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Although the kinetics of viral replication have been carefully worked out for 
other systems, such as the Escherichia coli phage-host system (1-3), until recent 
years little attention has been devoted to similar studies in hemolytic strep- 
tococci and their bacteriophages. This relative lark of knowledge concerning 
streptococcal viral-host relationships can perhaps be traced not only to the 
complex growth requirements of the hemolytic streptococci but  also to the need 
of special media for good plaque formation (4, 5). 

The early reports of Kjems (6, 7) concentrated primarily on devising reproducible 
methods for the isolation of virulent and temperate bacteriophages in Group A 
streptococci. Selecting a virulent mutant of a temperate Group A bacteriophage 
(AI2) he also performed one-step growth curve experiments obtaining a latent period 
of 65 rain and an average burst size of 32 virus particles for this particulax phage-host 
system. Of interest was his observation that a secondary release of viral particles 
occurred approximately 40 rain following the initial burst, and Kjems suggested that 
this secondary release might be related to infection of other cocci ha the streptococcal 
chain (8). More recently Friend and Slade (5), using a more defined medium, have 
reported essentially similar results for the latent periods of two other Group A strepto- 
coccal bacteriophages, A25 and A6. With respect to burst size, A25 bacteriophage 
consistently produced 32 virus particles, wM1e the A6 bacteriophage varied from 30-70 
plaque-forming units (PFU). Friend and Slade also noted a secondary burst d virus 
particles but demonstrated that this secondary release was abolished if the strepto- 
coccal chain was sonically disrupted into individual streptococcal cells prior to viral 
infection. 

These reports have concentrated on viral replication in a few Group A bacteri- 
ophages, and no attempt has been made to study the viral events in a number of 
bacteriophages propagating ha other streptococcal groups. In addition, the reports 
of Kjems and Friend and Slade were based on viral-host interactions in a strepto- 
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coccal culture and did not accurately reflect viral replication in a singly infected 
coccus. Therefore the growth cycles of a number of Group A and Group C bacteri- 
ophages were reexamined, utilizing methods designed to maximize the probability 
that a single coccus in a given streptococcal chain would be infected by one phage 
particle. 

The  following repor t  demonstra tes  tha t  definite differences exist in the burs t  
size and first intracellular  appearance of Group A and Group C bacteriophages.  
Fur thermore ,  var ia t ions in the  t ime of the  first extracellular appearance of 
these bacter iophages were also apparent ,  and,  in general, the t ime needed for 
viral  replication of Group C bacter iophages was shorter  than  tha t  observed 
with Group A bacteriophages.  Dur ing  these studies i t  was noted tha t  in addi-  
t ion to their  viral  inact iva t ing  effect, mercuric ions also had  the abi l i ty  to block 
intracel lular  viral  replicat ion a t  various points  in the ma tu ra t ion  cycle. The  
interrupt ion of intracellular  replication and ma tu ra t ion  b y  mercuric ions 
and i ts  reversal by  reduced glutathione were used to s tudy  isolated events 
in streptococcal  bacter iophage replication. 

Materials and Methods 

Bacterial Strains.--Streptococcal strains, 26RP66, T25s, A590, and T12 used in this study 
were from The Rockefeller University collection. The Group C streptococcal strain C88 was 
kindly obtained from Dr. Eugene Fox. 

Bacteviopkages.--A25, A12, A6, and C1 phages were supplied by Dr. Richard M. Kranse. 
qSY and C343 bacteriophages were obtained from Dr. Eugene Fox. Stock phage lysates were 
prepared with the following propagating strains: strain T258 (A25 phage), strain T12 (/%12 
phage) and strain A590 (A6 phage), strain 26RP66 (C1 phage) and strain C88 (~¥ and 343 
phages). All lysates were filtered through a Coors No. 2 candle filter and stored at 4°C until 
USe. 

Media.--Todd-Hewitt broth, a beef heart infusion medium, was prepared as described (9). 
This medium was used for the Group C streptococcal phage-host experiments. Dialysate 
medium was prepared as described by Wannamaker (10), with modifications by Zabriskie 
(11). This medium was the nutritive source for all Group A streptococcal phage-host experi- 
ments. 

Preparation of Agar P/at~.--Agar plates for the assay of bacteriophage were prepared as 
follows. 

Group A system: 2.4% Difco agar was prepared in distilled water, the pH adjusted to 7.5, 
and sterilized in the autoclave. For each liter of agar medium, 500 ml of 2.4% of molten agar 
at 50°C was added to 500 ml of dialysate broth wanned to the same temperature. Sodium 
bicarbonate was not added for the preparation of plates. Agar medium for the soft agar 
layer was prepared in a similar fashion except that 1.2% agar in distilled water was used 
rather than 2.4% agar. Dialysate broth was added to the agar to make a final concentration 
of 0.6%. 

