Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1987 Sep;169(9):3988–3993. doi: 10.1128/jb.169.9.3988-3993.1987

UV-inducible DNA repair in the cyanobacteria Anabaena spp.

E Levine, T Thiel
PMCID: PMC213698  PMID: 3114232

Abstract

Strains of the filamentous cyanobacteria Anabaena spp. were capable of very efficient photoreactivation of UV irradiation-induced damage to DNA. Cells were resistant to several hundred joules of UV irradiation per square meter under conditions that allowed photoreactivation, and they also photoreactivated UV-damaged cyanophage efficiently. Reactivation of UV-irradiated cyanophage (Weigle reactivation) also occurred; UV irradiation of host cells greatly enhanced the plaque-forming ability of irradiated phage under nonphotoreactivating conditions. Postirradiation incubation of the host cells under conditions that allowed photoreactivation abolished the ability of the cells to perform Weigle reactivation of cyanophage N-1. Mitomycin C also induced Weigle reactivation of cyanophage N-1, but nalidixic acid did not. The inducible repair system (defined as the ability to perform Weigle reactivation of cyanophages) was relatively slow and inefficient compared with photoreactivation.

Full text

PDF
3988

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adolph K. W., Haselkorn R. Isolation and characterization of a virus infecting the blue-green alga Nostoc muscorum. Virology. 1971 Nov;46(2):200–208. doi: 10.1016/0042-6822(71)90023-7. [DOI] [PubMed] [Google Scholar]
  2. Allen M. B., Arnon D. I. Studies on Nitrogen-Fixing Blue-Green Algae. I. Growth and Nitrogen Fixation by Anabaena Cylindrica Lemm. Plant Physiol. 1955 Jul;30(4):366–372. doi: 10.1104/pp.30.4.366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Asato Y. Isolation and characterization of ultraviolet light-sensitive mutants of the blue-green alga Anacystis nidulans. J Bacteriol. 1972 Jun;110(3):1058–1064. doi: 10.1128/jb.110.3.1058-1064.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Asato Y. Ultraviolet light inactivation and photoreactivation of AS-1 cyanophage in Anacystis nidulans. J Bacteriol. 1976 Apr;126(1):550–552. doi: 10.1128/jb.126.1.550-552.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. BRAUN A. C., WOOD H. N. On the activation of certain essential biosynthetic systems in cells of Vinca rosea L. Proc Natl Acad Sci U S A. 1962 Oct 15;48:1776–1782. doi: 10.1073/pnas.48.10.1776. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Currier T. C., Wolk C. P. Characteristics of Anabaena variabilis influencing plaque formation by cyanophage N-1. J Bacteriol. 1979 Jul;139(1):88–92. doi: 10.1128/jb.139.1.88-92.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Defais M., Fauquet P., Radman M., Errera M. Ultraviolet reactivation and ultraviolet mutagenesis of lambda in different genetic systems. Virology. 1971 Feb;43(2):495–503. doi: 10.1016/0042-6822(71)90321-7. [DOI] [PubMed] [Google Scholar]
  8. Geoghegan C. M., Houghton J. A. Molecular cloning and isolation of a cyanobacterial gene which increases the UV and methyl methanesulphonate survival of recA strains of Escherichia coli K12. J Gen Microbiol. 1987 Jan;133(1):119–126. doi: 10.1099/00221287-133-1-119. [DOI] [PubMed] [Google Scholar]
  9. Gudas L. J., Pardee A. B. Model for regulation of Escherichia coli DNA repair functions. Proc Natl Acad Sci U S A. 1975 Jun;72(6):2330–2334. doi: 10.1073/pnas.72.6.2330. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hanawalt P. C., Cooper P. K., Ganesan A. K., Smith C. A. DNA repair in bacteria and mammalian cells. Annu Rev Biochem. 1979;48:783–836. doi: 10.1146/annurev.bi.48.070179.004031. [DOI] [PubMed] [Google Scholar]
  11. Harm W. Dark repair of photorepairable UV lesions in Escherichia coli. Mutat Res. 1968 Jul-Aug;6(1):25–35. doi: 10.1016/0027-5107(68)90100-0. [DOI] [PubMed] [Google Scholar]
  12. Hu N. T., Thiel T., Giddings T. H., Jr, Wolk C. P. New Anabaena and Nostoc cyanophages from sewage settling ponds. Virology. 1981 Oct 15;114(1):236–246. doi: 10.1016/0042-6822(81)90269-5. [DOI] [PubMed] [Google Scholar]
  13. Koz'iakov S. Ia, Gromov B. V., Khudiakov I. Ia. A-1 (L)-tsianofag sinezelenoi vodorosli Anabaena variabilis. Mikrobiologiia. 1972 May-Jun;41(3):555–559. [PubMed] [Google Scholar]
  14. Little J. W., Mount D. W. The SOS regulatory system of Escherichia coli. Cell. 1982 May;29(1):11–22. doi: 10.1016/0092-8674(82)90085-x. [DOI] [PubMed] [Google Scholar]
