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Schizophrenia is often associated with emotional blunting—the diminished ability to respond to emotionally salient stimuli—
particularly those stimuli representative of negative emotional states, such as fear. This disturbance may stem from
dysfunction of the amygdala, a brain region involved in fear processing. The present article describes a novel animal model of
emotional blunting in schizophrenia. This model involves interfering with normal fear processing (classical conditioning) in rats
by means of acute ketamine administration. We confirm, in a series of experiments comprised of cFos staining, behavioral
analysis and neurochemical determinations, that ketamine interferes with the behavioral expression of fear and with normal
fear processing in the amygdala and related brain regions. We further show that the atypical antipsychotic drug clozapine, but
not the typical antipsychotic haloperidol nor an experimental glutamate receptor 2/3 agonist, inhibits ketamine’s effects and
retains normal fear processing in the amygdala at a neurochemical level, despite the observation that fear-related behavior is
still inhibited due to ketamine administration. Our results suggest that the relative resistance of emotional blunting to drug
treatment may be partially due to an inability of conventional therapies to target the multiple anatomical and functional brain
systems involved in emotional processing. A conceptual model reconciling our findings in terms of neurochemistry and
behavior is postulated and discussed.
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INTRODUCTION
Glutamate and dopamine neurotransmitter systems are distributed

throughout the brain and motivate the two main hypotheses

underlying the etiology of schizophrenia. The dopamine hypoth-

esis has its origins in the observation that typical antipsychotics

(dopamine receptor antagonists) tend to ameliorate positive

symptoms [1–3]. In comparison, glutamate has been implicated

by virtue of the observation that administration of non-competitive

NMDA (N-methyl-D-aspartate) receptor antagonists, such as

phencyclidine (PCP) and ketamine, to healthy volunteers repro-

duces not only positive, but also many of the negative symptoms

and cognitive impairments seen in schizophrenia [4],[5]. There-

fore, in order to address the need for novel antipsychotics that

counteract negative symptoms and cognitive deficits associated

with chronic schizophrenia, there has been a shift in research from

modulating dopaminergic to glutamatergic systems [6].

Negative schizophrenic symptoms include deficits in emotional

processing, or emotional blunting, typified by the inability to

process fear adequately. In a simple conditioning task using

aversive emotional stimuli, for example, patients failed to develop

an increase in response frequency to aversively reinforced trials,

whereas healthy volunteers acquired a differential response to

reinforced versus non-reinforced trials [7] (see also [8],[9]). Many

schizophrenic patients manifest deficits in the recognition of fearful

faces [10–12] in addition to general abnormalities in the

processing and attribution of negative emotional states [13],[14].

One brain area that plays a central role in the processing of fear

is the amygdala [15],[16]. Importantly, bilateral damage to the

amygdala has been shown to impair the processing of fearful facial

expressions in otherwise healthy human subjects [17] and reduced

amygdala volumes have been found in schizophrenic patients [18–

21]. In fact, some neuro-imaging studies suggest that the positive

symptoms of schizophrenia are associated with increased amyg-

dala activity, whereas negative symptoms are associated with

hypoactivation [22],[23].

In line with the above observations, Aleman and Kahn [24]

propose a two-hit model of amygdala abnormalities in schizo-

phrenia, combining the glutamate neurotransmitter hypothesis

with amygdala dysfunction. They speculate that prolonged

activation of the amygdala during psychotic states (positive

symptoms) in the onset stages of schizophrenia could lead to

glutamate excitotoxicity, resulting in amygdala lesions and long-

term hypofunctioning (see also [25],[6]), which ultimately could

underlie the negative symptoms of the disorder.

In order to investigate deficits in emotional processing, we

examine fear conditioning in the rat—an animal that has provided

the basis for several extant models of schizophrenia [26–30].

Specifically, we attempt to simulate the putative amygdala

hypoactivation caused by glutamate excitotoxicity indirectly by

blocking the NMDA receptor. We achieve this by administering the

glutamate NMDA-receptor antagonist, ketamine, to rats prior to
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fear conditioning. This model for the etiology of negative symptoms

is consistent with many previous studies showing that the NMDA

receptor is involved in fear conditioning. Goosens and Maren [31],

for example, have shown that infusion of the NMDA antagonist D,

L-2-amino-5-phosphonovalerate (APV) into either the basolateral or

central nuclei of the amygdala blocks the acquisition of conditional

fear. We hypothesize that the hypoglutamatergic state induced by

ketamine administration will interfere with normal fear processing

due to abnormalities in basic association of fear cues in the amygdala

and related brain areas (see also [32],[33]).

To measure the effects of these manipulations, we examine a

behavioral assay of fear conditioning known as freezing (i.e.

absence of movement in response to conditioning), either in the

presence or absence of administered ketamine. We also measure

two neural assays of fear conditioning within two separate regions

of the amygdala (the central [CEA] and basolateral nuclei [BLA]).

One assay is cFos expression—a measure of learning-related

neural activity [34]. The second assay is neurotransmitter tissue

content, which indicates the amount of neurotransmitter (intra-

and extracellular) in a given brain region.

In addition to the amygdala, we also examine various brain

areas associated with emotional processing, including the anterior

cingulate cortex (ACC) and the nucleus accumbens (core and shell,

Nacc). The rat ACC, a sub-area of the prefrontal cortex, has

previously been shown to be involved in associative learning,

particularly fear conditioning [35],[36], and in cognitive processes,

such as attention [37],[38]. Lesions of this area in humans produce

symptoms including apathy, inattention, dysregulation of auto-

nomic function and emotional instability [39], all symptoms

present in schizophrenic patients. The Nacc has also been

implicated in the neurobiology of schizophrenia [27] and is an

area primarily involved in motivation [40],[41]. It is also

intimately linked with the ACC [27],[37] and BLA [42] and

receives glutamatergic projections from these areas.

It has previously been reported that ketamine administration, in

addition to affecting the glutamate system, also affects the

dopamine system [43],[44]. Dopamine D2 receptor antagonists

have also been found to ameliorate ketamine-induced impairment

of some prefrontal cortex-dependent cognitive functions in rodents

[45]. A single-neurotransmitter perturbation is therefore probably

not sufficient to fully describe the emotional deficits reflected in the

schizophrenic brain. Therefore, both neurotransmitter systems

implicated in the origins of schizophrenia, as well as their

interactions, are investigated here (i.e. through measurement of

neurotransmitter tissue content).

In order to validate the etiological aspects of our model, we

administer two antipsychotics used in the clinical setting, haloperidol

and clozapine. Haloperidol, a typical antipsychotic, is used for

treating positive symptoms of schizophrenia [1],[46],[2] [3].

