Biosynthesis of Bacterial Glycogen: Primary Structure of Salmonella typhimurium ADPglucose Synthetase as Deduced from the Nucleotide Sequence of the glgC Gene

PATRICK S. C. LEUNG[†] AND JACK PREISS^{‡*}

Department of Biochemistry and Biophysics, University of California, Davis, California 95616, and Department of Biochemistry, Michigan State University, East Lansing, Michigan 48824

Received 9 March 1987/Accepted 10 June 1987

The nucleotide sequence of a 1.4-kilobase-pair fragment containing the Salmonella typhimurium LT2 glgC gene coding for ADPglucose synthetase was determined. The glgC structural gene contains 1,293 base pairs, having a coding capacity of 431 amino acids. The amino acid sequence deduced from the nucleotide sequence shows that the molecular weight of ADPglucose synthetase is 45,580. Previous results of the total amino acid composition analysis and amino acid sequencing (M. Lehmann and J. Preiss, J. Bacteriol. 143:120–127, 1980) of the first 27 amino acids from the N terminus agree with that deduced from nucleotide sequencing data. Comparison of the Escherichia coli K-12 and S. typhimurium LT2 ADPglucose synthetase shows that there is 80% homology in their nucleotide sequence and 90% homology in their deduced amino acid sequence. Moreover, the amino acid residues of the putative allosteric sites for the physiological activator fructose bisphosphate (amino acid residue 39) and inhibitor AMP (amino acid residue 114) are identical between the two enzymes. There is also extensive homology in the putative ADPglucose binding site. In both *E. coli* K-12 and *S. typhimurium* LT2, the first base of the translational start ATG of glgA overlaps with the third base TAA stop codon of the glgC gene.

ADPglucose synthetase (EC 2.7.7.27) is an allosteric enzyme in the glycogen biosynthetic pathway of eubacteria (23, 24). Among the enteric bacteria, ADPglucose synthetase is activated by glycolytic intermediates with fructose 1,6bisphosphate as the activator and AMP, ADP, and P_i as inhibitors (23). The enzyme catalyzes the synthesis of ADP glucose from glucose 1-phosphate and ATP in the reaction glucose 1-phosphate + ATP \rightleftharpoons ADPglucose + PP_i. This reaction is the first unique step in bacterial glycogen biosynthesis.

In Escherichia coli, the structural genes for ADPglucose synthetase (glgC), glycogen synthase (glgA), and branching enzyme (glgB) are mapped at 75 units on the genetic map, flanked by the asd (aspartic semialdehyde dehydrogenase) and glpD (glycerol phosphate dehydrogenase) genes (1). Okita et al. (20) have cloned the structural genes of glycogen biosynthetic enzymes of E. coli K-12 into the PstI site of pBR322, and the nucleotide sequences of the glgC (2), glgB(3), and glgA genes (10) have been determined. Salmonella typhimurium, being closely related to E. coli, shows a lot of similarities in glycogen biosynthesis (12). The ADPglucose synthetases of E. coli and S. typhimurium are similar in that (i) they have similar subunit and native molecular weights; (ii) they have the same spectrum of activators and inhibitors; (iii) they have immunological cross-reactivity; (iv) of the first 27 amino acids in the N terminus 25 are identical; (e) genetically, the glg genes of both are clustered around 75 units on their genetic maps and are cotransducible with asd and glpD genes (28). Recently, we have cloned the glgC and glgA genes from S. typhimurium (14). This paper is a report of the nucleotide sequence, the deduced amino acid sequence, and codon usage pattern of ADPglucose synthetase from S. typhimurium. Its deduced amino acid sequence and amino acid composition are compared with those of E. coli ADPglucose synthetase.

MATERIALS AND METHODS

Bacteria, phage strains, and plasmids. The bacteria, phage strains, and plasmids used in this study are as follows: *E. coli* K-12 JM101 [*supE thi* Δ (*lac-proAB*) F' *traD36 proAB lacIq* $\Delta M15$], *E. coli* K-12 JM103 [*supE thi* Δ (*lac-proAB*) strA endA sbcA hsdR F' traD36 proAB lacIq $\Delta M15$]; bacteriophages M13 mp8, 9, 10, and 11 (17); and plasmid pPL301, which contains the S. typhimurium glgC and glgA genes on a 5.8-kilobase-pair insert on the SalII site of pBR322 (14).

Media, commercial enzymes, and chemicals. Luria broth, YT medium, and YT soft agar were prepared as described previously (14, 18). Ampicillin was added at 25 μ g/ml (final concentration) for the maintenance of plasmid pPL301.

Restriction endonucleases ClaI, DdeI, HindIII, HinfI, PstI, and PvuII are from Bethesda Research Laboratories, Inc., as were T4 DNA ligase and the large fragment of DNA polymerase I. T4 polynucleotide kinase was from Pharmacia Fine Chemicals and P-L Biochemicals, Inc., calf intestine alkaline phosphatase was from Boehringer Mannheim Corp., and restriction enzyme BssHII was from New England Biolabs. All enzymes were used as recommended by the manufacturers.