  15. Little J. W. The SOS regulatory system: control of its state by the level of RecA protease. J Mol Biol. 1983 Jul 15;167(4):791–808. doi: 10.1016/s0022-2836(83)80111-9. [DOI] [PubMed] [Google Scholar]
  16. Marsden H. S., Pollard E. C., Ginoza W., Randall E. P. Involvement of recA and exr genes in the in vivo inhibition of the recBC nuclease. J Bacteriol. 1974 May;118(2):465–470. doi: 10.1128/jb.118.2.465-470.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. O'Brien P. A., Houghton J. A. Photoreactivation and excision repair of UV induced pyrimidine dimers in the unicellular cyanobacterium Gloeocapsa alpicola (Synechocystis PCC 6308). Photochem Photobiol. 1982 Mar;35(3):359–364. doi: 10.1111/j.1751-1097.1982.tb02574.x. [DOI] [PubMed] [Google Scholar]
  18. Radman M. SOS repair hypothesis: phenomenology of an inducible DNA repair which is accompanied by mutagenesis. Basic Life Sci. 1975;5A:355–367. doi: 10.1007/978-1-4684-2895-7_48. [DOI] [PubMed] [Google Scholar]
  19. Saito N., Werbin H. Purification of a blue-green algal deoxyribonucleic acid photoreactiving enzyme. An enzyme requiring light as a physical cofactor to perform its catalytic function. Biochemistry. 1970 Jun 23;9(13):2610–2620. doi: 10.1021/bi00815a008. [DOI] [PubMed] [Google Scholar]
  20. Satta G., Gudas L. J., Pardee A. B. Degradation of Escherichia coli DNA: evidence for limitation in vivo by protein X, the recA gene product. Mol Gen Genet. 1979 Jan 5;168(1):69–80. doi: 10.1007/BF00267935. [DOI] [PubMed] [Google Scholar]
  21. Singh P. K. Photoreactivation of UV-irradiated blue-green algae and algal virus LPP-1. Arch Microbiol. 1975 May 5;103(3):297–302. doi: 10.1007/BF00436364. [DOI] [PubMed] [Google Scholar]
  22. Srivastava B. S., Kumar H. D., Singh H. N. The effect of caffeine and light on killing of the blue-green alga Anabaena doliolum by ultraviolet radiation. Arch Mikrobiol. 1971;78(2):139–144. doi: 10.1007/BF00424870. [DOI] [PubMed] [Google Scholar]
  23. Stanier R. Y., Kunisawa R., Mandel M., Cohen-Bazire G. Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol Rev. 1971 Jun;35(2):171–205. doi: 10.1128/br.35.2.171-205.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Tang T., Asato Y. Ultraviolet light-induction and photoreactivation of thymine dimers in a cyanobacterium, Anacystis nidulans. Arch Microbiol. 1978 Aug 1;118(2):193–197. doi: 10.1007/BF00415729. [DOI] [PubMed] [Google Scholar]
  25. Van Baalen C. The effects of ultraviolet irradiation on a coccoid blue-green alga: survival, photosynthesis, and photoreactivation. Plant Physiol. 1968 Oct;43(10):1689–1695. doi: 10.1104/pp.43.10.1689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Walker G. C. Inducible DNA repair systems. Annu Rev Biochem. 1985;54:425–457. doi: 10.1146/annurev.bi.54.070185.002233. [DOI] [PubMed] [Google Scholar]
  27. Walker G. C., Marsh L., Dodson L. A. Genetic analyses of DNA repair: inference and extrapolation. Annu Rev Genet. 1985;19:103–126. doi: 10.1146/annurev.ge.19.120185.000535. [DOI] [PubMed] [Google Scholar]
  28. Walker G. C. Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli. Microbiol Rev. 1984 Mar;48(1):60–93. doi: 10.1128/mr.48.1.60-93.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Weigle J. J. Induction of Mutations in a Bacterial Virus. Proc Natl Acad Sci U S A. 1953 Jul;39(7):628–636. doi: 10.1073/pnas.39.7.628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Werbin H., Rupert C. S. Presence of photoreactivating enzyme in blue-green algal cells. Photochem Photobiol. 1968 Feb;7(2):225–230. doi: 10.1111/j.1751-1097.1968.tb08008.x. [DOI] [PubMed] [Google Scholar]
  31. Witkin E. M. Ultraviolet mutagenesis and inducible DNA repair in Escherichia coli. Bacteriol Rev. 1976 Dec;40(4):869–907. doi: 10.1128/br.40.4.869-907.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wolk C. P., Wojciuch E. Simple methods for plating single vegetative cells of, and for replica-plating, filamentous blue-green algae. Arch Mikrobiol. 1973 May 24;91(2):91–95. doi: 10.1007/BF00424753. [DOI] [PubMed] [Google Scholar]
  33. Wu J. H., Lewin R. A., Werbin H. Photoreactivation of UV-irradiated blue-green algal virus LPP-1. Virology. 1967 Apr;31(4):657–664. doi: 10.1016/0042-6822(67)90194-8. [DOI] [PubMed] [Google Scholar]
  34. Yasbin R. E. DNA repair in Bacillus subtilis. I. The presence of an inducible system. Mol Gen Genet. 1977 Jun 8;153(2):211–218. [PubMed] [Google Scholar]
  35. Yasbin R. E. DNA repair in Bacillus subtilis. II. Activation of the inducible system in competent bacteria. Mol Gen Genet. 1977 Jun 8;153(2):219–225. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES