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Malaria causes severe morbidity and mortality 
with an estimated 300–500 million cases world-
wide and >1 million deaths annually in sub-
Saharan Africa alone (www.who.int). Disease 
control has been hampered by the spread of 
drug resistance in both the Plasmodium parasites 
and the Anopheles gambiae insect vector and by 
the lack of an effi  cacious vaccine (1). A better 
understanding of malaria pathogenesis, includ-
ing the identifi cation of innate or adaptive host 
defense mechanisms against the blood-stage 
Plasmodium parasite, may provide new targets 
for intervention in this disease. Such mecha-
nisms may manifest themselves as genetic de-
terminants of susceptibility in areas of endemic 
diseases and during epidemics and as strain 
variations in mouse models of experimental in-
fections (for review see reference 2).

In humans, malaria provides a clear exam-
ple of host genetic factors infl uencing the on-
set, progression, type of disease developed, and 
ultimate outcome of infection (3). Epidemio-

logical data together with linkage and association 
studies have shown that selection pressure from 
the parasite has caused retention of disease-
associated but malaria-protective alleles in the 
human population, suggesting coevolution of 
the host and parasite. Such otherwise deleterious 
alleles include those causing sickle cell anemia 
(4, 5), thalassemias (6), and glucose-6-phosphate 
dehydrogenase defi ciency (7). Polymorphisms 
in other erythroid proteins, including common 
variants of the Duff y antigen (8), the erythro-
cyte band 3 (anion exchanger; reference 9), and 
glycophorin C (10), as well as variants in the 
TNFα cytokine (11) and the CD36 scavenger 
receptor (12) are also associated with protec-
tion against malaria. Additional linkage stud-
ies in Burkina Faso have suggested a complex 
genetic component of susceptibility showing 
blood parasitemia levels linked to the 5q31-q33 
region (13). Overall, the genetic component 
of malaria susceptibility is acknowledged to 
be very complex and heterogeneous in hu-
mans and is further modifi ed by environmental 
factors (14).
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of Plasmodium chabaudi AS independently of Pklr. We characterized the 77 genes of the 

Char9 locus for tissue-specifi c expression, strain-specifi c alterations in gene expression, 
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studies suggest that pantetheinase is critical for the host response to malaria.

CORRESPONDENCE

Philippe Gros:

philippe.gros@mcgill.ca

Abbreviations used: B6, 

C57BL/6; dNTP, dinucleotide 

triphosphate; GSH, glutathione; 

LOD, logarithm of odds; 

mRNA, messenger RNA; PK, 

pyruvate kinase; pRBC, parasi-

tized RBC; QTL, quantitative 

trait locus; RCS, recombinant 

congenic strain; SNP, single-

nucleotide polymorphic.

The online version of this article contains supplemental material.



512 CLONING OF CHAR9 | Min-Oo et al.

Among the mouse malarial parasites, Plasmodium chabaudi 
AS provides a unique experimental model to study the ery-
throid stage of the disease (15). P. chabaudi AS produces an 
infection in mice that shares many similarities with Plasmo-
dium falciparum malaria in humans, including anemia, sple-
nomegaly, hepatomegaly, renal alterations, hypoglycemia, 
and parasite sequestration (16, 17). Inbred mouse strains 
vary considerably in their degree of susceptibility to infec-
tion with P. chabaudi AS, as measured by blood parasitemia 
at the peak of infection (peak parasitemia) and overall sur-
vival, with strains such as A/J, BALB/c, and C3H/HeJ be-
ing highly susceptible and strains such as C57BL/6J, CBA, 
and DBA/2 being resistant (18). We and others have shown 
that the genetic control of susceptibility to P. chabaudi AS 
infection in mice is complex and multigenic. Quantitative 
trait locus (QTL) mapping studies by whole genome scan 
in informative backcross and F2 mice have located several 
signifi cant QTLs (logarithm of odds [LOD] > 4.0) on chro-
mosomes 9 (Char1), 8 (Char2), and 3 (Char4) controlling 
peak parasitemia and an MHC-linked locus (Char3) regulat-
ing parasite clearance after the peak of infection (19–22). 
Recently, four additional suggestive linkages (LOD < 2.0) 
have been detected in F11 advanced intercross lines that 
have a modest eff ect on blood-stage replication of P. chabaudi 
and that map to chromosomes 5 (Char5 and Char6), 17 (Char7 
related to Char3), and 11 (Char8 syntenic with human 
5q31-q33; references 23, 24). Overall, the various Char loci 
individually account only for a small fraction of the pheno-
typic variance (�10–20%), and they are each defi ned by 
a relatively large genetic interval (�20–30 cM). These fac-
tors have severely complicated the positional cloning of the 
genes involved.

As an alternate approach, we have used the AcB/BcA 
set of recombinant congenic strains (RCSs) derived from 
C57BL/6J (B) and A/J (A) progenitors to identify novel gene 
eff ects aff ecting the blood-stage replication of P. chabaudi AS 
(25). The AcB/BcA set was produced by the systematic in-
breeding of pairs of A × C57BL/6 (B6)/B6 × A double 
backcross (N3) mice, resulting in individual RCSs showing 
�12.5% of donor genome fi xed as small congenic fragments 
on the background of the other strain (87.5%). This strain set 
is particularly useful to study multigenic traits because (a) in-
dividual resistance/susceptibility loci may have segregated in 
individual RCSs, enabling their study in isolation; (b) the 
small size of the congenic segments fi xed in individual strains 
should facilitate positional cloning; and (c) the reassortment 
of parental haplotypes or the appearance of novel mutations 
may generate hyperphenotypes that segregate as simple traits 
(26–28). Phenotyping of 18 AcB/BcA strains for susceptibil-
ity to blood-stage malaria identifi ed strains AcB55 and AcB61 
as discordant, being highly resistant to P. chabaudi AS infec-
tion (low peak parasitemia; 100% survival) despite a suscepti-
ble A/J-derived genetic background, including the presence 
of susceptibility alleles at Char1 and Char2 (29). Linkage stud-
ies in informative [AcB55 × A] F2 mice showed that resis-
tance was inherited as a recessive trait that was controlled by 

a QTL (LOD = 6.57) on the distal portion of chromosome 
3, which was designated Char4 (22). Additional studies in 
AcB55 and AcB61, including transcript profi ling in the 
spleen, suggested the presence of anemia in these mice char-
acterized by expansion of the erythroid compartment, extra-
medullary erythropoiesis in the liver, reduced RBC counts, 
and constitutive reticulocytosis (30). Genetic linkage studies 
showed that alterations in erythroid parameters behaved as a 
monogenic trait that mapped to the Char4 region on chro-
mosome 3 (28). Subsequently, we showed that the Char4 ef-
fect was caused by a loss of function mutation in Pklr (liver 
erythrocyte-specifi c pyruvate kinase [PK]) that occurred dur-
ing the breeding of the AcB/BcA set and that was fi xed in 
both AcB55 and AcB61. The PklrI90N mutation causes hemo-
lytic anemia, which, in turn, protects against blood-stage rep-
lication of the parasite in AcB55/AcB61, including reduced 
peak parasitemia, rapid clearance of the parasite, and dramatic 
increase in survival (28).

In addition to Char4, linkage studies in [AcB55 × A] F2 
mice identifi ed a second suggestive QTL on chromosome 10 
(LOD score = 2.53; D10Mit189) that maps to a 14-Mb B6-
derived congenic segment fi xed in AcB55. B6 alleles at this 
locus are protective (reduced peak parasitemia), inherited in 
a codominant fashion, and show an additive eff ect with Char4 
(22). This locus has been given the temporary designation 
Char9. In this study, we have characterized the 77 genes 
 contained within the 14-Mb Char9 interval with respect to 
(a) tissue-specifi c expression, (b) the presence of strain-specifi c 
alterations in the level of gene expression, and (c) strain-
 specifi c polymorphic variants in coding and regulatory regions 
of positional candidates. We report that alterations in the 
pantetheinase-encoding genes Vnn3/Vnn1 are likely respon-
sible for the Char9 eff ect.

