same host cell. Increasing the concentration of MgC12 to 0.01 ~x 
causes only a very slow attachment of T2 to take place (K = 2.4 X 10 -~° 
min. -1) and at higher concentrations of Mg ++ extensive virus inactivation 
takes place in the adsorption tubes. On the other hand, addition of NaC1 or 
KCI promotes very rapid reaction, and in concentrations of 0.1 ~, a reaction 
rate of 2.1 )< 10 -9 is attained which is comparable to the optimum observed 
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with the T1 virus. As noted in Table I, even in nutrient broth, E. coli B is 
not appreciably attacked by T2 virus, unless 0.1 ~ KC1 is added. By application 
of these facts, it has become possible to devise synthetic media such that if 
E. coli B is added to a mixture of both T1 and T2 viruses, only one or the 
other virus will attack the host cell to any marked extent. 

Still different ionic behavior patterns have been found for the adsorption 
of T3 and T4 viruses to E. coli B, and will be described in detail elsewhere. I t  
should be emphasized, however, that in every case investigated, the adsorption 
rate of each virus in its own chemically defined medium of optimum effective- 
ness always approached the value between 200 and 400 X 10 -~t which is 
obtained in nutrient broth (Table I). 

These experiments indicate that different viruses require different ionic 
environments in order successfully to invade a given host cell. This result is 
consistent with the picture that the particular configuration necessary for the 
attachment of each virus is attained through the binding of ions from the 
medium to sites on both cell and virus, to produce an electrostatic pattern 
which permits union. By this picture, the basis of virus-host specificity with 
respect to the attachment reaction would be determined by two factors: the 
ion-binding energies of different sites on virus and cell surfaces, determining 
the number of ions of each kind which becomes attached to each surface in 
media of various compositions; and the distribution of these sites over the two 
surfaces which determines the degree of complementariness between the two 
patterns so arising. 

DISCUSSION 

These experiments describe various aspects of the role played by inorganic 
ions in the reaction by which bacterial viruses become attached to their host 
cells. Demonstration of this relationship has suggested that the primary inter- 
action may be largely of an ionic nature. This conception is at least able to 
fit together in an extremely simple picture all the observations presented here, 
as well as to provide an explanation for some hitherto inexplicable features of 
this reaction:-- 

1. The extremely rapid reaction rate between virus and host cell under 
optimum conditions demands a mechanism with practically no activation 
energy, such as the union of two bodies between which there exists an attractive 
electrostatic force. 

Schlesinger and Delbriick (1) originally showed that the very high velocity of 
this reaction demands that almost every collision between phage particles and bac- 
terial surface results in effective attachment. The increased refinement in measure- 
ment of the physical constants of this system since these two papers appeared have 
served only to confirm this conclusion. This may be demonstrated with the simplified 
formula of Delbriick: km~x. -- 4fDa where kraal, is the maximum possible reaction 
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velocity constant attainable if every virus collision with any part of the bacterial sur- 
face is effective; D is the diffusivity of the phage particle; and a is the effective average 
radius of the bacterium. In the case of T4 bacteriophage, for example, D has been 
found to be 0.80 × 10 -7 cm. 2 sec.-* (ll), while a for the bacteria in the experiments 
used here is 8 × 10 -~ cm., since microscopic measurement of a series of cells grown 
under the standard conditions here adopted gave values of l~ × 3~ as the average 
bacterial dimensions, k . . . .  then is 80 × 10 -n cm. s sec. -~ or 500 × 10 -u cm. t min.-* 
which agrees with the experimental values which lay between 200 and 400 X 10 -n  
cm.' min.-*. 

This very rapid rate may be contrasted with the low collision efficiencies 
characteristic of systems in which reaction takes place between pairs of covalent 
bound atomic groupings, so that energy is required to cause the original bonds 
to open before new ones can be formed. Even when such systems are very 
effectively catalyzed, only a small proportion of the molecular collisions is 
sufficiently energetic to produce reaction. On the other hand, the union of 
charged entities like Ag + and CI- ions can occur in almost every collision be- 
cause of the attractive force which operates continuously even while they are 
several atomic diameters apart. In the case of the virus-ceU combination, 
enzymatic reactions doubtless begin very quickly after the virus has become 
attached to its host, but the primary act of union is probably not an enzyme- 
catalyzed formation of new covalent bonds. 