Clozapine, in contrast, is an atypical antipsychotic that has been

found to alleviate negative and cognitive symptoms of schizophrenia

[6]. Clozapine also differs from conventional neuroleptics, such as

haloperidol, in the way it affects the glutamate system [47],[6]. For

example, animal studies have shown an increase in medial prefrontal

cortical glutamate concentrations after clozapine administration,

while haloperidol did not elicit this increase [48]. Another animal

study, comparing the effects of haloperidol and clozapine on

ketamine-induced alterations in metabolism, found that clozapine

completely blocked the effects of ketamine in several brain areas,

whereas haloperidol did not [49]. We therefore hypothesize that

clozapine, but not haloperidol, will retain the behavioral changes

induced by fear conditioning following ketamine administration. We

also administer a new compound (LY 379268; (-)-2-Oxa-4-

aminobicyclo [3.1.0.] hexane-4,6-dicarboxylate), a metabotropic

glutamate 2/3-receptor agonist, which is currently being tested for its

involvement in fear learning [50]. It is presently unclear whether LY

379268 can affect conditional fear processing in the rat. A recent

study, however, does suggest that agonists of this receptor possess

anxiolytic properties [51]. The metabotropic glutamate 2/3-receptor

is located primarily in forebrain regions, and LY 379268 has been

shown to decrease glutamate release in these areas [52]. We

therefore postulate that LY 379268, as a glutamate agonist, will

inhibit ketamine’s actions on glutamate content, especially in

forebrain areas, in line with similar studies in the literature [53–55].

To summarize, we hypothesize that the influence of ketamine on

fear conditioning will manifest itself as a decrease in neuronal

activity, relative to fear-conditioned saline controls, in brain regions

associated with fear processing, in addition to inhibiting behaviors

typically derived from fear conditioning. We also hypothesize that

ketamine will interfere with the neurochemical alterations in brain

areas associated with fear conditioning, primarily through action on

NMDA receptors in the amygdala. Further, we expect that clozapine

will preserve normal fear-conditioned behavior and neuronal activity

abolished by ketamine. We also hypothesize that haloperidol, as it

mainly affects positive symptoms, will not inhibit ketamine’s actions

in these assays. We also tentatively postulate that LY 379268 will

prevent ketamine’s actions assessed in the above-mentioned assays,

mainly in forebrain areas. Evidence in favor of these hypotheses

would support the notion that glutamatergic hypofunctioning in the

amygdala and related brain areas underlies negative schizophrenic

symptoms, thereby paving the way for future studies to explore novel

drug treatments of these notoriously drug-resistant symptoms.

MATERIALS AND METHODS
Two experiments were conducted to measure the alterations in

behavior, cFos expression and neurotransmitter content due to

fear conditioning and ketamine and/or antipsychotic administra-

tion. This was done because the same animals could not be used

for both experiments due to methodological constraints.

Animal Housing
All animals were cared for in accordance with the principles laid

down by the European Communities Council Directive (1986) for

the Protection of Vertebrate Animals used for Experimental or

Other Scientific Purposes (86/EEC), which is comparable to the

guidelines laid down in the ‘‘Principles of laboratory and animal

care.’’ Male Sprague-Dawley rats weighing between 225–250 g

were obtained from the central animal facility (Groningen, The

Netherlands) and were housed individually in a temperature

(623uC) and humidity controlled (40 to 60%) environment. Food

and water were delivered ad libitum.

Drugs
Haloperidol (0.25 mg/kg, i.p.) was diluted from 5 mg/1ml HaldolH
injection capsules. Both clozapine (5 mg/kg, i.p.) and ketamine

(16 mg/kg, s.c.) were dissolved in physiological saline (0.9%), with

hydrochloric acid (HCL) added to clozapine to aid dissolving. One

ml/ml of 5N sodium hydroxide (NaOH) was added to the LY

379268 (3 mg/kg, s.c.) in saline solution before sonication, also for

dissolving purposes. Antipsychotics were administered 30 minutes

prior to ketamine, in accordance with previous studies investigating

the effects of antipsychotics on NMDA antagonists [56–58]. All drug

doses were determined empirically, i.e. it was the highest dose

possible that did not affect locomotor behavior or induce catalepsy,

except ketamine (see below). The clozapine and haloperidol doses

are in line with the clinical setting, as determined by D2 receptor

occupancy [59]. Clozapine was obtained from Sandoz Pharma AG,

Animal Model of Schizophrenia
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Switzerland; haloperidol from Janssen-Cilag, The Netherlands; LY

379268 from Eli Lilly, USA; and ketamine hydrochloride from

Sigma, Germany.

Shock Construct
The shock box was a specially constructed wooden container with

a floor made of a metal grid. A central computer controlled the

current and tone emission making use of a program that was

specially developed for this study (N594 version 2.00, University of

Groningen, The Netherlands, 2002). All shock trials took place in

the mornings. Rats destined to undergo fear conditioning were

subjected to a shock (1.5 mA) that was paired with a tone (60 dB

tone) during conditioning trials (Fig. 1). This shock intensity was

based on a pilot study indicating that 1.0 and 1.5 mA shocks

induced comparable stress levels (corticosterone and behavior), but

that the latter shock intensity was superior in terms of variability of

all incurred stress parameters [60].

Fear conditioning paradigm
After arrival from the animal breeding facility, rats were allowed to

acclimatize for two to three days. They were then handled daily

for five days in order to eliminate handling stress as a confounding

variable. All drug injections only took place on the first two days of

the three-day conditioning paradigm, i.e. only during the actual

conditioning phase of the experiment. Injections were omitted on

the third day of conditioning testing to avoid unnecessary drug

interaction with behavioral measurements. Specifically, haloperi-

dol, clozapine and LY 379268 were administered half an hour

before ketamine injections in experiment 1 (see Fig. 1). Only

clozapine was used in experiment 2 and was injected at the same

time point as in experiment 1. Ketamine injections and saline

shams were administered half an hour before fear conditioning, as

previous observations in our lab showed that half an hour was

sufficient for ketamine-induced increases in locomotor activity to

subside [61].

The rats were subsequently placed individually in the shock box.

One trial consisted of a 1-minute period. We presented rats with a

tone during the first 15 seconds. In the next 15 seconds, the tone was

emitted in combination with a shock. Thirty seconds thereafter, the

process was repeated. This 1-minute trial was repeated 10 times per

day in succession, resulting in one session of 10 minutes (or 10 trials).

This protocol was repeated on day 2. Control rats followed the same

routine with tone emission, but without experiencing any shocks,

essentially following a timed tone protocol. On day 3, neither group

received shocks or injections; otherwise the animals follow the same

protocol. This was done to avoid measuring behavioral outputs due

to direct drug interference or pain stimuli.

Following this fear conditioning paradigm, behavior was

recorded (Philips Explorer Camcorder) for 5 minutes after the

test session (experiment 1) on the third day in order to determine if

a fear response was acquired in reaction to the whole stress

procedure (tone and context). Previous studies in our lab

(unpublished data) have shown that minimal extinction occurs

during the first 5 minutes after the last test session and that fear-

conditioned freezing behavior was still evident. In order to

adequately estimate the immediate effects of altered neurotrans-

mitter content (which degrades quickly) on behavior, freezing was

measured during, rather than after, the test session in experiment 2

and animals sacrificed 15 minutes thereafter.