Isopropyl-β-D-thiogalactopyranoside was from Sigma Chemical Co., and 5-bromo-4-chloro-3-indoyl-galactoside was from Bethesda Research Laboratories, Inc. Radioactive nucleotides [γ -³²P]ATP (>5,000 Ci/mmol) and [α -³²P]dATP (>800 Ci/mmol) were from Amersham Corp.

DNA sequencing. DNA fragments containing the S. typhimurium glgC gene were purified from plasmid pPL301 (14) as described previously (2). DNA sequencing was done by

^{*} Corresponding author.

[†] Present address: Division of Rheumatology and Allergy, School of Medicine, University of California, Davis, CA 95616.

[‡] Present address: Biochemistry Department, Michigan State University, East Lansing, MI 48824.

FIG. 1. DNA sequencing strategy of the S. typhimurium LT2 glgC gene. Restriction endonucleases cleavage sites are represented by short vertical arrows on a thin line. The arrows beneath the line indicate the direction and extent of the sequence. The physical locations of glgC and glgA genes are represented in the box.

			10 *			20 *			3	0			40 *			50			60
ССТ	TGA	GAG	GTA	A	AAG	GAG	TTA	ACT	ATC Met	GTG Val	AGT Ser	TTA Leu	GAG Glu	AAG Lvs	AAC Asn	GAT	CGT	GTA Val	ATG Met
			70			80			a	n			100			110			120
			*			*			*	·			*			*			*
Leu	Ala	Arg	Gln	Leu	Pro	Leu	AAA Lys	Ser	Val	Ala	CTA Leu	ATC Ile	CTG Leu	GCC Ala	GGC Gly	GGC Gly	CGC Arg	GGC Gly	ACG Thr
			1 30			140			15	0			160			170			180
CGT	CTA		GAT	TTA	GCA	AAC	AAA	CGC	GCC	AAA	CCA	GCC	GTC	CAC	TTT	GGT	GGG	AAG	TTT
Arg	Leu	Lys	Asp	Leu	Ala	Asn	Lys	Arg	Ala	Lys	Pro	Ala	Val	His	Phe	G1 y	Gly	Lys	Phe
			190 *			200 *			21 *	0		:	220 *			230 *			240 *
CGC	GTC	ATC	GAT	TTC	GCC	TTA	TCT	AAT	TGT	CTG	AAC	TCC	GGG	ATT	CGC	CGT	ATC	GGC	GTG
AL.B	Vai	116	кар	rne	ATA	Leu	Ser	ASN	cys	Leu	ASN	Ser	GTÀ	116	Arg	Arg	116	GIY	Val
		:	250 *			260 *			27 *	0		;	280 *			290 *			300 *
ATC Ile	ACT Thr	CAG Gln	TAT Tyr	CAG Gln	TCC Ser	CAT His	ACG Thr	CTG Leu	GTG Val	CAG Gln	CAT His	ATT Ile	CAG Gln	CGC	GGC G1v	TGG Trp	TCA Ser	CTG	TTT Phe
210 220						0 220					3110			250			260		
			*			*			*	•		-	*			*			*
AGC Ser	GAA Glu	GAG Glu	ATG Met	AAC Asn	GAA Glu	TTT Phe	GTC Val	GAT Asp	CTG Leu	CTA Leu	CCA Pro	GCC Ala	CAA Gln	CAG Gln	CGT Arg	ATG Met	AAG Lys	GGC Gly	GAA Glu
		:	370			380			39	0		ı	100			410			420
AAC	TGG	TAT	* CGC	GGC	ACG	GCA	GAC	GCG	GTG	ACC	CAG	AAC	* CTG	GAT	ATT	* ATT	CGT	CGC	* TAT
Asn	Trp	Tyr	Arg	Gly	Thr	Ala	Asp	Ala	Val	Thr	Gln	Asn	Leu	Asp	Ile	Ile	Arg	Arg	Tyr
		1	30 *			440			450	C		1	160 *			470			480
AAA	GCG	GAA	TAT	GTC	GTC	ATC	CTG	GCA	GGC	GAT	CAT	ATC	TAC	AAG	CAG	GAC	TAC	TCG	CGT
Lys	Ala	Glu	Tyr	Val	Val	Ile	Leu	Ala	Gly	Asp	His	Ile	Tyr	Lys	Gln	Asp	Tyr	Ser	Arg
		1	90 *			500 *			51(*	0		5	20 *			530 *			540 *
ATG	TTG	ATC	GAT	CAC	GTC	GAA	AAA	GGC	GCG	CGT	TGC	ACG	GTG	GCC	TGT	ATG	CCG	GTG	CCG
nec	ned	116	кар	113	•a1	ord	LYS	στ λ	чта	arg	cys	inr	vai	AIA	cys	Met	Pro	Val	Pro
		5	\$0 *			560 *			570 *)		5	80 *			590 *			600 *
ATC Ile	AAA Lys	GAA Glu	GCG Ala	ACG Thr	GCG Ala	TTC Phe	GGC Gly	GTG Val	ATG Met	GCG Ala	GTC Val	GAT Asp	GAA Glu	AGC Ser	GAC Asp	AAG Lys	ATT Ile	ATT Ile	GAT Asp