Group C system: Plates were made in a similar fashion except that the Todd-Hewitt broth 
was used in place of dlalysate medium. The soft agar layer was prepared by the addition of a 
1.2% concentration of proteose-peptone beef heart infusion agar to Todd-Hewitt broth to 
make a final concentration of 0.6%. 

Plating and Counting Bacteriopkage.--The soft agar layer method of plating phage and 
streptococcus was used (12). Phage dilutions were always made in the type of broth used 
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for the growth of the particular streptococcus. 0.2 ml of these phage dilutions were added to 
1.7 ml of the 0.6% agar. 

Incuba~ion.--All phage plates of the Group A system were incubated in a candle jar at 
37°C for 18 hr. Plates for the Group C system were incubated at 37°C for 18 hr without the 
use of a candle jar. 

Optical Densities.--All OD readings were carried out in 10 X 75 mr, test tubes at 650 
m~ in a Coleman Junior Spectrophotometer. 

Indivator Strains.-- 
Group A system: An 18 hr culture of strains T25~, T12, or A590 in dialysate broth were 

centrifuged and resuspended in fresh dialysate medium to an OD of 0.04-0.06. 0.1 ml of this 
suspension was added to the 1.9 ml soft agar tubes at the time of plating. 

Group C System: An 18 hr culture of strain 26RP06 or C88 in Todd-Hewitt broth was 
centrifuged and resuspended to one-third its original growth volume with fresh Todd-Hewitt 
broth. 0.I ml was used in the soft agar at the time of plating. 

Preparation of Phage-Associated Lysin.--Group C streptococcal phage-associated lysin 
was prepared by the method of Zabriskie and Freimer (13). 

Baeteriopkage Ant~body.--The bacteriophage antisera for use against the A25 phage and 
the C1 phage were prepared according to the outline by Adams (12). 1-2 ml amounts of 
filtered phage lysates of A25 phage containing 1 X l0 s PFU per ml and C1 phage containing 
5 X l0 s PFU per ml were injected intravenously into rabbits daily for 5-7 days. Anlm~ls 
were bled 10 days after the last injection. 

EXPERrM-~NTAL 

Single Cell--Burst Experiments.--In order to s tudy the events of viral replica- 
t ion in the hemolytic streptococcus, a chaining organism, certain modifications 
of the classical single cell burs t  techniques (3) had to be insti tuted.  First ,  in  

order to circumvent  the problem of mult iply  infected cocci in  a streptococcal 
chain, the ratio of virus particles to streptococcal chains was adjusted so tha t  
the probabil i ty of one virus particle infecting one chain was maximal. Secondly, 
secondary bursts  of those cocci infected following the burs t  of the primari ly 
infected coccus were prevented b y  "quick freezing" of the host-phage mixture 
a t  the end of the viral  cycle and then plat ing the contents of each tube imrned- 
ately upon defrosting. 

A typical streptococcal single cell burst experiment was performed as follows: 0.1 ml of an 
18 hr culture of the Group A streptococcal strain grown in dialysate medium was inoculated 
into 10 ml of warmed dialysate medium. This mixture was incubated at 37°C for 2 hr fielding 
a count of 5 X 10 T rha~ns/ml as determined by the pour plate method. Group A bacterio- 
phages were then added to the cells at a multiplicity of infection which ranged from 0.6 to 
0.25 PFU per chain and incubated for 15 rain at 37°C to assure complete adsorption of phage 
to bacteria. The suspension was then diluted in cold broth so that the final dilution mixture 
contains 0.5-0.8 chains of varying length per milliliter in a total of 100 ml of clialysate broth. 
In the final suspension of 0.5-0.8 chains per ml the number of infected chains was estimated 
to range from 0.1-0.6 per ml. 1-ml aliquots were dispensed quickly (using a ComwaU Pipet- 
ting Unit 1) into 100 tubes and incubated further (1~ hr for the A phage system and 60 rain 
for the C phage system) at 37°C. At the end of the incubation period, the tubes were quick 

1 Made by Becton-Dickinson & Co., Rutherford, N. J. 
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frozen in a dry ice and alcohol bath to stop any further multiplication of phage which may 
have reinfected the other cocci in the chain. The tubes were then defrosted individually and 
the contents plated using the soft agar technique. Control tubes containing sterile phage 
suspensions were found to be unaffected by the freezing and thawing process. 

The frequency distributions of plaque counts of six single cell burst experi- 
ments with three Group A bacteriophages and three Group C bacteriophages 
have been examined. The summarizing statistics of these distributions are pre- 
sented in Table I. In  each experiment 100 plates were examined. While there 
was substantial variability in the proportion of positive plates in experiments 
using different propagating strains, much less variation was noted in the three 
experiments in which the same propagating strain (26RP66) was used. 