Behavioral measurements
Behaviors were subsequently analyzed with The Observer (Noldus

version 3.0, The Netherlands). An independent observer, unaware

of experimental conditions, noted both the frequency and total

duration of freezing (experiments 1 and 2), grooming, rearing and

resting behavior (experiment 1). Freezing was denoted as an

absence of any movement (not sleeping), except for respiration and

whisker twitching. Rearing was defined as the raising of the body

onto the hind legs, while resting served as a default state when

none of the other behaviors were being displayed (i.e. normal

ambulatory behavior). Freezing behavior, as well as being a

behavioral expression of stress, is also the main assay of fear

conditioning [62],[63]. As this parameter gave the best results in

experiment 1, we eliminated all other behavioral measurements

from the design in experiment 2.

Design of Experiment 1
The rats (n = 48) were divided into seven groups as illustrated in

Fig. 2. At the top of the hierarchy, we had a fear conditioned (FC,

n = 6) group, a fear conditioned with ketamine administration

(FC+Ket, n = 6) group, a non-fear-conditioned (NFC, n = 12)

group, and a non-fear-conditioned group that received ketamine

(n = 6). An additional four groups receiving the FC+Ket treatment

also received antipsychotics; each group received either a

clozapine (FC+Ket+CLOZ; n = 6), haloperidol (FC+Ket+HALO;

n = 6), or LY 379268 (FC+Ket+LY; n = 6) injection, in addition to

ketamine and fear conditioning.

cFos expression: perfusion and preparation
One hour after the end of the test session (day 3), the rats were

perfused trans-cardially with 4% paraformaldehyde (Merck, Ger-

many) for 20 minutes. This time point was chosen so as to

incorporate all events happening in the brain during the tone signals

in the testing session on day 3 [64]. The brains were then removed

and placed into 4% paraformaldehyde, and kept at 6uC for two days.

Thereafter, they were transferred into 0.02 M potassium phosphate

buffered saline (PBS; pH 7.4) with 1% sodium azide (Boom, Meppel,

The Netherlands) to prevent bacterial growth and were stored at

6uC. In preparation for cFos staining, whole brains were dehydrated

in a 30% sucrose solution overnight and subsequently frozen with

gaseous CO2 at 280uC. The brains were cut using the Leica CM

3050 cryostat machine at 40 micrometers thin slices and stored at

6uC in 0.02 M PBS buffer (pH 7.4).

cFos staining: Immunocytochemistry
Coronal cryostat sections of 40 mm were collected in 0.01 M Tris

buffered saline (TBS, pH 7.4) and rinsed 3 times, 5 minutes per

rinse (365 min). After pre-incubation with 0.3% H2O2 (10 min, in

0.01 M TBS, pH 7.4), the sections were washed with 0.01 M TBS

(465 min, pH 7.4) and incubated with a rabbit polyclonal

antibody raised against cFos (Ab-5 Oncogene Research Products,

Calbiochem, 1:10.000 in 0.01 M TBS-Triton 0.01%, 4% normal

goat serum) for 48–60 hours at room temperature. Subsequently,

the sections were washed in 0.01 M TBS (865 min, pH 7.4) and

incubated for 2 hours at room temperature with biotinylated goat

anti-Rabbit IgG (Vector, 1:1000 in 0.01 M TBS). After rinsing

with 0.01 M TBS (665 min, pH 7.4), the immunoreactivity was

visualized with a standard ABC method (Vectastain ABC kit,

Vector, (1 drop A+1 drop B)/20 ml TBS for 2 hours). After

washing with TBS 0.01 M (665 min, pH 7.4) the peroxidase

reaction was developed with a di-aminobenzidine (DAB)-nickel

solution and 0.3% H2O2 (0.5 mg DAB/ml Distilled water; 1.0%

nickel ammonium sulphate (NAS)) in 0.1 M sodium acetate

(NaAc, pH 6.0). To stop the reaction, the sections were washed

with 0.1M NaAc, pH 6.0 (365minutes) and then 0.01 M TBS

(365 min, pH 7.4) and were subsequently mounted on gelatin-
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coated slides, air dried, dehydrated, and coverslipped with DePeX

(Gurr) (Boom, Meppel, The Netherlands).

The area of the region of interest was measured and, after

background correction, the number of immunopositive nuclei

was quantified using a computerized image analysis system (Leica

Qwin version 2.3, Leica Microsystems Imaging Solutions). The

average number of cFos immunoreactive cells was calculated and

expressed as number of positive nuclei or Counts/Area

(0.1 mm2). Areas included in the cFos analysis were: the

paraventricular nucleus (PVN), CEA, BLA (subdivided into

anterior and posterior nuclei) and lateral nucleus of the

amygdala, Nacc (core and shell), and ACC. The Swanson [65]

co-ordinates (rostral-caudal) are given in Table 1 as millimeters

from Bregma.

Figure 1. Injection and shock schedule. One trial consisted of a 30 second period. During the 30 seconds, a tone was emitted. Within the second
half (15 seconds) of this 30-second period, the shock was delivered. Thirty seconds following the trial served as a rest period. All trials took place in
the morning and were repeated consecutively ten times per day, resulting in one session lasting 10 minutes in total. Control rats followed the same
routine with tone emission, but without experiencing any shocks. On the third day, the same procedure was followed, but without administering
shocks. This was done to avoid measuring behavioral outputs due to direct drug interference or pain stimuli. Experiment 1: n = 48; experiment 2: n = 29
doi:10.1371/journal.pone.0001360.g001
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Statistics for Experiment 1
Due to the presence of occasional outliers, the behavioral data

were analyzed by one-way analysis of variance (ANOVA) on rank-

transformed data, which is equivalent to the Kruskal-Wallis test

[66]. When the overall F test of treatment group equality was

significant at the 5% level (p,0.05), planned comparisons among

treatment groups were made with the LSD (least significant

difference) pairwise comparisons method. When the overall F test

was not significant at the 5% level, planned comparisons were

made with the Bonferroni method [67].

An independent Student’s t-test was first applied to the cFos data

with regards to the FC and NFC groups to determine if there was an

effect of fear conditioning. This was done in order to determine

which brain areas were to be further analyzed for data collection and

which could be discarded. If a fear conditioning effect was found

(p,0.05), all groups were then counted in appropriate brain areas

revealed by the t-test and subsequently analyzed by means of a one-

way analysis of variance (ANOVA), followed by post-hoc LSD

pairwise comparisons. Logged equivalents were used in order to

eliminate skew distributions where necessary.

The set of planned comparisons were as follows: FC vs. NFC; FC

vs. FC+Ket; NFC vs. Ket; FC+Ket vs. FC+Ket+Cloz; FC+Ket vs.