FIG. 2. Complete nucleotide sequence of the antisense strand and deduced amino acid sequence of the S. typhimurium glgC gene. The DNA sequence was determined from a 1.4-kilobase fragment of pPL301 as described in Materials and Methods. The box indicates the potential ribosome binding site. The deduced amino acid sequence of the glgC structural protein is shown below the DNA sequence. ** indicates the end of the glgC structural protein. The ATG start codon of the glgA structural protein is underlined. the method of Maxam and Gilbert (17) and the method of Sanger et al. (26), and the sequencing strategy is shown in Fig. 1. DNA fragments were cloned into M13 mp phages as described by Messing (18).

RESULTS AND DISCUSSION

Nucleotide sequence of S. typhimurium glgC gene. The nucleotide sequence of a 1.4-kilobase-pair fragment containing the structural gene of S. typhimurium ADPglucose synthetase was determined. The sequencing strategy is shown in Fig. 1. More than 90% of the sequence was determined by the method of Maxam and Gilbert (17), and about 40% was determined by the method of Sanger et al. (26), allowing sequencing of both the sense and antisense strands with considerable overlapping. The fragments that were cloned into M13 phages for sequencing were PvuII-PstI (cloned into M13 mp11), Pvu-HindIII (cloned into M13 mp10), HindIII-PstI (cloned into M13 mp8 and mp9), and PstI-SalI (cloned into M13 mp8). The complete nucleotide sequence of the S. typhimurium glgC structural gene is shown in Fig. 2. It contains 1,293 base pairs and has the coding capacity for a protein of 431 amino acids. The calculated molecular weight

			610 *			620 *			63	0			640 *			650 *			660 *	
TTT Phe	GTC Val	GAA Glu	AAA Lys	CCG Pro	GCC Ala	AAT Asn	CCC Pro	GCA Ala	ATC Met	CTT Leu	GGT Gly	GAC Asp	GCC Ala	AGC Ser	AAA Lys	TCC Ser	CTG Leu	GCC Ala	AGT Ser	
			670 *			680 *			69 *	0			700			710			720	
ATG Met	GGC Gly	ATT Ile	TAC Tyr	GTT Val	TTT Phe	GAC Asp	GCC Ala	GAT Asp	TAC Tyr	CTG Leu	TAT Tyr	GAA Glu	TTG Leu	CTG Leu	GCG Ala	GCA Ala	GAC Asp	GAT Asp	AAA Lys	
			730 *			740 *			75 *	0			760 *			770			780	
GAT Asp	GAC Asp	GCT Ala	TCC Ser	AGC Ser	CAC His	GAT Asp	TTC Phe	GGT Gly	AAA Lys	GAC Asp	ATT Ile	ATC Ile	CCC Pro	AAA Lys	ATC Ile	ACC Thr	CGC Arg	GAA Glu	GGT Gly	
			790			800			81	0		1	820			830			840	
ATG Met	GCT Ala	TAC Tyr	GCG Ala	CAT His	CCT Pro	TTC Phe	CCG Pro	CTC Leu	TCC Ser	TGC Cys	GTG Val	CAG Gln	* TCC Ser	GAT Asp	CCA Pro	CAA Gln	GCC Ala	GAA Glu	t CCG Pro	
			850			860			87	0		ł	880			890			900	
TAC Tyr	TGG Trp	CGC Arg	GAT Asp	GTA Val	GGT Gly	ACG Thr	CTG Leu	GAA Glu	GCT Ala	TAC Tyr	TGG Trp	AAG Lys	* GCG Ala	AAC Asn	CGA Arg	GAT Asp	TTA Leu	GCC Ala	TCG Ser	
			910			920			93	0		9	940			950			960	
GTG Val	ACG Thr	CCG Pro	CAG Gln	CTG Leu	GAT Asp	ATG Met	TAT Tyr	GAC Asp	CAG Gln	AAC Asn	TGG Trp	CCT Pro	ATC Ile	CGT Arg	ACG Thr	CAT His	ATG Met	GAA Glu	TCG Ser	
		1	970 *			980 *			99(*	0		10	000 *			1010			020	
CTA Leu	CCG Pro	CGA Arg	GCG Ala	AAA Lys	TTC Phe	GTG Val	CAG Gln	GAA Glu	CGC Arg	TCC Ser	GGT Gly	AGC Ser	CAC His	GGT Gly	ATG Met	ACG Thr	CTG Leu	AAG Lys	TCG Ser	
		10	030		1	1040			1050	5		10	60			1070		1	080	
TTG Leu	GTT Val	TTC Phe	GGC Gly	GGC Gly	TGC Cys	ATT Ile	ATC Ile	TCC Ser	GGT Gly	TCG Ser	GTG Val	GTG Val	# GTG Val	CAA Gln	TCT Ser	# GTG Val	CTC Leu	TTC Phe	* CCA Pro	
		10	90		1	100			1110	5		11	20		1	1 30		1	140	
CGG	GTG Val	AGA	ATA	AAT	TCT	TTT	TGT	AAT	ATT	GAT	TCG	GCA	GTG	TTG	TTA	CCT	GAG	GTT	TGG	
		11	150		1	160	0,0	Aon	1170	, , , , , , , , , , , , , , , , , , , 	Jei.	11	*a1 80	190	Leu	190	oru	vai	200	
GAT	GGG	CGC	* TCC	TGC	CGT	* TTA	CGC	TGC	* TGT	GTT	ATT	GAC	* CGT	GCC	TGT	ATT	ATC	000	GAA	
Asp	Gly	Arg	Ser	Cys	Arg	Leu	Arg	Cys	Cys	Val	Ile	Asp	Arg	Ala	Cys	Ile	Ile	Pro	Glu	
000	470	070	210 *	COT	~	1220 *		~	123		007	1:	240 *			1250			1260	
600 Gly	Met	Val	Ile	Gly	Glu	Asn	Ala	Glu	Glu	Asp	Ala	Arg	Arg	Phe	Tyr	Arg	Ser	GAA Glu	GAA Glu	
		13	270 *		1	280 *			1290	D		13	300 *			1310 *			320 *	
GGT Gly	ATT Ile	GTA Val	CTG Leu	GTC Val	ACG Thr	CGT Arg	GAA Glu	ATG Met	CTG Leu	CGC Arg	AAA Lys	CTG Leu	CAG Gln	GGC Gly	CAT His	AAA Lys	CAG Gln	GAG Glu	CGA Arg	
		13	330 *		1	340 *			135	50 *		13	360 *		1	370 *			1380	
TA ATG CAG GTT TTA CAT GTA TGT TCA CAG ATG TTC CCC CTG CTG AAG ACT GGG GGG CTG GCG ** Met Cin Val Leu His Val Cys Ser Clu Met Phe Pro Leu Leu Lys Thr Cly Cly Leu Ala																				
	13	90 *			1400)		14	10											
GAT Asp	GTG Val	ATA Ile	GGC Glv	GCG Ala	TTG Leu	CCT Pro	GCG Ala		c											