2. The rate of interaction of several viruses and their host cells in chemically 
defined media can be adjusted to any desired value between zero and the 
maximum theoretically possible rate, by control of the ionic constitution of 
the medium alone. 

3. The activation by Mg ++ of an inert mixture of virus and cells transforming 
the system into one which reacts at practically complete collision efficiency 
occurs instantaneously within the limits of present experimental technique. 
Thus, not only is the attachment itself extremely rapid, but also no lag period 
is demonstrable in the attainment of the Condition of high reactivity through 
addition of the necessary ions. This behavior which would be unexpected in 
reaction mechanisms involving changes in covalency linkages, becomes readily 
explainable in terms of an electrostatic mechanism. 

4. For a fairly large group of positive ions strongly influencing this reaction, 
the only specificity exhibited i s associated with total ionic charge. This observa- 
tion may be interpreted as evidence that the reaction requires a certain fairly 
gross charge distribution rather than interaction of specific chemical forces 
of a more subtle nature. Similar ionic relationships govern the aggregation of 
colloidal dispersions by electrolytes, which is primarily electrostatic in nature. 

5. This hypothesis has accurately predicted that the adsorption of bacterial 
viruses to polar inorganic substrates should display a number of the same 
biochemical specificities which characterize their attachment to host bacterial 
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cells; and that virus can be reeluted both from host cells to which they have 
attached themselves, as well as from inorganic surfaces by changing the con- 
stitution of the medium so as to reverse the direction of the ionic equilibria 
involved. 

The temperature dependence curve of the virus-cell attachment (Fig. 4) 
resembles that of an enzyme-controlled reaction rather than the formation of 
salt-like electrostatic bonds. Further studies which will be described in detail 
in a forthcoming paper (12) have indeed demonstrated that under the experi- 
mental conditions here employed, the curve of Fig. 4 is not a reflection of the 
initial reversible binding of virus to cell but of a subsequent irreversible meta- 
bolic step of the infected aggregate. The rate of the initial reversible step is 
almost independent of temperature changes (12). 

The following set of ionic interactions has been postulated to underlie the 
process of virus attachment to host ceils: 

P + nCa ++ ~ P(Ca++),, (l) 
inert reactive 

This is the reaction whereby cations are attached to those sites of the "first 
kind" on the virus surface to give it a configuration matching that of the host 
cell. The attachment reaction which follows can be represented by: 

P(Ca++). + rnX- ~ P(Ca,,)X,. (2) 

in which r e X -  represents negative sites distributed over most of the cell surface. 
Thus, for T1 virus and E. coli B,  electrostatic and geometrical complementari- 
ness is attained in a medium containing 5 X 10 -4 ~ CaCI~. Under these condi- 
tions, equilibrium in reaction (1) lies far to the right, so that every phage 
particle is in the reactive form. The enormous rapidity of the reaction under 
these conditions is due to the fact that both reactions (1) and (2) partake of 
the nature of ionic double decomposition, in which a very high collision efficiency 
is the rule. In this way, the rapidity of activation of this system by Ca ++ or 
Mg ++, as well as the high rate of virus adsorption on cells, is explained. 

If lower concentrations of Ca -H- or Mg ++ are employed, reaction (1) proceeds 
less far to the right, so that the concentration of  P(Ca++), present at any 
time is reduced and hence the rate of the attachment reaction is depressed. 
These considerations explain why the attachment rate in Fig. 2 first rises as 
the Ca++ concentration is increased, and then levels off. 