FC+Ket+Halo; and FC+Ket vs. FC+Ket+LY. Statistical analyses

were performed with JMP Release 5.1.1 software or SPSS v.12.

Design of Experiment 2
The rats were divided into 5 groups: sham control (NFC), fear

conditioned (FC), FC+ketamine (Ket), FC+clozapine (Cloz) and

FC+Ket+Cloz. Clozapine was obtained from Sandoz Pharma AG,

Switzerland and ketamine hydrochloride from Sigma, Germany.

Tissue collection and punching technique
Fifteen minutes after the test session (day 3), rats were

anaesthetized with 5% isoflurane and decapitated; brains were

quickly removed and frozen in 280uC. Serial 300 mm coronal

sections were made with a cryostat microtome (215uC) and frozen

on dry ice. We identified several fear processing regions

[37],[68],[16],[50]. Tissue samples were therefore dissected from

the ACC, Nacc, PVN, CEA and BLA, dentate gyrus (DG), dorsal

raphe (DR) and locus coeruleus (LC; Fig. 5). The Swanson [65]

co-ordinates are given in Table 1.

Dissections were made using a needle punch technique on frozen

coronal sections. Three different needle diameters were used in

accordance with the size of the area to be punched. Larger areas,

such as the ACC, Nacc, PVN and DR, were punched with a 16G

needle (1.6640 mm; Sterican, B.Braun, Germany; one

punch<0.23 mm2), while the DG, LC (18G: 1.2638 mm; Sterican,

B.Braun, Germany; one punch<0.19 mm2) and the amygdala

Figure 2. Experimental group divisions. Diagram portraying the rat group divisions. At the top of the hierarchy, we divided rats into two main
groups: those receiving fear conditioning, and those not. Those animals receiving fear conditioning, were then further divided into rats receiving
ketamine administration and rats receiving saline shams. The latter group would form the fear conditioning only group (FC). The rats not receiving
fear conditioning were also divided into two groups depending on whether they would receive a ketamine or saline injection; the former group
making up the ketamine only group (Ket), and the latter being the control group (NFC). The remaining fear conditioned rats also receiving ketamine
were then further divided into those receiving either a saline injection (FC+Ket) or those receiving an additional antipsychotic injection consisting of
clozapine (FC+Ket+CLOZ), haloperidol (FC+Ket+HALO), or LY 379268 (FC+Ket+LY). CLOZ, clozapine; FC, Fear conditioning; HALO, haloperidol; KET,
ketamine; LY, LY379268; NFC, no fear conditioning; SAL, saline.
doi:10.1371/journal.pone.0001360.g002
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nuclei (20G: 0.9640 mm; Sterican, B.Braun, Germany; one

punch<0.08 mm2) were punched with smaller diameter needles.

Approximately two punches were taken per hemisphere, per animal.

Tissue was homogenized in 100 ml (0.1 M) perchloric acid and then

the suspension was centrifuged (13,500 rpm) for 10 minutes. The

supernatant was stored at 280uC until further analysis.

Dopamine and glutamate analysis
Analysis of dopamine and its metabolite dopac, was performed by

a Shimadzu LC-10 AD high performance liquid chromatograph

equipped with a 15-cm reversed phase column (supelcosil 3 mm,

C18, 15064.60 mm, Bester, Amstelveen, The Netherlands) and

an electrochemical detector (ESA, Chelmsford, MA, USA) at a

potential setting of 300 mV. The mobile phase consisted of 10%

methanol, 4.2 g sodium acetate/l, 150 mg octane sulphonic acid/l

adjusted to pH 4.10. The injection volume was 20 ml and the flow

rate 1 ml/min.

Analysis of glutamate was performed after derivatization with

ortho-phtaldehyde by a Shimadzu LC-10 AD high performance

liquid chromatograph equipped with a 15-cm reversed phase

column (supelcosil 3 mm, C18, 15064.60 mm, Bester, Amstelv-

een, The Netherlands) and a fluorescence detector (Waters 470,

fluorescence detection, Waters, Milford, Massachusetts, USA) with

extinction and emission wavelengths set at 350 nm and 450 nm,

respectively. The mobile phase consisted of 26% methanol, 10 g/l

disodiumhydrogenphosphate (Na2HPO4), 150 mg/l EDTA,

2.19 ml/l tetrahydrofuran and adjusted to pH 5.27. The injection

volume was 20 ml and the flow rate 1ml/min.

Statistics for Experiment 2
The overall group effect was assessed via one-way analysis of

variance (glutamate, dopamine) or the Kruskall-Wallis test for

non-parametric data (dopac, behavior) using SPSS (Version 12).

Parametric vs. non-parametric tests were chosen on the basis of

normal distribution curves. When the overall F test of treatment

group equality was significant at the 5% level (p,0.05), planned

LSD pairwise comparisons were made among treatment groups

(glutamate, dopamine) and Mann-Whitney U test (dopac,

behavior) with significance determined at the p,0.05 level.

RESULTS

Behavioral data from Experiment 1
The total duration and frequency of behaviors 5 minutes after the

test session were analyzed, and are represented in Fig. 3

(Experiment 1). The behaviors of 3 rats in the control group were

not included due to technical difficulties with the video recording.

The one-way ANOVA revealed significant overall differences for

the following behaviors: resting duration (F6, 38 = 3.32; p = 0.0099)

and frequency (F6, 38 = 15.23; p,0.0001), freezing duration (F6,

38 = 6.51; p,0.0001) and frequency (F6, 38 = 20.42; p,0.0001),

and rearing duration (F6, 38 = 6.79; p,0.0001) and frequency (F6,

38 = 5.35; p = 0.0004).

The LSD pairwise comparisons post hoc showed fear-

conditioning effects in most of the behaviors investigated (FC vs.

NFC). These include a decrease in resting duration (p = 0.0064;

Fig. 3A), and increases in rearing duration (p = 0.0262; Fig. 3A)

and resting frequency (p,0.0001; Fig. 3B). More importantly,

increases in freezing duration (p = 0.0001; Fig. 3A, C) and

frequency (p,0.0001; Fig. 3B, D) were noted.

Ketamine alone did not influence any of the behaviors

measured (data not shown). It augmented the effect of fear

conditioning with respect to rearing duration (p = 0.0023). In

agreement with our hypothesis, however, ketamine blocked the

effects of fear conditioning with respect to both freezing duration

(p = 0.0213; Fig. 3C) and frequency (p = 0.0002; Fig. 3D).

Comparing the effect of antipsychotics on rats undergoing fear

conditioning with ketamine administration (FC+Ket vs.