RESULTS

QTL mapping in F2 mice

Genetic linkage studies in F2 mice derived from malaria-
 resistant AcB55 and susceptible A/J showed that parasitemia 
at the peak of infection was determined, in part, by Char4 on 
chromosome 3, with the contribution of a second QTL on 
chromosome 10 (maximum linkage at D10Mit189; LOD = 
2.83; P = 0.001; Table I) that had an additive eff ect on peak 
parasitemia (22). The protective eff ect of Char4 in AcB55 is 
caused by a loss of function at Pklr (PklrI90N; reference 28), 
which controls �30% of the phenotypic variance. As the 
marker initially used to detect the Char4 eff ect was located 
�10 cM distal to Pklr, we reevaluated the eff ect of the chro-
mosome 10 QTL (allelic combinations at D10Mit189) on 
peak parasitemia in [AcB55 × A] F2 mice, taking into ac-
count their genotypes at Pklr itself (Fig. 1). This analysis 
shows that the chromosome 10 eff ect on peak parasitemia is 
noticeable for all Pklr allelic combinations, with B6 alleles at 
D10Mit189 being protective (lower parasitemia) and inher-
ited in a codominant fashion and with a more prominent ef-
fect detected in males (Fig. 1 A) than females (Fig. 1 B). In 
addition, this second QTL appears to have no statistically 
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 signifi cant eff ect on reticulocytosis, the phenotypic trait deter-
mined by Pklr alleles (Fig. 1, C and D). This suggests that the 
eff ect of Char9 on peak parasitemia is unrelated to PK defi -
ciency–induced hemolytic anemia and is likely to involve a 
distinct mechanism. We performed regression analysis and 
interval mapping in 200 [AcB55 × A] F2 mice while con-
trolling for Pklr genotypes to remove the major eff ect of this 
locus and obtained revised LOD scores of 4.74 (D10Mit167; 

P < 0.00002) for the chromosome 10 region (Table I), with 
all informative markers from the B6-derived congenic frag-
ment showing signifi cant linkage (LOD > 3.5) and con-
trolling �8% of the phenotypic variance. Together, these 
results indicate that the chromosome 10 locus contributes 
substantially to the control of blood-stage replication of the 
P. chabaudi parasite. This locus was given the temporary des-
ignation Char9.

Figure 1. The effect of Char9 alleles on peak parasitemia and 

 reticulocytosis. The effect of chromosome 10 (Char9) alleles on peak 

parasitemia (percentage of infected RBCs; A and B) and reticulocytosis 

(C and D) is shown in the context of WT or mutant (I90N) alleles at pklr 

(Char4) in [AcB55 × A/J] F2 mice. Each dot represents a mouse. Alleles at 

D10Mit189 are represented by the following: a, A/J; b, AcB55; h, heterozygote. 

Genotypes at Pklr are represented by the following: +/+, WT; +/−, 

 heterozygote; −/−, mutant. Males (A and C) and females (B and D) are 

shown separately. Horizontal bars indicate the mean peak parasitemia 

value for each group.

Table I. Linkage analysis of Char9 in [AcB55 × A/J] F2 mice using peak parasitemia as a quantitative trait

STS marker Position Free regression model Control for Pklr

Chr cM Megabasea 𝛘2
LOD Percent 

variance

P-value 𝛘2
LOD Percent 

variance

P-value

D10Mit246 10 5 12.6 10.5 2.28 4 0.00527 18.5 4.02 7 9.90E-05

D10Mit167 10 4 19.1 12.3 2.67 5 0.00219 21.8 4.74 8 1.90E-05

D10Mit189 10 7 19.1 13 2.83 5 0.00151 21 4.57 8 2.70E-05

D10Mit51 10 9 19.4 13.1 2.85 5 0.00141 21.1 4.59 8 2.70E-05

D10Mit213 10 11 21.2 9.9 2.15 4 0.00717 16.1 3.50 6 3.20E-04

D10Mit106 10 17 25.3 12.1 2.63 5 0.0023 18.6 4.04 7 9.00E-05

D10Mit214 10 19 26.4 12.9 2.80 5 0.00158 17.7 3.85 7 1.40E-04

Pklr 3 44 91.3 61.6 13.39 27 4.10E-14 NA NA NA NA

D3Mit109 3 61.8 131.1 20.3 4.41 9 4.00E-05 7.3 1.59 3 2.36E-02

Chr, chromosome; cM, centimorgans; NA, not applicable; STS, sequence-tagged site.
aMegabase position is based on Mouse Genome Assembly v33 (Ensembl).
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Table II. Target tissue expression of Char9 candidate genes

Position Gene Spleen Liver Kidney

12.7 Sf3b5a Low ubiquitous Low ubiquitous Low ubiquitous

12.8 Plagl1 * * **

12.8 4930519B02Rik N * N

12.9 Ltv1 ** ** ***

12.9 Phactr2 * N *

13.2 Fuca2a Low ubiquitous Low ubiquitous Low ubiquitous

13.2 Pex3 ** *** ***

13.3 Deadc1 ** ** ***

13.4 Aig1 ** ** ***

13.7 Hivep2 N N N

14.1 Gpr126a Placenta specifi c Placenta specifi c Placenta specifi c

14.4 1110059P08Rik * * *

14.5 Nmbr N N N

17.4 Cited2 N N *

17.5 Txlnb Muscle specifi c Muscle specifi c Muscle specifi c

17.6 Heca No data No data No data

17.6 3110003A17Rik ** * **

17.8 Reps1 ** ** **

17.9 Ccdc28a ** ** **

18.2 Nhsl1a Low ubiquitous Low ubiquitous Low ubiquitous

18.3 Hebp2 N * *

18.3 D10Bwg1379ea Brain Brain Brain

18.6 Perp N *** ***

18.7 Tnfaip3 *** N *

19.1 Olig3a Very low ubiquitous Very low ubiquitous Very low ubiquitous

19.3 Ifngr1 *** ** **

19.3 Il22ra2 * N N

19.4 9230106D20Rik N N *

19.4 Il20ra * N N

19.6 Slc35d3 *** * **

19.6 Pex7 * ** **

19.7 Map3k5 *** ** ***

19.9 Mtap7 ** * ***

20.0 4933406P04Rika Testes specifi c Testes specifi c Testes specifi c

20.0 Bclaf1 *** *** ***

20.1 2610016C23Rika Oocyte specifi c Oocyte specifi c Oocyte specifi c

20.1 Pde7b * * *

20.7 Ahi1 ** * **

20.9 Myb *** * *

21.0 Hbs1l *** *** **

21.1 Aldh8a1 N *** ***

21.2 1700021A07Rik * * *

21.3 1700020N01Rik N N N

21.6 Sgk ** ** ***

21.9 Raet1c N ** N

22.4 Slc2a12 N N **

22.4 Tbpl1 * * *

22.6 Tcf21 ** N *

22.9 Eya4 N N *

23.5 Rps12a Low ubiquitous Low ubiquitous Low ubiquitous

23.6 Vnn3 * ** N

23.6 Vnn1 N ** ***

23.7 Taar1-9 No data No data No data

23.9 Stx7 ** * **

24.0 Moxd1 N * N

24.3 Ctgf ** * **

24.4 Enpp1 * * **

24.6 Crsp3 *** *** ***

24.7 Arg1 N *** N

24.9 Akap7a Oocyte/intestine Oocyte/intestine Oocyte/intestine

25.1 Epb4.1l2 ** * **

Position is given in megabases. N, not expressed. *, **, and *** represent low, intermediate, and high levels of expression, respectively.
aTissue expression was obtained from the GNF Expression database (http://symatlas.gnf.org).
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Tissue-specifi c expression of candidates at the Char9 locus