TABLE 1. Amino acid composition of ADPglucose synthetases

	Amino acid residues in ADPglucose synthetase from:									
Amino	E. coli (deduced	S. typl	nurium							
aciu	from DNA sequence)	Amino acid analysis ^a	Deduced from DNA sequence							
Arg	32	31.6 ± 1.7	33							
Lys	20	21.3 ± 1.7	22							
His	10	8.2 ± 0.1	10							
Cys	9	10.4	10							
Asp	29	45.2 ± 3.3^{b}	30							
Asn	19		13							
Glu	29	$43.6 \pm 2.6^{\circ}$	25							
Gln	13		17							
Thr	13	15.5 ± 0.4	13							
Ser	30	39.4 ± 1.1	28							
Pro	21	19.6 ± 0.6	18							
Gly	27	31.0 ± 1.6	28							
Ala	29	37.1 ± 2.7	36							
Val	39	34.0 ± 1.5	34							
Met	14	12.3 ± 0.7	15							
Ile	24	26.3 ± 0.4	28							
Leu	37	35.9 ± 1.6	36							
Tyr	15	15.1 ± 0.9	14							
Phe	15	13.2 ± 0.3	15							
Trp	6	5.6 ± 0.3	6							

^a Determined in reference 12.

^b Number of Asp and Asn residues.

^c Number of Glu and Gln residues.

of the glgC gene product is 45,580 and is in accordance to the value of 48,000 reported by Lehmann and Preiss (12).

The amino acid sequence of ADPglucose synthetase was deduced from the nucleotide sequence data (Fig. 2). Previous results of amino acid sequencing of the first 27 amino acids from the N terminus agree with predictions from nucleotide sequencing data. The total amino acid composition determined from the deduced amino acid sequence (Table 1) is in accordance with the total amino acid composition data determined by acid hydrolysis and reported by Lehmann and Preiss (12). Most of the deduced values are within 1 to 2 standard deviations or identical to the observed value. The only striking difference is with serine, where there can be an overestimation in amino acid analysis data. Of the 431 amino acids of ADPglucose synthetase, 15.1% are basic amino acids, 12.8% are acidic amino acids, 28.5% are polar uncharged amino acids, and 43.6% are nonpolar amino acids.