FC+Ket+Cloz/Halo/LY), we find significant differences with

respect to rearing duration. Decreases in rearing duration were

noted due to clozapine (p = 0.0123) and haloperidol (p = 0.0043)

administration, both blocking the effect of ketamine (data not

shown). While antipsychotics did not inhibit the effect of ketamine

on fear conditioning with respect to freezing duration (Fig. 3C),

haloperidol (p = 0.0040) and LY 379268 (p = 0.0026), but not

clozapine (p = 0.1033), did block the effect of ketamine with

respect to freezing frequency (Fig. 3D).

cFos data from Experiment 1
Results of the cFos data are represented in Fig. 4, with typical

examples of cFos stainings and the delineations of the areas

represented in Fig. 5. An independent Student’s t-test revealed

fear-conditioning effects in the ACC (p = 0.016), Nacc shell

(p = 0.001), and the PVN (p,0.0001). No fear conditioning effects

were noted in the Nacc core (p = 0.649) and therefore this area was

not included for further analyses. With regards to the amygdala,

significant fear conditioning effects were found in the anterior

portion of the BLA (p = 0.008) and lateral amygdala (p = 0.008), with

no effects of fear conditioning in the (medial) central amygdala

(p = 0.654) or the posterior portion of the BLA (p = 0.483). The latter

two areas were therefore not included in further analyses. The one-

way ANOVA revealed significant overall F-tests performed on the

remaining groups for the following brain areas: ACC (F6, 39 = 5.96;

p,0.001), Nacc shell (F6, 40 = 8.96; p,0.001), PVN (F6, 40 = 25.89;

p,0.001), anterior BLA (F6, 39 = 9.49; p,0.001) and lateral

amygdala (F6, 39 = 11.68; p,0.001).

The LSD pairwise comparisons post hoc showed increases in

cFos expression due to fear conditioning (NFC vs. FC) in all

remaining brain areas: ACC (p = 0.003; Fig. 4A), Nacc shell

Table 1. Brain areas: Swanson (1992) rostral-caudal stereotaxic
co-ordinates

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

EXPERIMENT 1

Area mm from Bregma

Anterior cingulate +2.80 to 2.15

Anterior basolateral nucleus amygdala 22.45 to 22.85

Central nucleus amygdala 22.45 to 22.85

Lateral nucleus amygdala 22.45 to 22.85

Nucleus accumbens: core and shell +2.80 to 0.45

Paraventricular nucleus 21.53 to +2.00

Posterior basolateral nucleus amygdala 22.45 to 22.85

EXPERIMENT 2

Anterior cingulate +2.80 to 2.15

Basolateral nucleus amygdala 22.45 to 22.85

Central nucleus amygdala 22.45 to 22.85

Dentate gyrus 22.45 to 22.85

Dorsal raphe 27.10 to 28.60

Locus coeruleus 29.60 to 210.10

Nucleus accumbens +2.80 to 0.45

Paraventricular nucleus 21.53 to +2.00

doi:10.1371/journal.pone.0001360.t001..
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Figure 3. Behavioral data. Experiment 1 (behavior measured after test session): Bars represent means6SEM. Fear conditioning affects almost all of
the behaviors including a decrease in resting duration (p = 0.0064; A), and increases in rearing duration (p = 0.0262; A), resting frequency (p,0.0001;
B), and freezing duration (p = 0.0001; A) and frequency (p,0.0001; B). As hypothesized, ketamine blocked the effect of fear conditioning (FC vs.
FC+Ket), reducing freezing duration (p = 0.0213; C) and frequency (p = 0.0002; d). Haloperidol (p = 0.0040) and LY 379268 (p = 0.0026) were able to
partially inhibit this blockade (FC+Ket+Halo/LY vs. FC+Ket), but only in terms of freezing frequency (D). Experiment 2 (behavior measured during test
trial): Fear conditioning increased (E) total freezing duration and (f) freezing frequency as compared to the NFC group. Ketamine blocked this effect
(FC vs. FC+Ket) in terms of the total duration and freezing frequency. Clozapine alone (FC vs. FC+Cloz) reduced (F) freezing frequency. The
FC+Ket+Cloz group was also not statistically different from the FC+Ket group in terms of freezing behavior. Cloz, clozapine; FC, Fear conditioning; Halo,
Haloperidol; Ket, Ketamine; LY, LY 379268; NFC, no fear conditioning.
doi:10.1371/journal.pone.0001360.g003
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(p,0.0001; Fig. 4B), and PVN (p,0.0001; Fig. 4C). More

importantly, increases due to fear conditioning were noted in the

anterior portion of the BLA (p = 0.002; Fig. 4D) and lateral

amygdala (p,0.0001; Fig. 4E).

Ketamine led to the hypothesized blocking of cFos expression due

to fear conditioning (FC vs. FC+Ket) in all the brain areas

investigated, i.e. the ACC (p,0.0001), Nacc shell (p = 0.002), PVN

(p,0.0001), anterior BLA (p = 0.001) and lateral amygdala

Figure 4. cFos expression. Fear conditioning (FC) increased cFos expression as compared to the NFC group in the anterior cingulate (p = 0.003; A),
nucleus accumbens shell (p,0.0001; B), and paraventricular nucleus (p,0.0001; C), anterior basolateral amygdala (p = 0.002; D) and lateral amygdala
(p,0.0001; E). Ketamine blocked the effect of fear conditioning (FC vs. FC+Ket) in the anterior cingulate (p,0.0001; A), nucleus accumbens shell
(p = 0.002; B), paraventricular nucleus (p,0.0001; C), anterior basolateral amygdala (p = 0.001) and lateral amygdala (p = 0.004). As hypothesized,
clozapine was able to counteract the blockade of ketamine on fear conditioning (FC+Ket vs. FC+Ket+Cloz) in the anterior cingulate (p,0.0001),
nucleus accumbens shell (p = 0.001), paraventricular nucleus (p = 0.001), anterior basolateral amygdala (p,0.0001) and lateral amygdala (p,0.0001).
A slight restoration by haloperidol was noted in the anterior cingulate (p = 0.042). Cloz, clozapine; FC, fear conditioning; Halo, haloperidol; Ket,
Ketamine; LY, LY 379278; NFC, no fear conditioning.
doi:10.1371/journal.pone.0001360.g004
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(p = 0.004). Decreases of cFos expression due to ketamine alone

(without fear conditioning; data not shown) were also noted in most

areas except the ACC (p = 0.087) and Nacc shell (p = 0.09), i.e. PVN

(p = 0.047), anterior BLA (p = 0.003) and lateral amygdala (p = 0.01).

It was also hypothesized that clozapine, and not haloperidol or

LY 379268 would block the effect of ketamine on fear

conditioning (FC+Ket) with regards to cFos expression. These

hypotheses were supported by the data, which showed normal fear

conditioning effects on cFos expression with clozapine adminis-

tration. Significant differences between groups due to clozapine

administration (FC+Ket vs. FC+Ket+Cloz) were noted in the

ACC (p,0.0001), Nacc shell (p = 0.001), PVN (p = 0.001),

anterior BLA (p,0.0001) and lateral amygdala (p,0.0001).

Haloperidol did show some effect in the ACC, although not as

significant as clozapine (p = 0.042). No other effects of haloperidol

or LY 379268 drugs were found in any of the other areas

investigated.