This mechanism of the activation reaction (1) involving attachment of cations to 
sites of the "first kind" probably involves specific sites on the cell surface as well as 
on the virus. The role of the virus has been emphasized in this presentation because 
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the known ability of these bacteriophages to undergo reactions with metallic cations 
in this same concentration range makes it likely that at least some of the sites of the 
"first kind" are on the virus. Thus, in distilled water T1 undergoes a definite reaction 
with Ca ++ ion in a concentration of 10-' x( to 10 -t M, which determines the ability of 
the subsequently infected cell to produce a plaque when plated in nutrient agar (7). 
Adams (10) also found that a concentration of 10 -s M of Ca ++, Mg ++, or other divalent 
ions, protected T1 from spontaneous decomposition in aqueous solution. Concentra- 
tions lower than 10-* ~ produced no protective action. Of especial significance for the 
present considerations is the discovery by Adams that monovalent ions like Na + 
could also prevent this inactivation of the virus, but much higher concentrations of 
the univalent ions are required. This observation strikingly parallels the fact here 
described that univalent cations can duplicate the effects produced by the divalent 
ions on the attachment of T1 to ceils, provided that much higher concentrations are 
employed (Fig. 2). The higher concentration of univalent ions required to produce any 
of these effects may be taken as an indication of a weaker binding by these ions to the 
virus groupings. 

The fact that T1 virus also requires 10 -3 ~ Ca ++ or 10 -2 ~ Na + for optimal 
attachment to glass filters is in accord with this hypothesis. The glass filter 
experiments also suggest that the inhibiting effect on cell attachment of an 
excess of Ca ++ (descending branch of Fig. 2; ion-binding at  sites of the second 
kind) is due, at least in part,  to blocking of cell attachment sites, since this 
phenomenon does not occur in the glass system. This reaction may be repre- 
sented by: 

Ca ++ q- 2X- ~ CaX, 
O) 

active inactive 

I t  is required that  this reaction have a smaller binding energy than that by 
which Ca ++ unites with the virus, (1), since inhibition begins to be significant 
only after a concentration of CaCI~ greater than 5 X 10 -4 ~ is attained in 
solution, whereas maximal activation by Ca ++ occurs in one-tenth this con- 
centration. Monovalent ions require still higher concentrations to compete 
effectively with the activated virus for the X sites on the cell. Experiments 
with radioisotope tracers have been carried out which support the view that 
inhibition of virus invasion is possible by blocking of cellular attachment sites 
by excess cation (12). The fact that the maximal rate of virus attachment to 
cells attainable in the presence of Na + is significantly lower than that possible 
with an optimal concentration of Ca ++ or Mg++ would indicate that the mono- 
valent ion begins to attach to sites of the "second kind" before it has saturated 
all of those of the "first kind." 

The picture which emerges from these considerations portrays the virus 
as a molecule with specific groupings distributed over its surface which are 
capable of uniting reversibly with ions from solution. The number of ions of 
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any kind which is attached at any moment to the virus is a function of the 
binding energy of each species for the various sites at which linkage is possible, 
and the concentration of this ion in the medium. Viruses with different host- 
cell specificities would differ in the geometrical distribution of the ion-binding 
sites on their surface, and in the binding energies of these sites for specific 
ions. Thus, when a mixture of different viruses is placed in the same medium, 
different electrostatic configurations are established on their surfaces, which 
may determine their ability to become attached to a given host cell. The ex- 
periments of the present study have emphasized the roles of certain cations, 
but there is every reason to expect that the associated anions are also actively 
participating in this reaction. 

The general interpretation here proposed is not affected by the existence 
of virus strains which require an organic cofactor like/-tryptophane in order 
to attach to a cell. Such molecules may themselves furnish the sites for attach- 
ment of the ions which make possible the invasive process. I t  is noteworthy 
that tryptophane loses its cofactor function if its strong ion-binding groups 
- - the  a amino group or carboxyl group--are removed (6). Indole even becomes 
a potent competitive inhibitor for tryptophane in this reaction (13). Since 
indole contains the same condensed aromatic ring system as the normal co- 
factor, but lacks the highly polar side chains at which ions could become 
strongly bound, it would appear that the initial attachment of tryptophane 
to the virus occurs through the structural elements of the ring system which 
are common to both tryptophane and indole. In the case of tryptophane, the 
resulting structure, after having bound the proper numbers of ions at its car- 
boxyl and amino groups, could provide a suitable configuration for attachment 
to a host cell, whereas indole could not. The theory here proposed would require 
that even in the presence of an excess of tryptophane, the deficient virus mutant 
still display characteristic salt requirements before attachment to cells can 
be initiated. We have found this indeed to be the case. 