The 14-Mb B6-derived segment underlying the Char9 eff ect 
in AcB55 was scrutinized for the presence of positional 
 candidates. From public assemblies of the mouse genome 
(National Center for Biotechnology Information [NCBI]; 
Ensembl/v33), the Char9 segment is predicted to contain 77 
annotated transcripts. This list includes 16 copies of the trace 
amine-associated receptor (Taar1, 2, 3, etc.) and 61 other 
genes identifi ed in the RefSeq database (http://www.ncbi.
nih.gov) that form the transcriptome of the region. These 
were prioritized for study by messenger RNA (mRNA) ex-
pression profi ling in diff erent tissues and in diff erent mouse 
strains by haplotype mapping and nucleotide sequencing.

As a fi rst step, we analyzed all genes from the region 
for RNA expression in the spleen and liver, which are 
two organs known to play a key role in both the erythroid 
and early immune response to P. chabaudi infection. Tissue 
 expression data were obtained from two sources: fi rst, by 
in silico analysis of the Genomics Institute of the Novartis 
Research Foundation (GNF) expression database (http://
symatlas.gnf.org) and, second, by direct qualitative end 
point RT-PCR analysis using kidney RNA as an additional 
control (Table II). Using both methods, we obtained tissue 
expression data for 59/61 genes, whereas we were unable 
to generate data for two (by either RT-PCR and/or in 
silico data), including the Taar gene copies. Of those, 33 
genes showed at least detectable mRNA expression in the 

spleen, whereas 28 displayed fairly robust expression in this 
organ (Table II).

This latter group of 28 genes was then investigated for 
possible diff erences in expression levels associated with re-
sistance or susceptibility to P. chabaudi AS infection as de-
termined by Char9. For this, we compared expression levels 
in spleens from susceptible A/J (PklrWT) and resistant AcB55 
(PklrI90N; B6-derived Char9 region on chromosome 10) 
mice. Because the PklrI90N mutation has pleiotropic eff ects 
on the cellular composition of the spleen, including expan-
sion of the erythroid compartment and reduction of the 
lymphoid compartment (and associated changes in cell-spe-
cifi c transcript profi les; references 28, 30), spleen RNA from 
the AcB61 strain was used as an additional control. Although 
AcB61 has the PklrI90N mutation and displays the associated 
cellular and transcriptional changes in the spleen (28, 30), 
it lacks the B6-congenic Char9 segment of AcB55 and in-
stead harbors an intact A/J-derived chromosome 10 (25). 
Thus, mRNA expression was measured and compared in 
spleens of A/J, B6, AcB55, and AcB61 mice using real-time 
RT-PCR (see Materials and methods). Three housekeeping 
genes, β-actin, Gapdh, and Hprt, were amplifi ed in paral-
lel and used as internal controls for comparison among ex-
perimental groups. Fig. 2 shows relative expression levels of 
the 28 positional candidates (three to six replicates) in spleens 
of A/J, AcB55, and AcB61 mice. These are expressed as ra-
tios using expression levels in B6 mice as an internal control 

Figure 2. mRNA expression of positional candidates in the Char9 

interval. 28 genes from the Char9 region showing expression in the 

spleen were examined for strain-specifi c differences in RNA expression 

and possible association with malaria susceptibility or resistance. Real-

time RT-PCR was performed using a LightCycler (see Materials and methods). 

The histograms represent the ratio of mRNA expression of each transcript 

measured in A/J (blue), AcB55 (purple), and AcB61 (yellow) relative to 

the levels measured in B6 (red). The expression level has been normalized 

for various control transcripts, including Gapd, actin, and Hprt (represen-

tative results with Hprt are shown). Error bars represent the SEM of 

 normalized expression (2−∆Ct) for three to six replicates. The unique ratios 

detected for Vnn3 and indicative of a Char9 effect are outlined with a 

box, and the highly signifi cant difference in expression levels between A/J 

and AcB55 for Vnn3 is indicated.
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for normalization (B6 level = 1.0 for all genes). As predicted, 
the PklrI90N mutation has a strong eff ect on cell populations 
and gene expression in the spleen (30), and the majority 
of transcripts showing diff erential expression between A/J 
(susceptible) and AcB55 (resistant) were also diff erentially 
expressed between AcB61 and A/J. Representative ex-
amples of such expression patterns include Map3k5, Pde7b, 
and Enpp1 (Fig. 2). These eff ects are most likely unrelated 
to Char9.

Of the 28 positional candidates examined by real-time 
RT-PCR, a single transcript Vnn3 (GenBank/EMBL/DDBJ 
accession no. NM_011979) showed a highly signifi cant 
(P < 0.0001) 12-fold diff erence in mRNA expression level 
between A/J and AcB55 (AcB55 > A/J; Fig. 2, boxed area). 
This diff erence was attributable to a Char9 eff ect and not to 
PklrI90N-associated changes in the spleen because the unde-
tectable level of Vnn3 mRNA expression in A/J was identical 
to that found in AcB61 and was clearly distinct from AcB55. 

Figure 3. Haplotype structure of the Char9 congenic segment of 

AcB55. (A) The position of the B6-derived chromosome 10 segment 

(gray) of AcB55 is shown on the A/J chromosome 10 background (white). 

Microsatellite markers used in Char9 linkage mapping studies are identi-

fi ed along with their positions on the physical map (in megabases). SNP-

based genotypes (spacing of �100 kB) for 11 inbred strains (identifi ed 

on top) were obtained from the WTCTC SNP database. B6 alleles are gray, 

and the minor alleles are white. Inbred strains were segregated into 

P. chabaudi–susceptible (S) and –resistant (R) strains (*, DBA/1J is sus-

ceptible), and blocks of conserved haplotypes that segregated with 

 susceptibility were noted. The region of the haplotype covering the Char9 

congenic segment is outlined, and the minimal interval is indicated. 

The 11 genes mapping to this minimal interval are shown, with genes 

expressed in the spleen highlighted in black. (B) The level of mRNA expres-

sion of positional candidates Vnn3, Stx7, Ctgf, Enpp1, Crsp3, and Epb4.1l2 

was determined in the spleen of 10 inbred mouse strains by quantitative 

RT-PCR. Strains carrying the A/J-like haplotype in this region are shown in 

white, and strains with the B6-like haplotype are shown in gray. Expression 

level is shown as a mean of three replicates and relative to B6 (B6 = 1) 

after normalization to Hprt. Error bars represent SEM. (C) Inbred strains 

of mice display two major haplotypes defi ned by SNPs in the Vnn3 gene 

that are associated with susceptibility (white) or resistance (gray) to 

 infection with P. chabaudi (P.c.) susceptibility. Int, intronic; sil, silent/ 

synonymous; MS, missense/nonsynonymous; NS, nonsense/premature STOP.
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These fi ndings establish Vnn3 as the only gene of the 28 
spleen-expressed positional candidates for which expression 
is diff erentially regulated by Char9.