Behavioral data from Experiment 2
The Kruskall-Wallis test revealed an overall group effect for the total

duration of freezing behavior (x2
4, 24 = 23.84; p,0.0001; Fig. 3E)

and frequency of freezing behavior (x2
4, 24 = 17.35; p = 0.002;

Fig. 3F). Mann-Whitney U post hoc tests showed a significant

increase in total duration spent freezing (p = 0.004) and an increase

in frequency of freezing (p = 0.004) in the fear conditioned (FC)

group relative to the non fear-conditioned group (NFC).

Ketamine significantly blocked the effects of fear conditioning

with respect to total duration (p = 0.002) and frequency of freezing

behavior (p = 0.004). Clozapine, however, was not able to reinstate

fear conditioning levels for either measure of freezing behavior

(duration: p = 0.240; frequency: p = 0.310). Clozapine alone

decreased freezing frequency (p = 0.009) but not total freezing

duration.

Glutamate data from Experiment 2
Overall group effects were noted in all areas: ACC (F4, 48 = 6.46;

p,0.0001), Nacc (F4, 49 = 9.29; p,0.0001), PVN (F4, 22 = 6.29;

p = 0.002), CEA (F4, 43 = 20.91; p,0.0001), BLA (F4, 48 = 8.91;

p,0.0001), DG (F4, 49 = 18.20; p,0.0001), DR (F4, 23 = 94.85;

p = 0.006), and LC (F4, 48 = 14.45; p,0.0001).

LSD pairwise comparisons (data not shown) revealed increased

glutamate content in the FC vs. NFC group in all areas except the

ACC (p = 0.099) i.e. Nacc (p,0.0001), PVN (p = 0.012), DG

(p,0.0001), DR (p = 0.003), and LC (p,0.0001). Highly signif-

icant increases in glutamate were noted in the CEA (p,0.0001)

and BLA (p,0.0001; Fig. 6A). Ketamine significantly reduced this

effect in these two areas, the CEA (p,0.0001) and the BLA

(p = 0.041), in addition to the LC (p = 0.008).

Clozapine prevented the effects of ketamine in the BLA

(p = 0.001; Fig. 6A) and LC (p = 0.017). Partial prevention was

seen in the CEA (p = 0.088; Fig. 6A). A similar (non-significant)

pattern is noted in the PVN and DR. Interestingly, clozapine alone

(FC+Cloz), like ketamine, also blocked the increase in tissue

glutamate in the central amygdala (p,0.0001; Fig. 6A), and locus

coeruleus (p = 0.007; data not shown) associated with fear

conditioning.

Figure 5. cFos immunocytochemical labeling. Typical examples of the brain areas stained for cFos expression, visually showing the effects of some
of the treatments. Delineated areas depict areas measured. Brain slice levels were taken from the Swanson rat brain atlas [65], with appropriate co-
ordinates listed in Table 1. CLOZ, clozapine; FC, Fear conditioning; KET, ketamine; NFC, no fear conditioning.
doi:10.1371/journal.pone.0001360.g005
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Figure 6. Neurotransmitter content. Bars represent means6SEM. The FC group showed increased glutamate levels (A) in the central and basolateral
amygdala, as compared to the NFC group. Ketamine also significantly inhibited this effect in both amygdala nuclei, as revealed by the comparison
between FC+Ket and FC groups. Clozapine, in turn, blocked the actions of ketamine on glutamate levels (FC+Ket versus FC+Ket+Cloz) in the central
amygdala nucleus, with full restoration of normal fear conditioned-induced glutamate levels in the basolateral amygdala. Clozapine alone (FC+Cloz vs. FC)
decreased glutamate levels in the central amygdala. In terms of dopamine content, there were no differences between the FC and NFC groups in either
amygdala nuclei (B). A decrease in dopamine content was, however, noted in the nucleus accumbens (C). Ketamine abolished this fear conditioning
response, and clozapine partially counteracted the effect of ketamine in the nucleus accumbens. Clozapine alone (no ketamine) also showed effects
(FC+Cloz), and increased dopamine content in the nucleus accumbens as compared to the FC group. Ketamine in combination with clozapine
(FC+Ket+Cloz; or alone (FC+Ket) increased dopamine levels in the central amygdala (B) as compared to the FC only group. Bla, basolateral amygdala
nucleus; cea, central amygdala nucleus; Cloz, clozapine; FC, fear conditioning; Ket, ketamine; nacc, nucleus accumbens; NFC, no fear conditioning.
doi:10.1371/journal.pone.0001360.g006
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Dopamine data from Experiment 2
Overall group analysis shows significant changes of dopamine

content in the ACC (F4, 40 = 4.18; p = 0.006), Nacc (F4, 32 = 15.33;

p,0.0001), PVN (F4, 17 = 3.15; p = 0.041), CEA (F4, 36 = 7.09;

p,0.0001), DG (F4, 17 = 5.92; p = 0.004), DR (F4, 18 = 3.82;

p = 0.02) and LC (F4, 41 = 5.79; p = 0.001). No significance

differences were noted in the BLA in terms of dopamine content

(F4, 40 = 7.63; p = 0.556).

Fear conditioning induced a decrease in dopamine content in

the Nacc (p = 0.005; Fig. 6C) and an increase in the LC

(p = 0.006). A trend towards increased dopamine content in the

ACC (p = 0.056) is also noted. Ketamine was also able to abolish

this fear conditioning (FC+Ket vs. FC groups) response in the

Nacc (p,0.0001; Fig. 6C), while showing a trend at augmenting

the response of fear conditioning in the ACC (p = 0.053) and LC

(p = 0.103). As hypothesized, clozapine partially (b/c FC+K+Cloz

in Nacc is still significantly different than FC alone) counteracted

the effect of ketamine in these areas: ACC (p = 0.044), Nacc

(p = 0.011), and LC (p = 0.008). Ketamine (p = 0.002) increased

dopamine content in the CEA (Fig. 6B). Clozapine alone also

showed effects (FC+Cloz), increasing dopamine content in the

Nacc (p,0.0001; Fig. 6C) and PVN (p = 0.049) as compared to

the FC group. Not enough data was available to perform post hoc

tests on the DG.

Dopac/Dopamine ratios from Experiment 2
The Kruskall-Wallis test showed overall group significances in the

ACC (x2 (4, 40) = 14.53; p = 0.006), Nacc (x2 (4, 30) = 22.20;

p,0.0001) and CEA (x2 (4, 35) = 17.01; p = 0.002). The Mann-

Whitney U test revealed an increase in turnover in the Nacc

(p = 0.005) due to fear conditioning (Table 2). Ketamine also

decreased turnover in the Nacc (p = 0.001) and the CEA

(p = 0.008). Clozapine failed to prevent this deficit in both areas

(Nacc: p = 0.518; CEA: p = 315).