Nucleotide sequence analysis. There is a potential Shine-Dalgarno sequence (27) of AGGAG at 11 bases upstream from the translational start site of glgC. Deduced amino acid sequence data, which agree with the C-terminal analysis of the *S. typhimurium* ADPglucose synthetase (11) and the N-terminal amino acid sequence data of the *E. coli* glycogen synthase (6), indicate that the translational start of glgAfollows immediately at the translational stop site of glgC. There is an overlapping of a single base; with the third base of the UAA stop codon being the first base of ATG start codon of the glgA structural gene. Therefore, there may be translational regulation on the expression of the glgC and glgA genes, and thus it is not surprising to see that glgC and glgA genes are coordinately expressed at the stationary phase of growth as reported by Steiner and Preiss (28).

glgC and glgA genes are mapped between 74 and 75 units on the S. typhimurium genetic linkage map (25, 28). The cloning of glgC and glgA genes on the same DNA fragment and the finding of the translational start of glgA follows immediately after the glgC translational stop support the genetic mapping results reported by Steiner and Preiss (28).

The G+C content of the S. typhimurium glgC gene is 52% and is in accordance with the average value of G+C content of 50 to 53% of the enteric bacteria and the average value of G+C value of 52% of the total S. typhimurium genome reported by Normore and Brown (19).

Codon usage. The codon usage of the S. typhimurium glgC gene is shown in Table 2. The codon usage is not random. There are preferences of CTG over CTT, CTC, and CTA for leucine; GTG over GTT, GTC, and GTA for valine; ACG over ACT, ACC, and ACA for threonine; CCG over CCT, CCC, and CCA for proline, AAA over AAG for lysine; CAG over CAA for glutamine; GAA over GAG for glutamic acid; GAT over GAC for aspartic acid; and GCC and GCG over GCT and GCA for alanine. Pyrimidine nucleotides are preferred at the wobble position of isoleucine, arginine, and glycine; G is preferred at the wobble position of leucine, valine, threonine, and glutamine; and G and C are preferred at the wobble position of valine and alanine. Besides, for isoleucine ATA is used only once, whereas ATT and ATC are used at approximately the same frequency. Similar codon usage pattern have been reported in the araB, araA, and araD genes of S. typhimurium LT2 (15, 16). Grosjeans and Fiers (4) suggested a general rule of codon usage in frequently expressed genes and rarely expressed genes in E. coli. It is correlated with the abundance of transfer RNA species and the occurrence of the respective codons in the structural genes (7, 8).

Interestingly, codons that were used only once, CGG for arginine, AGA for arginine, and ATA for isoleucine, are all clustered in amino acids residues 353 to 356. Moreover, CTC for isoleucine, which is used only twice, is at amino acid residue 350. The clustering of these rarely used codons around a certain area of the protein may serve to regulate the expression of the protein at the translational level. The relative abundance of these tRNA species may reflect the metabolic condition of the cell and hence may be a signal governing the expression of the protein.

Comparison of nucleotide sequences and deduced amino acid sequences of S. typhimurium and E. coli glgC genes. There is 80% homology in nucleotide sequence between E. coli and S. typhimurium glgC genes, showing that they have very similar codon usage. Moreover, it is interesting to note that in both bacteria the first base of the translational start of glgA (ATG) overlaps with the third base of the translational stop (TAA) of glgC (Fig. 2).

The deduced amino acid sequences of the S. typhimurium and E. coli glgC genes are compared in Fig. 3. There is 90% homology in their deduced amino acid sequence, and most of the changes are conservative. Of 45 differences in their amino acid sequences, 16 involve only one base change, 25 involve two base changes, and only 4 of them involve three base changes. Lehmann and Preiss (12) reported that ADPglucose synthetases from E. coli and S. typhimurium differ in their first 27 amino acid residues in the N terminus at residues 9 and 10. There was some uncertainty about residue 17 because gas chromatography and thin-layer chromatography indicated that it is glutamic acid, whereas backhydrolysis of the phenylthiohydantion derivative showed that it may be glutamic acid or proline (12). Our results from nucleotide sequencing showed that amino acid residue 17 is proline in the S. typhimurium enzyme. The two differences in amino acid residues 9 and 10 among ADPglucose synthetase are histidine in E. coli to arginine in S. typhimurium at residue 9 and leucine in E. coli to valine in S. typhimurium at