Haplotype structure of the Char9 locus

A complementary approach was taken to further prioritize 
positional candidates. For this, the haplotype structure of the 
B6-derived Char9 congenic segment was determined in dif-
ferent inbred strains of mice and was analyzed with respect to 
previously reported resistance and susceptibility of these 
strains to infection with P. chabaudi AS (blood parasitemia 
and survival; reference 29). The haplotype map of 10 inbred 
mouse strains was determined for a 23-Mb chromosome 10 
segment using available single-nucleotide polymorphic (SNP) 
marker information (Wellcome Trust Complex Trait Con-
sortium [WTCTC] database; Fig. 3 A). This analysis high-
lighted a conserved haplotype block of �4 Mb that correlates 
most considerably with susceptibility or resistance to P. chabaudi, 
with fi ve (SJL/J, C3H/HeJ, BALB/cJ, AKR/J, and A/J) 
of six known susceptible strains harboring the same hap-
lotype. Closer inspection of this haplotype block revealed six 
transcripts showing detectable levels of expression in the 
spleen, including the Vnn3 gene (Fig. 3 A). To determine 
whether the two distinct haplotypes defi ning this region were 
associated with diff erential transcript levels of the six genes 
mapping within the block, we performed additional quanti-
tative RT-PCR on spleen RNA. We chose fi ve strains car-
rying the B6-like haplotype in the 4-Mb region and fi ve 
strains carrying the A/J-like haplotype and examined the ex-
pression level of each gene relative to B6 (Fig. 3 B). Of the 
six genes mapping to the conserved haplotype block, only Vnn3 
shows 100% correlation between the genotype and transcript 
expression level. This indicates a strong cis-regulation of the 
gene by the haplotype, thus providing additional support for 
this Char9 candidate.

We sequenced all coding exons as well as the intron/exon 
boundaries of Vnn3 in the 10 aforementioned informative 
mouse strains as well as in the AcB55 RCS (Table S2, avail-
able at http://www.jem.org/cgi/content/full/jem.20061252/
DC1). This information was used to construct a detailed hap-
lotype for Vnn3 in these strains (Fig. 3 C). As expected from 
the haplotype structure of the region (Fig. 3 A), the analysis 
of 15 informative SNPs within or near Vnn3 shows the seg-
regation of inbred mouse strains into two haplotype groups 
that display good correlation with susceptibility/resistance to 
P. chabaudi infection and 100% correlation with the expres-
sion level of the transcript. In the coding region of Vnn3, the 
two haplotypes are defi ned by a number of silent substitu-
tions but also show three distinguishing missense mutations 
(M137V, I209V, and E345C; Table S2). In addition, the A/J 
Vnn3 transcript carries a single nucleotide substitution at po-
sition 1,592 (C1592T) that introduces a premature termination 
codon (Q494Stop) and causes a seven–amino acid truncation 
of the pantetheinase enzyme encoded by Vnn3. These results 
provide additional evidence identifying Vnn3 as the positional 
candidate for Char9.

Absence of Vanin encoded pantetheinase activity 

in the A/J liver

There are two Vanin genes in the mouse genome, Vnn1 and 
Vnn3, that encode highly similar proteins (63% identity; 
BLOSUM score = 624) with identical pantetheinase enzymatic 
activity. The Vnn1 and Vnn3 genes are adjacent to each other, 
are separated by 30 kb, and are contained within the minimal 
haplotype interval. They are expressed in diff erent tissues and 
cell types: Vnn1 mRNA is found primarily in epithelial cells 
and is abundant in the intestine, liver, and kidney (31), whereas 
Vnn3 is preferentially expressed in myeloid cells with additional 
lower ubiquitous expression in many tissues (32). RT-PCR 
experiments in Table II showed that (a) as opposed to Vnn3, 
Vnn1 is not expressed in the spleen and that (b) Vnn1 and Vnn3 
are both expressed in the liver. We investigated the eff ect of the 
Char9-associated haplotype block on the expression of Vnn1 
and Vnn3 by real-time RT-PCR (not depicted) and by North-
ern blotting (Fig. 4 A) in the liver. Vnn1 (2.3 kb) and Vnn3 
(1.8 kb) mRNAs were found abundantly expressed in the liver 
of B6 and AcB55 mice (B6 haplotype) but were both undetect-
able in the liver of A/J and AcB61 mice (A/J haplotype). These 
results suggest that both genes are regulated in cis and that 
Vanin expression in multiple tissues (liver and spleen) is aff ected 
in the malaria susceptibility haplotype of A/J strains.

Figure 4. Effect of the Char9 genomic haplotype on Vanin mRNA 

expression and pantetheinase activity. Levels of Vanin mRNA and pante-

theinase enzyme activity in mouse strains carrying the A/J or B6 haplotype. 

(A) Northern blot analysis of total liver RNA from A/J, B6, AcB55, and AcB61 

using isoform-specifi c hybridization probes corresponding to the Vnn1 and 

Vnn3 genes. Ethidium-bromide staining of the agarose gel is shown to 

demonstrate similar RNA loading on each lane. (B) Levels of pantetheinase 

activity in the liver (n = 4) of A/J, B6, AcB55, and AcB61 mice as measured 

by spectrophotometric enzyme assay. Activity is measured in milliunits/

milligram of tissue. The limit of detection was 0.1 mU/mg (dashed line). 

Horizontal bars indicate the mean peak parasitemia value for each group.
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To determine whether the absence of transcript in the A/J 
strain is associated with an absence or decrease of functional 
protein levels, we measured pantetheinase activity in the liver 
from A/J, B6, AcB55, and AcB61 mice using a spectropho-
tometric quantitative assay. Fig. 4 B shows a complete ab-
sence of pantetheinase activity in A/J compared with B6 and 
AcB55, with zero out of four mice showing levels above the 
detection limit of the assay (<0.1 mU/mg of tissue). On the 
other hand, B6 and AcB55 show detectable levels of activity 
in all mice tested. The AcB61 strain displayed results similar 
to A/J, with two out of four mice having undetectable activ-
ity and two mice showing barely detectable levels of activity 
(0.2–0.3 mU/mg). These results demonstrate that the lack of 
Vnn3/Vnn1 mRNA expression in A/J mice results in the loss 
of functional pantetheinase activity.

Analysis of the Vnn3 putative proximal promoter region

The molecular basis for diff erential Vnn1/Vnn3 expression in 
the A and B6 haplotypes was investigated. Vnn3 and Vnn1 
are in the same transcriptional orientation: the Vnn3 gene is 

located upstream of Vnn1, with �30 kb separating the most 
3′ exon of Vnn3 (exon 7) from the fi rst exon of Vnn1 (32). 
Thus, we fi rst investigated the 5′ region of Vnn3 as a possible 
site for genetic alteration aff ecting transcription. A 2-kb 
 segment directly upstream of the Vnn3 gene transcription 
start site was isolated as four overlapping PCR fragments 
(Fig. 5 A), and its nucleotide sequence was determined in 
diff erent mouse strains bearing the B6-expressing haplotype 
(C57BL/6J, AcB55, and DBA/2J) or the A/J transcription-
ally inactive haplotype (A/J, AcB61, and BALB/cJ). The 
sequences were aligned with the reference B6 genomic 
 sequence (Ensembl; build v35), resulting in the identifi cation 
of a number of SNPs that distinguish the two haplotypes 
(Fig. 5 B), including a substantially diff erent dinucleotide re-
peat at position −660. More importantly, PCR amplifi cation 
of the −1,000 to −500-bp region revealed an insertion of 
�340 bp of additional sequence in A/J just upstream of the 
variable repeat region (Fig. 5 A). The presence of additional 
sequence in this region of the A/J haplotype was validated by 
Southern blotting analysis of total genomic DNA digested 

Figure 5. Analysis of the Vnn3 proximal promoter region. Examina-

tion of the genomic sequence found upstream of the Vnn3 transcription 

start site. (A) A schematic representation of the genomic region in the 

putative proximal promoter of Vnn3. The 2,000 bp that were analyzed 

for nucleotide sequence integrity are displayed with PCR primers indi-

cated by arrows and SNPs indicated by triangles. BamH1 restriction sites 

and the localization of the specific probe for Southern blotting are 

 labeled. The major genomic rearrangement distinguishing the B6-like 

strains from the A/J-like strains is shown in greater detail with repeat 

regions and deleted regions indicated. (B) All identifi ed polymorphisms in 

the promoter region are listed with respect to the reference (B6) genomic 

sequence. The double asterisks represent a deletion at this position. 