DISCUSSION

Summary of results
The main aim of this study was to investigate whether fear

conditioning was disrupted in rats following ketamine administra-

tion. We hypothesized that ketamine administration induces a

hypoglutamatergic state which models negative symptoms (deficits

in emotional processing) seen in schizophrenia. Aleman and Kahn

[24] proposed that prolonged activation of the amygdala, during

psychotic states in the onset stages of schizophrenia, could lead to

glutamate excitotoxicity. This would eventually result in amygdala

lesions and long-term glutamate hypofunctioning (see also [6]),

thereby disrupting a primary brain area in the fear circuit. By

administering the NMDA receptor antagonist ketamine, we

therefore attempted to simulate disrupted fear processing at a

neurochemical level.

We found that fear conditioning alone led to increases in 1) fear-

conditioned freezing behavior, 2) cFos expression in the ACC,

Nacc shell, PVN, and the anterior BLA and LA nuclei, and 3)

increased glutamate tissue content in some brain regions

measured, including the amygdala nuclei. Dopamine content

was not affected by fear conditioning in most of the brain areas

analyzed, with the exception of an increase in the LC and a

decrease in the Nacc. In addition, the Nacc showed an increase in

dopamine turnover (Table 2).

Ketamine successfully disrupted fear conditioning, both behav-

iorally and in the measured neural correlates of fear conditioning.

Indeed, freezing behavior was decreased almost to control levels.

This behavioral abolishment of fear conditioning was also reflected

in the ACC, Nacc shell, PVN, anterior BLA and the LA, in terms

of reduced cFos expression. Glutamate tissue content was also

attenuated down to control (no fear conditioning) levels in the

amygdala nuclei, although this was not found to be the case for the

ACC. Dopamine content was increased by ketamine administra-

tion in the CEA and the Nacc.

We also administered both an atypical and a typical

antipsychotic, in addition to a metabotropic glutamate 2/3-

receptor (mGlu2/3) agonist, LY 379268. As an atypical antipsy-

chotic, clozapine is considered to be useful in ameliorating

negative symptoms, whereas the typical antipsychotic, haloperidol,

mostly reverses positive symptoms. Other animal studies have

indicated that clozapine is successful in blocking metabolic effects

induced by ketamine [49], consistent with its action on NMDA

receptors. In the same experiment, haloperidol (a preferential

dopamine D2 receptor antagonist) was not able to block the effects

of ketamine. We therefore hypothesized that clozapine would be

capable of reversing the effects of ketamine, whereas haloperidol

would not. We also tentatively postulated that LY 379268 would

prevent ketamine’s actions, particularly in forebrain areas.

We found that clozapine administration entirely prevented cFos

expression due to subsequent ketamine administration (to fear

conditioning levels) in key brain areas regulating fear processing.

This included the ACC, Nacc, PVN, anterior BLA and lateral

amygdala. With the exception of the ACC, no preventative effects

were noted with either haloperidol or LY 379268. Glutamate

tissue content levels were also conserved with clozapine admin-

istration in the LC and BLA. Dopamine content was also brought

closer to fear conditioning levels in the LC and Nacc.

Interestingly, clozapine without ketamine administration

(FC+Cloz) had an effect similar to ketamine (FC+Ket), in terms

of glutamate content. Glutamate levels induced by fear condition-

Table 2. The dopac/dopamine metabolic ratios
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Brain areas Control FC FC+Cloz FC+Ket FC+Ket+Cloz

Median Range Median Range Median Range Median Range Median Range

ACC 1.35 2.19 0.79 49.95 0.93 1.79 0.64 0.51 0.82* 2.98

Nacc 0.19 0.16 0.45# 29.08 0.18& 0.04 0.20& 0.05 0.21& 0.14

CEA 0.20 0.17 0.19 13.28 0.20 0.35 0.09& 0.05 0.11+ 0.10

*p,0.01 from FC+Ket
#p,0.01 from control
&p,0.01 from FC
+p = 0.056 from FC
ACC = anterior cingulate, CEA = central amygdala nucleus, Cloz = clozapine, FC = fear conditioned, Ket = ketamine, Nacc = nucleus accumbens
doi:10.1371/journal.pone.0001360.t002..
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ing were significantly suppressed by clozapine in the central

amygdala (Fig. 6A) and locus coeruleus (data not shown), with a

trend in the basolateral amygdala (Fig. 6A). These results are

consistent with findings showing that clozapine directly suppresses

the glutamate system—suggestive of an anxiolytic effect

[69],[70]—and that clozapine is the most potent of the

antipsychotic agents in blocking NMDA receptor antagonist-

induced neurotoxicity [71],[72]. Given the similar neurochemical

effects of ketamine and clozapine, and given that ketamine alone

had a powerful effect on freezing behavior, it seems puzzling that

clozapine did not also have a potent effect on behavior. It is also

puzzling to consider why the neurochemical effects of ketamine

and clozapine administration do not predict their joint effects

when administered together. Since ketamine and clozapine both

decrease glutamate levels, we might expect that ketamine and

clozapine together should produce even further decreases in

glutamate levels. Yet in the basolateral amygdala and the locus

coeruleus, ketamine and clozapine administered together led

to relatively increased glutamate levels, comparable to the FC

group. As clozapine affects several neurotransmitter systems

[49],[73],[74], including glutamate, its reversal of ketamine’s

effect on glutamate could be due to its influence on other

neurotransmitters in other brain regions.

Taken together, clozapine appears to block the disruption of

fear processing by ketamine in several key brain areas. This effect

was not, however, reflected in the behavioral data; we found little

evidence to support the idea that clozapine maintains normal

freezing behavior following ketamine administration. In order to

reconcile the neural and behavioral data, we propose a

neurochemically-based conceptual model below.

Conceptual model
We adapt the model of Aleman and Kahn [24] and Reynolds [75]

to the current context in four key ways. First, we propose that

glutamate-mediated fear conditioning in the BLA drives freezing

behavior through the output nuclei of the CEA [76–78],[16].

Second, we hypothesize that dopamine-modulated c-aminobutyric

acid (GABA) inhibition in the CEA modifies the outputs of the

BLA [79]. Third, we interpret ketamine administration in terms of

a glutamate-mediated deficit in fear conditioning in the BLA [80–

82],[50]. Lastly, we propose that decreased dopamine turnover in

the CEA due to ketamine administration leads to increased GABA

inhibition of the BLA’s outputs in the CEA, leading to decreased

freezing behavior (see Fig. 7). The model can explain the major

features of our data as follows.