Codon	Amino acid	No. of residues	% of total	Codon	Amino acid	No. of residues	% of total
TTT	Phe	7	1.6	TCT	Ser	4	0.9
TTC	Phe	8	1.9	TCC	Ser	8	1.9
TTA	Leu	6	1.4	TCA	Ser	2	0.5
TTG	Leu	6	1.4	TCG	Ser	7	1.6
				_	_		
TAT	Tyr	6	1.4	TGT	Cys	5	1.2
TAC	Tyr	8	1.9	TGC	Cys	5	1.2
TAA		1		TGA		0	
TAG		0		TGG	Trp	6	1.4
СТТ	Ген	1	0.2	ССТ	Pro	3	07
CTC	Leu	2	0.2		Pro	2	0.5
	Leu	2	0.5		Pro	25	1.2
CTG	Leu	17	2.0	CCA	Dro	9	1.2
010	Leu	17	3.9	CCG	Pro	o	1.9
CAT	His	6	1.4	CGT	Arg	14	3.2
CAC	His	4	0.9	CGC	Arg	14	3.2
CAA	Gln	3	0.7	CGA	Arg	3	0.7
CAG	Gln	14	3.2	CGG	Arg	1	0.2
ATT	Ile	14	3 7	ACT	The	1	0.2
	Ile	12	3.2		The	2	0.2
	lle	13	5.0	ACC	1 III The	2	0.5
ATA	ile Mat	1	0.2	ACA	I nr	0	0.0
AIG	Met	15	3.5	ACG	Inr	10	2.3
AAT	Asn	5	1.2	AGT	Ser	2	0.5
AAC	Asn	8	1.9	AGC	Ser	5	1.2
AAA	Lvs	15	3.5	AGA	Arg	1	0.2
AAG	Lys	7	1.6	AGG	Arg	Ō	0.0
CCT	\$7-1	۶	1.2	COT	.1		
GGI	vai	3	1.2	GCT	Ala	4	0.9
GIC	vai	9	2.1	GCC	Ala	13	3.0
GIA	Val	3	0.7	GCA	Ala	6	1.4
GIG	Val	17	3.9	GCG	Ala	13	3.0
GAT	Asp	19	4.4	GGT	Glv	10	2.3
GAC	Asp	11	2.6	GGC	Glv	15	3.5
GAA	Glu	20	4.6	GGA	Glv	0	0.0
GAG	Glu	-5	1.2	GGG	Gly	ž	0.0
		2			Giy	د	0.7

TABLE 2. Codon usage of the S. typhimurium glgC gene

residue 10. The change in amino acid character is conservative because both arginine and histidine are basic amino acids and both leucine and valine are nonpolar in nature. It therefore retains the ionic character and hydrophobicity in this portion of the enzyme. Moreover, the change from leucine to valine involves only one base change, from TTA to GTA.

The deduced amino acid sequences of ADPglucose synthetase from E. coli and S. typhimurium are also compared with respect to their allosteric sites. Previous studies in the E. coli enzyme (9, 21, 22) showed that pyridoxal phosphate can be specifically reduced onto lysine residue 39 and that this phosphopyridoxylation increases the enzymatic activity in the absence of the allosteric activator fructose bisphosphate in the reaction mixture, therefore suggesting that the lysine residue constitutes at least a portion of the activator binding site. Since fructose bisphosphate is the physiological activator of both the E. coli and S. typhimurium ADPglucose synthetase, it is not surprising that the lysine residue is retained in the same position of the primary structure of the enzyme. Moreover, the conservation of basic amino acid residues in the vicinity of lysine residue 39, especially arginine residues in position 29, 32, and 40, may be involved in the ionic interaction with the phosphorylated activators of ADPglucose synthetase as suggested by Haugen et al. (5), Parsons and Preiss (21, 22), and Kappel and Preiss (9). The

similar features in the primary structure of ADPglucose synthetase in *E. coli* and *S. typhimurium* suggest that their mechanism in fructose bisphosphate activation is very similar if not identical.

Inhibitor and substrate binding sites in the glgC enzyme were also studied with azido-AMP and azido-ATP analogs (11) and was shown to involve specifically tyrosine residue 114. This tyrosine residue is also conserved in the *E. coli* and *S. typhimurium* enzymes. Moreover, the amino acid sequence upstream and downstream from the tyrosine residue is highly conserved without a single change in amino acid sequence.

Lysine residue 195 of the *E. coli* ADPglucose synthetase was shown to be an ADPglucose-protected site of the enzyme from inactivation by reductive phosphopyridoxylation by Parson and Preiss (21). Modification by pyridoxal phosphate on the lysine residue was blocked by incubation with the substrate ADPglucose. Therefore, this region was suggested to be involved in the binding of ADPglucose or ATP. This lysine residue is also conserved in the *S. typhimurium* enzyme.