(C) The Southern blot from a BamH1 digest of genomic DNA displaying 

the size of the genomic rearrangement; A/J-like strains carry �340 bp of 

extra sequence. The arrows indicate the two distinct bands produced 

by the genomic rearrangement: the smaller band is representative of 

the B6-like promoters, and the larger band is representative of the 

A/J-like promoters.
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with BamHI and probed with a hybridization fragment over-
lapping exons 1–2 of Vnn3 (Fig. 5, A and C). Sequence anal-
ysis of the −1,000 to −500-bp PCR fragment shows a 
complex genomic rearrangement in the A/J haplotype, in-
cluding two insertions of 301 and 31 bp upstream the di-
 nucleotide repeat (Fig. 5 A). Together, these results show 
that the loss of transcriptional activity of the Vnn locus is 
 associated with genomic rearrangement in the promotor re-
gion of the Vnn3 gene.

Reduction in early parasite burden through cystamine 

treatment in vivo

Pantetheinases produce the low molecular weight thiol cys-
teamine, and the loss of pantetheinase activity can be reversed 
in vivo by passive treatment with cystamine (the oxidized 
form of cysteamine; reference 33). To further investigate the 
role of pantetheinase activity in Char9-associated susceptibil-
ity to malaria, we tested the eff ect of cystamine treatment on 
blood-stage replication of P. chabaudi in susceptible A/J mice. 
A/J and control C57BL/6J mice were treated with cystamine 
given daily from 2 d before infection with P. chabaudi and 
continued for 15 d alongside PBS-injected untreated con-
trols, and the extent of blood-stage replication of the parasite 
was investigated. Cystamine treatment was found to substan-
tially reduce P. chabaudi replication (Fig. 6 A). At day 7 after 
infection (near the peak of parasitemia in control mice), A/J 
males treated with cystamine showed a reduction in parasit-
emia from �60% (in controls) to only �20% parasitized 
RBCs (pRBCs; P < 0.0001; two-tailed Student’s t test), 
whereas in females, the reduction was from �40 to �10% 
parasitemia (P = 0.017; two-tailed Student’s t test). Cysta-
mine treatment also reduced parasitemia in B6 mice, albeit 
less so than in A/J mice, with an eff ect visible in B6 males 
only (from �35 to �10%; P = 0.0003; two-tailed Student’s 
t test). Finally, cystamine treatment increased overall survival 
to infection in A/J females by 30% (P = 0.06; log-rank test), 
whereas it delayed the onset of mortality in A/J males (Fig. 6 B). 
Thus, the passive administration of cystamine can partially 
correct malaria susceptibility in A/J mice, as witnessed by re-
duced parasite replication before the peak of infection and 
increased survival. These results provide further evidence 
for a functional link between Vnn genes and susceptibility 
to malaria.

D I S C U S S I O N 

The malarial parasite has a complex life cycle in its mamma-
lian host that involves sequential replication in the erythro-
cyte and sequestration in diff erent tissues such as liver and 
brain microvasculature. Protective host defenses against Plas-
modium species are not fully understood but involve diff erent 
cell types and physiological and biochemical pathways at each 
stage of the infection. In humans and mice (for review see 
references 34, 35), the genetic component of susceptibility to 
malaria is very complex and may refl ect the plurality of sites 
at which genetic variations can exert an infl uence on patho-
physiology and disease outcome. However, isolating single 

gene eff ects and identifying their molecular basis may provide 
valuable new insight into protective host mechanisms. RCSs 
of mice (25) represent a valuable tool to break down multi-
genic traits into single gene eff ects.

The AcB55 strain is very resistant to P. chabaudi AS and 
shows low parasitemia at the peak of infection, early clear-
ance of the parasite, and uniform survival to infection (29). 
We have previously shown that resistance in AcB55 is caused 
by two genetic eff ects (22). The fi rst (Char4), on chromo-
some 3, is caused by a loss of function in the erythrocyte form 
of PK (28). This is a mutation that arose on the A/J back-
ground of the AcB set early during their derivation and is also 
found in AcB61. In AcB55 and AcB61, defi ciency in pklr 
causes hemolytic anemia (30). The malaria-protective eff ect 
in PK-defi cient erythrocytes is linked to the increased ex-
pression of senescence markers, increased phagocytosis of in-
tact and Plasmodium-infected cells, and increased turnover of 
erythrocytes (unpublished data). The second genetic eff ect 

Figure 6. Administration of cystamine in vivo and the effect on 

P. chabaudi replication in A/J and B6 mice. The effect of cystamine 

treatment on P. chabaudi AS infection in A/J and B6 mice. (A) Male and 

female mice were treated with cystamine (120 mg/kg of body weight) 

or with PBS for 2 d before infection with 106 parasitized erythrocytes 

(pRBCs) and continuing daily for 15 d. Boxes and whisker plot shows par-

asitemia (percent pRBC) levels for 8–10 mice per group at day 7 after 

infection for control (gray bars) and treated mice (white bars). The median 

parasitemia is indicated by a horizontal line, whereas the box represents 

the quartiles, and the whiskers represent the end points of the parasit-

emia distribution. Error bars represent SEM. Statistical differences 

 between groups are indicated by asterisks: **, P < 0.001; *, P < 0.02. 

(B) Effect of cystamine treatment on the survival of A/J mice after 

P. chabaudi AS infection. Dashed lines represent treated mice, whereas 

solid lines represent control animals. Cont, control; treat, treated; pRBC, 

parasitized RBC.
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(Char9; LOD score = 4.74) is specifi c to AcB55 (and is 
not seen in AcB61) and maps to a 14-Mb B6-derived seg-
ment of chromosome 10 fi xed in AcB55 (22). In informative 
[AcB55 × A] F2 mice, the Char9 eff ect is additive to Char4, 
but Char9 alleles have no consequence on anemia-associated 
hematological parameters (e.g., reticulocyte counts), suggesting 
that the eff ect of Char9 on peak parasitemia is unrelated to 
PK defi ciency–induced hemolytic anemia and likely involves 
another pathway.

In this study, we have undertaken the positional cloning 
of the gene underlying the Char9 QTL. Through a combina-
tion of systematic RNA expression analysis of 77 transcripts 
in the region and SNP-based haplotype data, we have con-
verged on the Vnn genes as underlying the Char9 eff ect and 
contributing to P. chabaudi resistance in the AcB55 strain. 
The evidence pointing to Vnn3 as the strongest candidate in 
the region includes the following: (a) Vnn3 expression in the 
spleen, which is a key target organ for erythroid response to 
P. chabaudi–induced anemia and for general mononuclear 
phagocyte-mediated early immune response; (b) diff erential 
expression of Vnn3 between AcB55, AcB61, and A/J strains 
that is independent of the Pklr alleles; (c) location within a con-
served haplotype showing good cosegregation with P. chabaudi 
susceptibility; (d) a unique cis-regulation of transcript levels 
based on this discriminating haplotype; and (e) a complex 
 rearrangement in the promoter region associated with the 
A/J haplotype and lack of Vnn1/Vnn3 mRNA expression 
in the spleen and liver. In addition, we have shown that in 
the malaria susceptibility haplotype, the complete absence of 
Vnn1/Vnn3 expression at the mRNA level results in a lack of 
Vanin-encoded pantetheinase enzyme in the susceptible A/J 
strain (compared with AcB55 and B6). In addition, we have 
shown that passive administration in vivo of the pantethein-
ase reaction product cysteamine can partially correct suscep-
tibility to P. chabaudi infection in A/J mice. This provides a 
functional link between Char9, pantetheinase activity, and 
host response to malaria.