Fear conditioning
Glutamate content is increased in both amygdala nuclei as a result

of fear conditioning (Fig. 6A), but dopamine content is not affected

in either (Fig. 6B). As a result, output signals (glutamate) inducing

freezing behavior from the BLA via the CEA remain strong, as

dopamine inhibition of GABA interneurons remains intact. In

terms of cFos expression, fear conditioning elevates expression in

Figure 7. Conceptual model. A schematic drawing of our conceptual model depicting interactions between dopamine and glutamate in the
amygdala nuclei. The interactions between other brain areas studied and the amygdala conceptual model are also indicated. Dashed lines symbolize
inhibition, while solid lines represent stimulation. Lines between brain areas represent functional connectivity between the regions. Fear stimuli are
processed first by the basolateral amygdala (BLA), activating the glutamate system in this area, but do not affect dopamine levels in either the BLA or
central amygdala (CEA). Output signals inducing freezing behavior from the CEA are therefore strong via the glutamate pathway. Ketamine decreases
glutamate-related fear processing in the BLA and CEA and simultaneously elevates dopamine content (storage) in the CEA, by blocking dopamine
release via the dopamine D2 autoreceptor located on the cell body (possibly the VTA). The decreased dopamine release (together with the block of
glutamate transmission from the BLA to the CEA) blocks the fear-related outputs by means of increased GABA inhibition via intercalated cells
projecting onto the CEA. The net effect is weak output signals from the CEA and diminished freezing behavior. Clozapine, while blocking the effects
of ketamine on glutamate-related processing in the BLA and CEA, does nothing to prevent changes in dopamine levels. GABA-ergic intercalated cells
therefore continue to inhibit CEA and/or BLA and normal fear-conditioned behavior cannot be retained. Can chronic clozapine treatment renormalize
dopamine levels and lead to long-term remediation of negative symptoms in the animal model? ACC, anterior cingulate; DA, dopamine; LC, locus
coeruleus; Nacc, nucleus accumbens; PVN, paraventricular nucleus; VTA, ventral tegmental area
doi:10.1371/journal.pone.0001360.g007
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the BLA, but not the CEA. Interestingly, a study by Kleim et al.

[83] shows that cFos activity is directly related to learning of a skill,

and not only to the execution or maintenance of motor behavior.

This could indicate that the BLA is more concerned with

processing and storage of fearful memories, while the CEA is

mainly an output nucleus [76],[15],[77],[84],[31],[85].

Ketamine
It has been reported that ketamine administration, in addition to

acting on the glutamate system, also acts on the dopamine system,

perhaps through direct stimulation of the dopamine D2 receptor

[86]. The dopamine metabolic ratios in our study (Table 2)

indicate that the increase in dopamine content in the CEA after

ketamine administration is due to a decrease in turnover

(indicative of decreased release and a subsequent increase in

storage of the neurotransmitter in axon terminals). That is, less

dopamine is acting on the CEA and more is being stored axonally.

Ketamine also suppresses glutamate-related fear processing in the

BLA and CEA (Fig. 6A), in addition to simultaneously decreasing

dopamine turnover in the CEA. We therefore propose that this

decreased dopamine release liberates a tonic inhibition by GABA-

ergic neurons in the intercalated cells, leading to increased inhibition

of the glutamate signals from the BLA to the CEA. The net effect

is weak output signals from the CEA and consequently diminished

freezing behavior.

In agreement with this, Marowsky et al. [87] show that

dopamine D1 receptor (post-synaptic) activation disinhibits the

amygdala by inhibiting GABA-ergic mechanisms within the

intercalated cells. Interestingly, systemic application of dopamine

D1 agonists has been shown to retard or even reverse fear

extinction [88], whereas D1 antagonists block either the acquisi-

tion and/or expression of fear [89],[90]. Decreased dopamine

release through ketamine’s effects on the dopamine D2 auto-

receptor in our study may therefore re-activate the inhibitory

control of the intercalated cells on the CEA, resulting in behavioral

blockade (Fig. 7).

Antipsychotics
We hypothesized that clozapine but not haloperidol would

preserve normal fear-conditioned behavior by blocking the effects

of ketamine. We did not find evidence to support this notion. We

did, however, find that clozapine prevented the effect of ketamine

much more potently than haloperidol and LY 379268 in terms of

cFos expression in several brain areas (Fig. 4) and also that it

prevents decreased glutamate levels, in the BLA (Fig. 6A) and LC.

These observations would appear to predict normal freezing

behavior. In terms of the conceptual model, we suggest that

normal freezing behavior was not retained because clozapine did

not affect the dopamine (and glutamate) levels in the CEA that are

observed following ketamine administration. Dopamine turnover

and hence pre-synaptic release thereby remained low, leaving the

GABA-ergic inhibition of the CEA intact. This unchecked

inhibition of the pathway from the BLA to the CEA thus explains

why normal freezing behavior was not observed.

Predictions
What strategies could be used to restore normal fearful behavior? As

mentioned previously, ketamine acts primarily as an agonist at the

dopamine D2 autoreceptor, thereby inhibiting the release of

dopamine. We therefore propose two methods to counteract

ketamine’s effect on fear conditioning: 1) by using a selective

dopamine D2 antagonist to block ketamine’s actions on the

dopamine D2 autoreceptor or 2) by administering a selective

dopamine D1 agonist, which directly inhibits GABA-ergic function.

We chose to validate our animal model with clozapine and

haloperidol, as they are used in the clinical setting. Because

clozapine and haloperidol both act as antagonists at dopamine D2

receptors [91], we might suppose that they would block the effect

of ketamine on dopamine transmission at this receptor, and preserve

normal fear-conditioned behavior. However, both haloperidol and

clozapine also have affinities for the dopamine D1 receptor [91] and

subsequently block the dopamine that might eventually be released

as a result of D2 autoreceptor blockade, leaving any behavioral

blockade via the GABA-ergic cells in place. This could be one

explanation why even clozapine is not particularly effective in

treating negative symptoms of schizophrenia [92].

We also tentatively postulated the LY 379268 would prevent

ketamine’s actions, especially in forebrain areas. However, only a

small preventative effect was noted in freezing behavior, without

any significant changes in cFos expression in forebrain areas.

Comparable results were observed in a similar study in our lab

[61], where LY 379268 was unable to block ketamine-induced

deficits in pre-pulse inhibition. The authors attributed this

phenomenon to LY 379268’s failure to alter monoamine

neurotransmitter content, which could explain the lack of effect

on ketamine’s inhibition of cFos expression and behavior here.

Main conclusions regarding original hypotheses
In the Introduction, several hypotheses were outlined with regards

to our model of emotional blunting in schizophrenia. Most of the

hypotheses were confirmed, except with respect to LY 379268’s

possible prevention of ketamine effects, and more critically, the

potentially restorative effects of clozapine on fearful behavior. We

constructed a conceptual model to explain why clozapine did not

preserve normal freezing behavior, even though neural correlates

of fear conditioning indicated a positive outcome. We also

described improvements that may extend the model and allow

for full behavioral restoration. Taken together, the current study

supports the notion that glutamatergic hypofunctioning in the

amygdala and related brain areas underlies deficits in the

processing of fear, and could have implications for the mechanisms

underlying emotional blunting in schizophrenia. The present study

might therefore pave the way for future studies to explore novel

drug treatments of these notoriously drug-resistant symptoms, such

as selective dopamine D2 antagonists or selective D1 agonists

combined with clozapine.
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