Comparison of the deduced amino acid sequence of ADPglucose synthetase of *E. coli* and *S. typhimurium* shows that the allosteric sites, fructose bisphosphate-, AMP-, ATP-, and ADPglucose-protected sites, are all conserved and thus suggest that the reaction mechanisms in the

20 MUSLEKNDHL MLARQLPLKS VALILAGGRG TRLKDLTMKR AKPAVHFGGK FRIIDFALSM MUSLIKNDRV MLARQLPLKS VALILAGGRG TRLKDLÄNKR AKPAVHFGGK FRVIDFALSM 100 120 80 CINSCIRRMG VITQYQSHTL VQHIQRGWSF FNEEMNEFVD LLPAQQRMKG ENWYRGTADA CLNSGIRRIG VITQYQSHTL VQHIQRGWSL FSEEMNEFVD LLPAQQRMKG ENWYRGTADA 140 160 VTQNLKIIRR YKAEYVVILA CDHIYKQDYS RMLIDHVEKG VRCTVVCMPV PIEEASAFGV VTQNLKIIRR YKAEYVVILA CDHIYKQDYS RMLIDHVEKG ARCTVACMPV PI<u>K</u>EATAFGV 180 200 MAVDENDKTI EFVEKPANPP SMPNDPSKSL ASMGIYVFDA DYLYELLEED DRDENSSHDF MAVDESDKII DRVEKPANP- AMLODASKSL ASMGIYVFDA DYLYELLAAD DKDDASSHDF 300 260 280 GKDLIPKITE AGLAYAHPFP LSCVQSDPDA EPYWRDVGTL EAYWKANLDL ASVVPKLDMY GKDIPKITE EQMAYAHPFP LSCVQSDPQA EPYWRDVGTL EAYWKANADL ASVIPQLDMY DRNWPIRTIN ESLPPAKEVQ DRSCSHOMTL NSLVSGCCVI SCSVVVQSVL FSRVRVNSFC DQNWPIRTHM ESLPRAKEVQ ERSCSHOMTL KSLVFGCCII SCSVVVQSVL FPRVRINSFC 380 400 NIDSAVLLPE VWVGRSCRLR RCVIDRACVI PEGMVIGENA EEDARRFYRS EEGIVLVTRE NIDSAVLLPE VWDGRSCRLR CCVIDRACII PEGMVIGENA EEDARRFYRS EEGIVLVTRE

MLRKL-GHKQER* MLRKLQGHKQWR*

FIG. 3. Comparison of amino acid sequence of ADPglucose synthetase of *E. coli* K-12 and *S. typhimurium* LT2. Amino acids are represented by the one-letter amino acid code. The amino acid sequence of *E. coli* ADPglucose synthetase is shown in the top line, and that of the *S. typhimurium* enzyme is shown on the bottom line. * indicates the end of sequence. The amino acids underlined are those that are different in the two enzymes.

ADPglucose synthetases are very similar if not identical between the two bacteria.

Comparison of nucleotide sequence and the deduced amino acid sequence has allowed us to investigate the molecular mechanisms of reaction of ADPglucose synthetase. Further experiments are in progress on the nucleotide sequencing of a cloned ADPglucose synthetase from an *E. coli* allosteric mutant (13) and on site-directed mutagenesis of the allosteric enzyme to gain further insights into the reaction mechanism at the molecular level.

ACKNOWLEDGMENTS

This work was supported in part by Public Health Service grants AI 05520 and AI 22835 from the National Institutes of Health.

LITERATURE CITED

- 1. Bachman, B. J. 1983. Linkage map of *Escherichia coli* K-12, edition 7. Microbiol. Rev. 47:180–230.
- 2. Baecker, P. A., C. E. Furlong, and J. Preiss. 1983. Biosynthesis of bacterial glycogen. Primary structure of *Escherichia coli* ADPglucose synthetase as deduced from the nucleotide sequence of the glgC gene. J. Biol. Chem. 258:5084–5088.
- Baecker, P. A., E. Greenberg, and J. Preiss. 1986. Biosynthesis of bacterial glycogen. Primary structure of *Escherichia coli* 1,4-α-D-glucan:1,4-α-D-glucan 6-α-D-(1,4-α-D-glucano)-transferase as deduced from the nucleotide sequence of glgB gene. J. Biol. Chem. 261:8738-8743.
- 4. Grosjeans, H., and W. Fiers. 1982. Potential codon usage in procaryotic gene: the optimal codon-anticodon interaction energy and the selective codon usage in efficiently expressed genes. Gene 18:199-209.
- Haugen, T., A. Ishaque, and J. Preiss. 1978. Biosynthesis of bacterial glycogen. Characterization of the subunit structure of *Escherichia coli* B glucose-1-phosphate adenyl transferase. J. Biol. Chem. 251:7880-7885.
- 6. Holmes, E., C. Boyer, and J. Preiss. 1982. Immunological characterization of *Escherichia coli* B glycogen synthase and branching enzyme and comparison with enzymes from other

bacteria. J. Bacteriol. 151:1444-1453.