There are three genes in humans (VNN1, VNN2, and 
VNN3) clustered on 6q22, whereas there are only two in 
mice (Vnn1 and Vnn3; reference 32). The genes show a very 
similar structure consisting of seven exons and encode pro-
teins with a high degree of similarity (�65% sequence iden-
tity; reference 36). In the mouse, Vnn1 mRNA is abundantly 
expressed in epithelial cells of the kidney, liver, and intestine; 
Vnn3 mRNA is expressed in myeloid cells, including circu-
lating granulocytes and monocytes (but not lymphoid cells) 
and is abundant in the spleen and liver (32). No Vnn1 mRNA 
was detected in hematopoietic tissues (32). Vnn1 and Vnn3 
code for pantetheinases, a group of ectoenzymes in the cata-
bolic pathway of coenzyme A that hydrolyze d-pantetheine 
to pantothenic acid (vitamine B5) and cysteamine (37, 38). 
Although pantothenic acid is critical to many metabolic 
 processes as a key component of CoA (39), cysteamine has 
potent antioxidant properties and acts as an inhibitor of 
γ-glutamyl/cysteine synthetase, the rate-limiting step in the 
biosynthesis of glutathione (GSH; reference 40). In addition 

to distinct tissue and cell expression, Vnn1 and Vnn3 act at 
diff erent subcellular sites by virtue of distinct C-terminal do-
mains (32). Although Vnn1 is attached to the membrane via 
a glycosyl-phosphatidylinositol anchor and a putative trans-
membrane domain, Vnn3 lacks these features and appears to 
be cytoplasmic and/or secreted (32). Vanins were originally 
described as cell adhesion proteins that are expressed by thy-
mus stromal cells and play a role in the entry of hematopoi-
etic precursors in this organ (41). They are also expressed on 
neutrophils and are required for the transendothelial migra-
tion of these cells in tissues (42).

Importantly, recent studies in Vnn1-defi cient mice 
(Vnn1−/−) have established that through the production 
of cysteamine, pantetheinases play a critical role in host 
 response to oxidative and infl ammatory stimuli (31, 33, 
43). Pantetheinase-produced cysteamine acts to up-regulate 
the infl ammatory response locally in the liver and intestine 
(membrane-bound Vnn1) but also at distant sites through 
Vnn3 expressed by myeloid cells. This model is based on 
the observations that Vnn1−/− mice show reduced infl am-
matory response (infi ltration of myeloperoxidase+ cells and 
MIP2 chemokine production), are protected from tissue 
damage, and show increased survival in acute (high-dose 
indomethacin) and chronic (Schistosoma mansoni infection) 
intestinal models of oxidative and infl ammatory stress (43). 
In addition, Vnn1 and Vnn3 mRNA expression is induced 
by γ irradiation, and Vnn1−/− mice are resistant to  radiation-
induced oxidative damage (33). Protection is associated with 
the reduced recruitment of myeloid cells at the site of infl am-
mation, reduced production of proinfl ammatory cytokines 
(IL-1β, IL-6, and MIP2), and increased survival (33). In 
both models, the protective eff ect is associated with increased 
GSH production and can be abrogated by passively admin-
istered cysteamine.

Our analysis of the Vnn1/Vnn3 locus identifi ed several 
sequence polymorphisms, including three missense mutations 
in the Vnn3 protein. These variations do not constitute obvi-
ous loss of function, as the substitutions are either very con-
servative (M137V and I209V) or aff ect a residue (E347C) 
that is not conserved in distant fl y and fi sh relatives  (ClustalW; 
http://www.ebi.ac.uk/clustalw/). In addition, an A/J-specifi c 
nonsense mutation was detected that introduces a termina-
tion codon and causes a seven-residue C-terminal truncation 
of Vnn3. Although the truncated segment is highly conserved 
in rat and human Vnn3 homologues, it is not conserved in 
the more distant frog Vnn3 relative and is absent from the 
glycosyl-phosphatidylinositol–linked pantetheinases (VNN1 
and VNN2; ClustalW; reference 32). Therefore, the conse-
quences of this A/J-specifi c alteration on the pantetheinase 
activity of Vnn3 await formal biochemical characterization 
of the mutant enzyme. However, we observed that the A/J 
haplotype at Vnn1/Vnn3 results in a loss of pantetheinase 
 activity in the liver. This loss of expression is associated with 
a complex rearrangement in the promotor region of Vnn3 
involving either the loss of key regulatory elements or the 
 insertion of silencing sequences. Whether the loss in activity 
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is a direct result of transcriptional silencing, is a consequence 
of the truncated A/J protein, or is a combination of the two 
remains to be formally tested. The lack of pantetheinase 
 activity in the A/J strain may consequently aff ect cysteamine 
levels and GSH metabolism in vivo more profoundly than 
the loss of Vnn1 activity in the corresponding mouse mutant, 
in which the deletion of Vnn1 is compensated for by  increased 
Vnn3 mRNA expression (in the liver; reference 33), which is 
not seen in A/J mice (Fig. 4 B).

How would the loss of pantetheinase activity in the 
spleen, liver, and myeloid cells aff ect susceptibility to  malaria? 
Although a formal answer to this question awaits the creation 
and characterization of mutant mice bearing loss of func-
tion mutations at both Vnn1 and Vnn3, we may speculate 
on a possible mechanism. During blood-stage replication 
of the Plasmodium parasite, an early infl ammatory response 
is required to control the initial burst of intraerythrocytic 
parasite multiplication (for review see reference 44). This is 
dependent on sensing the presence and phagocytosis of para-
sitized erythrocytes and parasite products by spleen cells of 
the myeloid lineage, including macrophages, DCs, and NK 
cells that quickly respond by producing proinfl ammatory 
 cytokines such as IL-12, TNFα, IFNγ, and IL-6 (for review 
see 45). Interfering in this response with specifi c antibod-
ies or with gene mutations results in increased parasitemia 
and decreased survival (46–49). The normal infl ammatory 
response is progressively dampened by the counteraction 
of regulatory cytokines such as TGF-β and IL-10, and this 
response is essential for the expression of adaptive immune 
mechanisms and for resolving the infection (for review 
see references 50, 51). The balance between the activating 
(IL-12/IFNγ) and suppressing signals (TGF-β/IL-10) is 
critical and carefully controlled, and aberrations in either 
 response have pathological consequences (52, 53). Given the 
documented role of pantetheinases and their cysteamine re-
action product in response to infl ammatory stimuli such as 
S. mansoni infection and γ irradiation, it is tempting to hy-
pothesize that a reduction in cysteamine levels in the spleen, 
liver, and peripheral myeloid cells of animals bearing the 
Vnn1/Vnn3 nonexpressing susceptibility haplotype may 
cause a decreased infl ammatory response to rising parasitemia 
in such P. chabaudi–infected animals. We have shown that 
the administration of cystamine in vivo diminishes parasit-
emia levels before the peak of infection and increases sur-
vival to the infection in the otherwise highly susceptible A/J 
strain. This model is exciting, as it points to cysteamine as a 
major regulator of host infl ammatory response during Plas-
modium infection.