Ionic effects like some of those described here have been found also to operate 
in the case of animal viruses. Davenport and Horsfall (14) have recently re- 
ported that solutions containing low concentrations of electrolytes inhibit 
attachment to erythrocytes and to lung particles of both pneumonia virus 
of mice and of influenza virus. Such solutions also caused redissociation of the 
former virus from lung particles to which it had been previously adsorbed but 
retarded elution of the latter. In fact, increase in the elution rate of influenza 
virus was accomplished by increasing, rather than decreasing the salt con- 
centration. These experiments led the authors to suggest that the attachment 
of mouse pneumonia virus to cells may involve formation of a complex with 
the "nature of a weak salt." They postulated a different kind of attachment 
mechanism for influenza virus, however, at least partly because of its different 
behavior in the elution experiments. 



T. T. PUCK, A. GAREN, AND ~. CLINE 85 

The detailed theory developed in the present paper can explain equally 
well this behavior of both influenza and mouse pneumonia viruses. From the 
nature of the electrostatic interactions postulated, one would predict that 
reelution by high salt concentrations would occur whenever a curve of the 
general nature of Fig. 2 (B curve) characterizes the invasive action, provided 
it is possible to achieve a salt concentration such that ions from solution can 
capture the sites of the "second kind." We have found viruses which do not 
display the descending branch of the curve of Fig. 2, in high salt concentrations. 
Cell attachment of such viruses should not be reversible in solutions of high 
ionic strength. Studies of this kind with a variety of viruses are now in progress. 

The formulation proposing the existence of two different kinds of sites at 
which cations may attach, in the virus-host system, would lead to the expecta- 
tion that specific cations should exist which inhibit the invasion of a host 
cell by any virus displaying an ionic pattern like that of Fig. 2. Such an in- 
hibitor would be an ion whose binding energy to the sites of the second kind 
is greater than its energy of union to the sites which promote invasion. 
Such an ion should act as a competitive antagonist to the ions normally pro- 
moting attachment. It has been possible to demonstrate such a specific action 
for the case of Zn, and studies with radioactive tracers have confirmed the 
predictions concerning its binding energy. These studies will be reported in 
the second paper of this series (12). 

The present observations and the theoretical considerations employed to 
explain them are suggestive of the mechanism of the metal-catalyzed union 
of enzyme and substrate studied by Emil Smith, particularly with the dipeI>- 
tidases (17). Perhaps the most striking difference in the behavior of the two 
systems is the fact that the activation by metals of the virus-host cell system 
is an extremely fast reaction, while that of peptidase-peptide systems is slow. 
This difference may be an expression of the predominance of primary ionic 
interaction in the virus case, and of coordination forces in the enzymes studied 
by Smith. 

The mechanism which has been proposed here for the primary aspects of 
virus-cell interaction, and the specificity thereof, differs in emphasis from the 
physicochemical explanation for biological specificity which has been so success- 
ful in explaining the antibody-antigen reaction (15) in that it has been necessary 
to visualize a mechanism utilizing somewhat stronger forces between the 
elementary units on the two reacting surfaces. This necessity arises in the virus 
system because its tremendously high reaction velocity cannot be explained 
on the basis of very weak binding forces, like Van der Waal's forces, operating 
between the individual elements on the two bodies. Such very weak forces can 
provide a model exhibiting a high degree of specificity, since their very great 
attenuation with distance requires a high degree of geometrical correspondence 
between the two surfaces, in order for sufficiently extensive atomic contacts 
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to be established to form a stable union. However, this very requirement of 
close steric fitting demands that only a small fraction of the random collisions 
can be effective. In order to relieve this difficulty, Anderson (16) has postulated 
the existence of "small specific projecting elements" on the host cell or the 
virus, which might bring about a rapid and specific reaction. There is no experi- 
mental evidence for the existence of such structures. In the kind of interaction 
here postulated which involves linkages of ionic character, virus-host specificity 
is controlled by the pattern of electrostatic forces achieved by the attachment 
of small ions to specific sites on the two surfaces. A high collision efficiency 
results from the fact that (a) strong electrostatic forces would tend to orient 
the two complementary configurations during their period of approach in the 
course of a collision, and (b) even if the first collision engaged only a fraction 
of the maximum number of groups capable of interacting on the two surfaces, 
the strong binding forces would tend to hold the bodies together long enough 
for a more favorable adjustment of position to take place. 

