Abstract
The transport of malate was studied in a Schizosaccharomyces pombe wild-type strain and in mutant strains unable to utilize malic acid. Two groups of such mutants, i.e., malic enzyme-deficient and malate transport-defective mutants, were differentiated by a 14C-labeled L-malate transport assay and by starch gel electrophoresis followed by activity staining for malic enzyme (malate dehydrogenase [oxaloacetate decarboxylating] [NAD+]; 1.1.1.38) and malate dehydrogenase (1.1.1.37). Transport of malate in S. pombe was constitutive and strongly inhibited by inhibitors of oxidative phosphorylation and of the formulation of proton gradients. Transport was a saturable function of the malate concentration. The apparent Km and Vmax values for transport by the parent were 3.7 mM and 40 nmol/min per mg of protein, respectively, while those of the malic enzyme-deficient mutant were 5.7 mM and 33 nmol/min per mg of protein, respectively. Malate transport was pH and temperature dependent. The specificity of transport was studied with various substrates, including mono- and dicarboxylic acids, and the possibility of a common transport system for dicarboxylic acids is discussed.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baranowski K., Radler F. The glucose-dependent transport of L-malate in Zygosaccharomyces bailii. Antonie Van Leeuwenhoek. 1984;50(4):329–340. doi: 10.1007/BF00394646. [DOI] [PubMed] [Google Scholar]
- Dubler R. E., Toscano W. A., Jr, Hartline R. A. Transport of succinate by Pseudomonas putida. Arch Biochem Biophys. 1974 Feb;160(2):422–429. doi: 10.1016/0003-9861(74)90416-0. [DOI] [PubMed] [Google Scholar]
- Finan T. M., Wood J. M., Jordan D. C. Succinate transport in Rhizobium leguminosarum. J Bacteriol. 1981 Oct;148(1):193–202. doi: 10.1128/jb.148.1.193-202.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Flury U., Heer B., Fiechter A. Regulatory and physicochemical properties of two isoenzymes of malate dehydrogenase from Schizosaccharo-myces pombe. Biochim Biophys Acta. 1974 Apr 25;341(2):465–483. doi: 10.1016/0005-2744(74)90239-3. [DOI] [PubMed] [Google Scholar]
- Ghei O. K., Kay W. W. Properties of an inducible C 4 -dicarboxylic acid transport system in Bacillus subtilis. J Bacteriol. 1973 Apr;114(1):65–79. doi: 10.1128/jb.114.1.65-79.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kay W. W., Cameron M. J. Transport of C4-dicarboxylic acids in salmonella typhimurium. Arch Biochem Biophys. 1978 Sep;190(1):281–289. doi: 10.1016/0003-9861(78)90277-1. [DOI] [PubMed] [Google Scholar]
- Kay W. W., Kornberg H. L. The uptake of C4-dicarboxylic acids by Escherichia coli. Eur J Biochem. 1971 Jan;18(2):274–281. doi: 10.1111/j.1432-1033.1971.tb01240.x. [DOI] [PubMed] [Google Scholar]
- Lo T. C., Rayman M. K., Sanwal B. D. Transport of succinate in Escherichia coli. I. Biochemical and genetic studies of transport in whole cells. J Biol Chem. 1972 Oct 10;247(19):6323–6331. [PubMed] [Google Scholar]
- London J., Meyer E. Y. Malate utilization by a group D Streptococcus: regulation of malic enzyme synthesis by an inducible malate permease. J Bacteriol. 1970 Apr;102(1):130–137. doi: 10.1128/jb.102.1.130-137.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MAYER K., TEMPERLI A. THE METABOLISM OF L-MALATE AND OTHER COMPOUNDS BY SCHIZOSACCHAROMYCES POMBE. Arch Mikrobiol. 1963 Sep 16;46:320–328. [PubMed] [Google Scholar]
- Parada J. L., Ortega M. V., Carrillo-Castañeda G. Biochemical and genetic characteristics of the C4-dicarboxylic acids transport system of Salmonella typhimurium. Arch Mikrobiol. 1973 Dec 4;94(1):65–76. doi: 10.1007/BF00414078. [DOI] [PubMed] [Google Scholar]
- Reuser A. J.J., Postma P. W. The induction of a C(4)-dicarboxylic acid anion translocator in Azotobacter vinelandii. FEBS Lett. 1972 Mar 15;21(2):145–148. doi: 10.1016/0014-5793(72)80124-8. [DOI] [PubMed] [Google Scholar]
- Temperli A., Kunsch U., Mayer K., Busch I. Reinigung und Eigenschaften der Malatdehydrogenase (decarboxylierent) aus Hefe. Biochim Biophys Acta. 1965 Dec 23;110(3):630–632. [PubMed] [Google Scholar]
- Willecke K., Pardee A. B. Inducible transport of citrate in a Gram-positive bacterium, Bacillus subtilis. J Biol Chem. 1971 Feb 25;246(4):1032–1040. [PubMed] [Google Scholar]
- Williams S. A., Hodges R. A., Strike T. L., Snow R., Kunkee R. E. Cloning the Gene for the Malolactic Fermentation of Wine from Lactobacillus delbrueckii in Escherichia coli and Yeasts. Appl Environ Microbiol. 1984 Feb;47(2):288–293. doi: 10.1128/aem.47.2.288-293.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wolfinbarger L., Jr, Kay W. W. Transport of C 4 -dicarboxylic acids in Neurospora crassa. Biochim Biophys Acta. 1973 Apr 25;307(1):243–257. doi: 10.1016/0005-2736(73)90041-2. [DOI] [PubMed] [Google Scholar]
- Wu H. C., Boos W., Kalckar H. M. Role of the galactose transport system in the retention of intracellular galactose in Escherichia coli. J Mol Biol. 1969 Apr 14;41(1):109–120. doi: 10.1016/0022-2836(69)90129-6. [DOI] [PubMed] [Google Scholar]
- Zmijewski M. J., Jr, MacQuillan A. M. Dual effects of glucose on dicarboxylic acid transport in Kluyveromyces lactis. Can J Microbiol. 1975 Apr;21(4):473–480. doi: 10.1139/m75-066. [DOI] [PubMed] [Google Scholar]