Cysteamine could additionally aff ect blood-stage replica-
tion of Plasmodium by modulating the intracellular redox en-
vironment of the erythrocyte itself. Intracellular Plasmodium 
parasites are known to be sensitive to oxidant stress and O2

− 
radicals, and observable intraerythrocytic death of blood-
stage parasites through the oxidative stress response has been 
proposed to contribute substantially to the control of infec-
tion by the host (for reviews see references 54, 55). GSH 

is a key mediator of cellular redox, and, when cysteamine 
levels are low, there is an increase in the stores of GSH, and 
cell redox status is altered (33). Thus, increased GSH levels 
in erythrocytes and/or the spleen of pantetheinase-compro-
mised animals may further dampen infl ammatory response 
and facilitate parasite replication. A related mechanism has 
been proposed to explain the protective nature of G6PD de-
fi ciency in which the lack of G6PD uncouples the pentose 
phosphate shunt and impairs the reduction of reactive oxy-
gen species by GSH (56, 57).

Our fi ndings suggest a role for pantetheinase and associ-
ated infl ammatory response modulation in malaria suscepti-
bility. These fi ndings in the mouse provide possible new 
targets for parallel intervention in the human disease.

MATERIALS AND METHODS
Mice and parasites. A/J and C57BL/6J mice were purchased from the 

Jackson ImmunoResearch Laboratories. The AcB/BcA panel of RCSs was 

generated according to a breeding scheme described previously (58) and has 

been genotyped for >600 informative markers (25). AcB55 and AcB61 

strains were obtained as breeding pairs from Emerillon Therapeutics, Inc., 

and were subsequently maintained as breeding colonies at McGill University. 

All mice were maintained and handled according to guidelines of the Canadian 

Council on Animal Care.

P. chabaudi AS infection. A lactate dehydrogenase virus-free isolate of 

P. chabaudi AS, which was originally obtained from D. Walliker (University 

of Edinburgh, Edinburgh, Scotland, UK), was maintained by weekly passage 

in B6 mice by i.p. infection with 106 pRBCs suspended in 1 ml pyrogen-

free saline. After infection, the percentage of pRBCs was determined daily 

on duplicate thin blood smears stained with Dif-Quick (American Scientifi c 

Products) on days 4–28 after infection as described previously (22).

Cystamine (Sigma-Aldrich) was resuspended in PBS and dosed at 

120 mg/kg of body weight. Injections were performed i.p. on mice starting 

2 d before infection with P. chabaudi (as described in the previous paragraph) 

and continued until day 13 after infection. Untreated control animals were 

injected with PBS alone. A group of 8–10 mice were tested per condition 

(treated and control), per strain, and per sex.

RNA isolation and cDNA synthesis. Total cellular RNA was extracted 

from the spleen and liver using a commercial reagent and according to the 

manufacturer’s recommended instructions (TRIzol; Invitrogen). Tissues 

were snap frozen in liquid nitrogen, and 100 mg of tissue was homogenized 

by mechanical disruption using a homogenizer (Polytron; Brinkmann In-

struments) in a fi nal 2-ml volume of TRIzol reagent. The samples were in-

cubated for 5 min at 20°C followed by chloroform extraction. The aqueous 

phase was removed, and nucleic acids were precipitated with isopropanol. 

Pellets were washed with 75% ethanol and dissolved in ribonuclease-free 

water treated with 0.1% diethlypyrocarbamate. The quality of RNA prepa-

rations was verifi ed by electrophoresis on 1% formaldehyde-containing aga-

rose gels before use. To ensure high quality RNA, further purifi cation was 

performed using RNeasy columns (QIAGEN) on 100 μg of total RNA ac-

cording to the recommended protocol from QIAGEN.

For cDNA synthesis, 2 μg of total RNA pooled from three male mice 

was converted to cDNA in a 20-μl reaction containing 1 U of moloney 

mouse leukemia virus reverse transcriptase (Invitrogen), dinucleotide tri-

phosphates (dNTPs; 500 μM each), 5 μM oligonucleotide d(T) primers, 

First Strand Buff er, 0.1 M dithiothreitol, and 1 μL RNAGuard (GE Health-

care), and the reaction was allowed to proceed for 50 min at 37°C. The reac-

tion was inactivated by 15 min of incubation at 70°C. A minimum of two 

replicate RT reactions along with a negative control lacking reverse tran-

scriptase (−RT) were performed for each sample.
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Tissue-specifi c expression by RT-PCR. The expression of individual 

genes in select tissues was tested by standard PCR amplifi cation of RT prod-

ucts (RT-PCR) using total oligonucleotide d(T)–primed cDNA from the 

spleen, liver, or kidney (as described in the previous section) from mouse 

strains A/J, B6, and AcB55. The reaction mixture contained 10 pmol of 

gene-specifi c oligonucleotides (Table S1, available at http://www.jem.org/

cgi/content/full/jem.20061252/DC1), 200 μM dNTPs, 2 mM MgCl2, 

2 μL cDNA (1:10 dilution), and Taq polymerase (Invitrogen). Conditions 

for the PCR amplifi cation of each cDNA were kept standard to allow for 

the qualitative comparison of expression level and were as follows: 28 cycles 

of 95°C for 30 s, 57°C for 30 s, and 72°C for 30 s followed by a 10-min fi nal 

extension. PCR products were separated by agarose gel electrophoresis, 

stained with ethidium bromide (0.1% fi nal), and photographed under UV. 

Oligonucleotide pairs spanning intron/exon boundaries were designed for 

each gene (one to three sets) from published sequences and using Primer3 

software (http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi). 

Amplicons were situated near the 3′ end of the transcript when possible. The 

sequences of primer pairs used for the amplifi cation of each transcript are 

listed in Table S1.

Real-time RT-PCR. cDNA samples generated with spleen, liver, and 

kidney RNA from mouse strains A/J, B6, AcB55, and AcB61 were used for 

real-time RT-PCR analysis. PCR amplifi cation was performed using the 

SYBR Green I PCR kit (QIAGEN). A typical reaction included 2 μL 

cDNA template (1:10 dilution of initial RT reaction; see previous section), 

3 mM of fi nal MgCl2 concentration, 10 pmol of gene-specifi c oligonucle-

otide primer pairs (Table S1), and Quantitect Mix (includes SYBR green, 

dNTPs, Taq polymerase, and buff er; QIAGEN). Oligonucleotides were 

 designed as in the previous section with high melting temperatures and am-

plicon sizes of 150–200 bp to ensure high specifi city and PCR effi  ciency 

appropriate for real-time monitoring. Standard curves for PCR amplifi ca-

tion were generated for each set of oligonucleotide primer pairs using a pool 

of cDNAs from A/J, B6, and AcB55 serially diluted at 1:10, 1:100, 1:1,000, 

1:10,000, and 1:100,000. This was done to ensure optimal PCR amplifi ca-

tion (90% or above) and similar reaction effi  ciencies for all sample sets. This 

allowed for use of the 2−∆∆Ct method of relative quantifi cation, which was 

described previously (59). The data was normalized against three house-

keeping genes (Hprt, Gapdh, and β-actin) that were used as internal controls 

and assayed under the same conditions. Results normalized to Hprt were 

chosen as representative, as relative expression levels were similar when cal-

culated using any of the tested housekeeping genes. The calibrator sample, 

which allows for comparison between runs, was chosen as B6. Three to six 

replicate PCR reactions were performed for each gene and were used to 

calculate averages.