SUMMARY 

T1 virus does not attach to its host cell, E. coli B, in distilled water. By the 
proper addition of salts the rate of attachment can be adjusted to any desired 
value up to the maximum limit set by the diffusion rate of the virus. 

Salts of Ca -H-, Mg ++, Ba ++, and Mn ++ bring about a reaction rate represent- 
ing 100 per cent collision efficiency in a concentration of 5 X 10 -4 ~. Both 
greater and smaller concentrations depress the attachment velocity. 

Salts of Na +, K +, NI-I4 +, and Li + display a similar pattern but require a 
tenfold greater concentration than that of the previous group to produce the 
same effect. Moreover, the maximum velocity attainable in solutions containing 
only monovalent cations is only half that achieved by the divalent salts. 

The trivalent cations A18+, Cr ~-, Fe a+ permanently inactivate the virus. 
Activation by Mg ++ of an inert mixture of virus and host cells in distilled 

water is so rapid as to be beyond the limit of the resolving time of the experi- 
mental procedure, which is 20 seconds. 

The temperature dependence curve of virus-ceU adsorption exhibits a maxi- 
mum at 37°C. and falls to a value representing approximately 3 per cent col- 
lision efficiency at I°C. Identical curves are obtained in nutrient broth and in 
10 -8 ~ MgCI~ solution. 

Bacteriophage can be quantitatively adsorbed on to glass filters. In a study 
of several viruses this attachment reaction was found to require the same 
cofactors--both organic, like/-tryptophane, as well as inorganic--which each 
specific virus required for its attachment to its host cell. The suggestion is 
made that the attachment of viruses to these filters is a useful model for their 
attachment to host cells. 

Virus attachment to glass filters is reversible. Such adsorbed virus can be 
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recovered almost quantitatively by washing the filter with a solution in which 
the attachment reaction does not occur. 

Virus attachment to host cells is similarly reversible at least in its primary 
step. Distilled water at 0°C. can produce almost complete liberation of T2 
virus from host cells infected in 0.02 M NaC1 solution. 

Two significant differences between the behavior of glass filters and host 
cells toward T1 virus are: (a) an excess ion concentration fails to inhibit virus 
attachment to the glass as it does to the host cell; and (b) no decrease in effi- 
ciency of attachment to glass occurs at low temperatures. These facts suggest 
that the inhibiting action on the infective process of excess cations and low 
temperatures involves chemical groupings on the cell surface, rather than on 
the virus. 

There is no detectable attachment whatever of T1 virus to E. coli cells 
specifically resistant to it, though still susceptible to other viruses. This ex- 
periment indicates that the ion-controlled attachment forces here considered 
are involved in the host-virus specificity. 

This conclusion is strengthened by the fact that several different viruses 
with different host-cell specificities have different ionic requirements for cell 
attachment. 

All of these observations lend themselves to explanation by a mechanism 
which pictures an initial addition reaction of cations to specific sites on the 
surface of the virus in particular, and possibly also of the host cell. Two com- 
plementary electrostatic configurations are so produced which can unite in a 
reaction with a high biological specificity, which yet exhibits 100 per cent 
collision efficiency. An excess of ions may cover up some of the attachment 
sites and so inhibit the reaction. By this picture the .specificity of virus-cell 
invasion depends upon the binding energies of sites on both bodies for various 
ions, and the distribution of these sites over the two surfaces. 

Possible relationships of such a process to other biological systems are 
discussed. 
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