- 7. Ikemura, T. 1981. Correlation between the abundance of *Escherichia coli* transfer RNAs and the occurrence of the respective codons in its protein genes. J. Mol. Biol. 146:1–21.
- 8. Ikemura, T. 1981. Correlation between the abundance of *Escherichia coli* transfer RNAs and the occurrence of the respective codons in its protein genes: a proposal for the synonymous codon choice that is optimal for the *Escherichia coli* translational system. J. Mol. Biol. 151:389-409.
- Kappel, W. K., and J. Preiss. 1981. Biosynthesis of bacterial glycogen. Purification and characterization of ADPglucose pyrophosphorylase with modified regulatory properties from *Escherichia coli* B mutant CL1136-504. Arch. Biochem. Biophys. 209:15-28.
- Kumar, A., C. E. Larsen, and J. Preiss. 1986. Biosynthesis of bacterial glycogen. Primary structure of *Escherichia coli* ADPglucose:α-1,4-glucan-4-glucosyltransferase as deduced from the nucleotide sequence of the glgA gene. J. Biol. Chem. 261:16256-16259.
- 11. Larsen, C. E., Y. M. Lee, and J. Preiss. 1986. Covalent modification of the inhibitor-binding site(s) of *Escherichia coli* ADPglucose synthetase. J. Biol. Chem. 261:15402-15409.
- Lehmann, M. and J. Preiss. 1980. Biosynthesis of bacterial glycogen: purification and properties of Salmonella typhimurium LT-2 adenosine diphosphate glucose pyrophosphorylase. J. Bacteriol. 143:120-127.
- 13. Leung, P., Y. M. Lee, E. Greenberg, K. Esch, S. Boylan, and J. Preiss. 1986. Cloning and expression of the *Escherichia coli* glgC gene from a mutant containing an ADPglucose pyrophosphorylase with altered allosteric properties. J. Bacteriol. 167:82-88.
- Leung, P. S. C., and J. Preiss. 1987. Cloning of the ADPglucose pyrophosphorylase (glgC) and glycogen synthase (glgA) structural genes from Salmonella typhimurium LT2. J. Bacteriol. 169:4349-4354.
- 15. Lin, H. C., S. P. Lei, and G. Wilcox. 1985. The araBAD operon of *Salmonella typhimurium* LT2. I. Nucleotide sequence of araB and its primary structure of its product, ribulokinase. Gene 34:111-112.
- Lin, H. C., S. P. Lei, and G. Wilcox. 1985. The araBAD operon of Salmonella typhimurium LT2. II. Nucleotide sequence of araA and primary structure of its product, L-arabinose isomerase. Gene 34:123-128.
- Maxam, A. M., and W. Gilbert. 1980. Sequencing of endlabelled DNA with base specific chemical cleavages. Methods Enzymol. 65:499-560.
- Messing, J. 1983. New M13 vectors for cloning. Methods Enzymol. 101:20-78.
- 19. Normore, W. M., and J. R. Brown. 1970. In H. A. Saker (ed.), Handbook of biochemistry: selected data for molecular biology. Chemical Rubber Company, Cleveland, Ohio.
- Okita, T. W., R. L. Rodriguez, and J. Preiss. 1981. Biosynthesis of bacterial glycogen: cloning of the glycogen biosynthetic enzyme structural genes of *Escherichia coli*. J. Biol. Chem. 256:6944-6952.
- 21. Parsons, T. F., and J. Preiss. 1978. Biosynthesis of bacterial glycogen. Incorporation of pyridoxal phosphate into the allosteric activator site and an ADPglucose protected pyridoxal phosphate binding site of *Escherichia coli* B ADPglucose synthase. J. Biol. Chem. 253:6197-6202.
- 22. Parsons, T. F., and J. Preiss. 1978. Biosynthesis of bacterial glycogen: Isolation and characterization of the pyridoxal phosphate allosteric activator site and the ADPglucose protected pyridoxal phosphate binding site of *Escherichia coli* B ADPglucose synthase. J. Biol. Chem. 253:7638-7645.
- Preiss, J. 1984. Bacterial glycogen synthesis and its regulation. Annu. Rev. Microbiol. 38:419–458.
- Preiss, J., and D. A. Walsh. 1981. The comparative biochemistry of glycogen and starch, p. 199–314. *In V. Ginsburg and P.* Robbins (ed.), Biology of carbohydrates, vol. 1. John Wiley and Sons, Inc., New York.
- Sanderson, K. E., and J. R. Roth. 1983. Linkage map of Salmonella typhimurium edition VI. Microbiol. Rev. 47:410-

453.

- Sanger, F., S. Nicklen, and A. R. Carlson. 1977. DNA sequencing with chain terminating inhibitors. Proc. Natl. Acad. Sci. USA 74:5463-5467.
- 27. Shine, J., and L. Dalgarno. 1974. The 3'-terminal sequence of *Escherichia coli* 16S ribosomal RNA: complementary to non-

sense triplets and ribosome binding sites. Proc. Natl. Acad. Sci. USA 71:1342-1346.

 Steiner, K. E., and J. Preiss. 1977. Biosynthesis of bacterial glycogen: genetic and allosteric regulation of glycogen biosynthesis in Salmonella typhimurium LT2. J. Bacteriol. 129: 246-253.