Real-time PCR was performed on a standard 32-capillary LightCycler 

instrument (Roche). Cycle threshold values representing the cycle crossing 

point were calculated by the LightCycler software (Roche) after setting a 

baseline threshold value to exclude fl uorescence noise. For the calculation 

of normalized expression, the mean cycle threshold value of the reference 

gene (i.e., Hprt) was subtracted from the target gene for individual runs and 

was converted to expression by 2−∆Ct. The mean expression values from 

separate runs were calculated and normalized to the value for B6 (i.e., B6 

value set at 1.0). SEM normalized expression was calculated from the fol-

lowing formula (60):
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Sequencing. Individual exons from the Ifngr1, Tnfaip3, Il22ra2, Sgk, Tcf21, 

Vnn3, and Vnn1 genes were PCR amplifi ed from genomic DNA of A/J, 

C57BL/6J, AcB61, and AcB55. The PCR products were visualized by  agarose 

gel electrophoresis to monitor purity followed by purifi cation using Exo-

SapIT (USB Corporation). Purifi ed PCR products were subjected to cycle se-

quencing in the presence of fl uorescently labeled BigDye Terminator (Applied 

Biosystems), and the products were analyzed using an automated instrument 

(ABI 3100; Applied Biosystems). Sequences from all strains were aligned with 

the reference sequence (GenBank/EMBL/DDBJ accession no. NM_011979) 

in BioEdit (http://www.mbio.ncsu.edu/BioEdit/bioedit.html) using a ClustalW 

base algorithm. The Vnn3 coding exons from AKR/J, CBA/J, 129/Sv, C3H/

HeJ, DBA/2J, and BALB/cJ were sequenced using the same procedure. The 

5′ upstream region of the Vnn3 gene from diff erent inbred strains was ampli-

fi ed by PCR as four overlapping segments tiling 2,000 bp upstream from the 

transcription start site. PCR products were either sequenced directly or after 

subcloning into TOPO TA vector (Invitrogen). A total of eight independent 

plasmid subclones were sequenced for each fragment and for each inbred 

strain, and sequences were aligned to the Ensembl build v34 reference up-

stream genomic sequence (gene ID: ENSMUSG00000020010) using the 

BioEdit software. Oligonucleotide primers used for sequencing the Vnn3 cod-

ing region and promoter are listed in Table S1.

Northern blotting. Aliquots of 20 μg of total spleen RNA were resolved 

by electrophoresis in a 1% agarose denaturing gel containing 8% formalde-

hyde. The RNA was transferred onto a Hybond-N (GE Healthcare) nylon 

membrane according to the manufacturer’s instructions and fi xed to the 

membrane by UV cross-linking. The membranes were prehybridized for 

16 h at 65°C in buff er containing 1% sodium dodecyl sulfate, 1 M NaCl, 

10% dextran sulfate, and 100 ng/ml of heat-denatured salmon sperm DNA. 

Membranes were hybridized for 16 h at 65°C in the same buff er containing 

radiolabeled probes (1 × 106 cpm/ml). Blots were washed in a series of buff er 

conditions of increasing stringency up to 0.1× SSC (20× SSC is 3 M sodium 

chloride and 0.3 M sodium citrate, pH 7.0) and 0.5% SDS (1 h at 65°C) and 

exposed to XAR fi lms (−80°C; Kodak) with intensifying screens. Hybrid-

ization probes included cDNAs for Vnn3 and Vnn1. The 651-bp Vnn3 probe 

was PCR amplifi ed as cDNA from B6 liver (generated by RT with moloney 

mouse leukemia virus as described in the RNA isolation and cDNA syn-

thesis section) using the primers 5′-A G T T C C A T T C C A T T C G G T G T G -3′ 
and 5′-G A C G T C C A T C T C T T G A G A C T T C -3′. The 487-bp Vnn1 probe 

was amplifi ed from B6 liver cDNA using the primers 5′-T T C C C A G G G T A-

A A C T G G T T G C -3′ and 5′-G G T T T T G G T T G G G G T T G A T T C -3′.

Pantetheinase activity assay. 1 g of mouse livers were homogenized in 

50 mM phosphate buff er, pH 7.0 (2.0 ml), and 1 mM dithiothreitol, were 

ultra centrifuged for 1 h at 100,000 g, and supernatants were used for the 

 soluble  enzymatic assay. Pellets were suspended in 50 mM phosphate buff er, 

pH 7.0 (1.0 mL), 1 mM dithiothreitol, and 0.1% DOC, were ultracentrifuged 

for 1 h at 100,000 g after 30 min at 37°C, and supernatants were used for 

membrane-bound activity. Pantetheinase activity was measured spectropho-

tometrically at 25°C; 100–300 μl of tissue extracts was added to 10 mM 

K-phosphate buff er, pH 8.0, containing 300 μM pantothenate-p-nitroanilide, 

and the increase in absorbance at 387 nm (extinction coeffi  cient = 12,144 

M−1 cm−1) was  recorded over time. 1 U pantetheine hydrolase is defi ned as 

the amount of enzyme that hydrolyzes 1 μmol pantothenate-p-nitroanilide 

per minute at 25°C.

Southern blotting. For Southern blotting, 15 μg of genomic DNA was 

digested to completion with a 10× excess (10 U/μg of DNA) of restriction 

enzymes BamH I or SacI followed by ethanol precipitation. Digested ge-

nomic DNA was separated by electrophoresis on 1% agarose gel in Tris-

 acetate-EDTA buff er (0.04 M Tris, 0.03 M acetic acid, 0.001 M EDTA, and 

0.02 M sodium acetate, pH 7.6) and transferred to a nylon hybrization mem-

brane (GeneScreen; NEN Life Science Products) by capillary blotting in 

10× SSC (sodium chloride–sodium citrate buff er). The membranes were 

prehybridized for 16 h and were then hybridized with 32P-radiolabeled DNA 

probes (specifi c activity of 5 × 108 cpm/μg of DNA) for 16 h at 42°C in 

50% formamide, 5× SSC, 1% SDS, 10% dextran sulfate, 20 mM Tris, pH 7.5, 

1× Denhardt’s solution, and 200 μg/ml of sonicated denatured salmon 

sperm DNA. The membrane was washed to a fi nal stringency of 0.1× SSC 

and 0.5% SDS at 65°C for 30 min and was exposed to XAR fi lm (Kodak) at 

−80°C with an intensifying screen. The hybridization probe consisted of a 

447-bp PCR fragment corresponding to nucleotide positions 25–472 down-

stream of the transcription start site comprising the fi rst two exons of Vnn3.
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Haplotype construction. Haplotypes for the 16 Mb overlapping the 

Char9 region were obtained from M. Daly (Massachussetts Institute of Tech-

nology, Cambridge, MA) as well as from the WTCTC Mouse Strain SNP 

database (http://www.well.ox.ac.uk/mouse/INBREDS) and were exam-

ined using Excel software (Microsoft). Additional single-nucleotide poly-

morphisms were derived for the Vnn3 locus from sequencing (see the 

Sequencing section) and were subsequently genotyped in various inbred 

strains by PCR amplifi cation from genomic DNA using oligonucleotide 

primer pairs listed in Table S1 followed by DNA sequencing. The two alleles 

at each polymorphism were color coded to aid in the visualization of shared 

haplotypes, with the B6 allele represented in gray and the other allele shown 

as white (Fig. 3 A).

Statistical analysis. The eff ect of Char9 on the quantitative trait peak para-

sitemia while controlling for the dominating eff ect of pklr alleles was ana-

lyzed using Map Manager QT (61), generating chi-square values using 

interval regression in 200 [AcB55 × A] F2 mice. Student’s t tests were per-

formed using Prism software (GraphPad).

Online supplemental material. Table S1 provides information about the 

oligonucleotides used for quantitative RT-PCR and nucleotide sequenc-

ing, and Table S2 provides results of the nucleotide sequencing of candidate 

genes. Online supplemental material is available at http://www.jem.org/

cgi/content/full/jem.20061252/DC1.
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