Expressed on a per streptococcal chain base, the frequency distributions of 

TABLE I 
Summary of Distribution of Pla 

StreptO- 
coccal 
group 

A 
A 
A 
C 
C 
C 

Bacterio- 
phage 

A25 
A6 
A12 
C1 
,~Y 
C343 

Propagating 
strain 

"1"253 
A590 
T12 
26RP66 
26RP66 
26RP66 

ue Counts 

No. of Mean burst* 
plates with size 

eollnts 

23 20.13 
86 37.06 
69 17.80 
33 145.63 
49 19.98 
45 24.44 

Median 
burst size 

12 
20 
13 

136 
I0 
13 

Range:~ 

1-93 
2-101 
1-52 
1-350 
1-73 
1-100 

SD 

20.58 
37.27 
15.92 

146. I0 
20.19 
24.72 

* The average burst size for each bacteriophage is obtained by dividing the total number 
of plaques counted by the number of positive plates. 

The range of counts refers to the largest and the smallest number of plaques counted in 
individual plates. 

burst size, for those plates in which plaques were observed, were found to be 
nonsymmetric, un~modal with a very long tail to the right. This type of distri- 
bution, exemplified by  the burst size experiments with A25 phage, is illustrated 
in Fig. 1. In  Table I the mean burst size for each bacteriophage has been calcu- 
lated by dividing the total number of viral plaques by the number of positive 
plates. The results indicate that there is considerable variation in the burst 
sizes of these streptococcal bacteriophages. However, when the median burst 
size of the phages are calculated, the results are quite similar regardless of the 
phage or propagating strain. The sole exception was the C1 bacteriophage in 
which the burst size was 10-14 times that  observed for the other members. 
Since the median burst size is that value that divides the frequency distribution 
in half, it is perhaps a better summarizing statistic to use in these experiments 
since it is not heavily weighted by some of the extreme values of these counts. 
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It is of interest to note that the standard deviation of burst size for these 
distributions is approximately equal to the respective mean burst size. 

I~trazell~.lr Phage Growth Eexperimen~s.--Since the results of the single cell 
burst experiments indicated marked variations in the number of virus particles 
produced by Group A and Group C bacteriophages, the time of intracellular 
appearance of viral particles and the latent period in certain of these bacterio- 
phages was investigated next. For the purposes of comparison, a Group A 
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FiG. 1. Frequency distribution of the burst size of A25 bacteriophage. Proportion of total 
plates refers to the percentage of positive plates cont~.ning a specified number of plaque 
counts. 

streptococcal bacteriophage, A25, (low phage yield) and a Group C bacterio- 
phage, C1, (high phage yield), were selected for these studies. 

The experimental procedure was as follows: 0.1 ml of strains T258 (propagating strain for 
A25 phage) or 26RP65 (propagating strain for C1 phage) were inoculated into 10 ml of the 
appropriate broth and incubated at 37°C until a concentration of 5 X l0 T colonies per ml, 
as assayed by the pour plate method, was reached. The culture was centrifuged and the 
organisms resuspended in 5 ml of a phage lysate containing 5 X 108 PFU/ml. This suspension 
was then incubated for 5 rain at 37°C. At this time 5 ml of a phage antiserum, appropriately 
diluted in broth to neutralize 90% of the phage particles within 5 rain, was added to the 
mixture and reincubated for another 5 rain. At this time a 30-fold dilution of this suspension 
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was made into fresh broth (prewanned to 37°C) in order to stop any further action of the 
phage antiserum. This "sampling tube" was then incubated at 37°C for the duration of the 
experiment. 

At 3-rain intervals, 0.1 ml atiquots were removed from the sampling tube, diluted 1:5 

A25 bac ter iophage 

i 0  s 

E 

la_ 
EL I0  ~ 
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x ~ x  
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X) growth of curves of A25 

into x¢/15 phosphate buffer pH 6.6 containing 0.001 x¢ 2-mercaptoethanol and quickly added 
to an equal amount of activated Group C streptococcal phage lysin. (The concentration of 
the phage lysin was a critical factor in these studies since the addition of undiluted phage 
lysin in the test system destroyed the bacterial lawns used for viral assay. In general, a 1:2 
or 1:4 dilution of the centrifuged lysin preparation proved to be satisfactory for most experi- 
ments and lysed 90% of the streptococcal cells within 1 rain.) The test mixture was then 
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incubated for 6 rain at 37°C at which time samples were removed; 10-fold dilutions of these 
aliquots were prepared and then plated by the soft agar layer technique. The number of 
plaques counted in each sample was a reflection of the intraceflular growth cycle of the phage. 

At 6-rain intervals, 1.0 ml aliquots were also removed from the sampling tube, centrifuged 
to sediment the bacteria, and the supernatants assayed for the presence of free phage particles. 
The number of plaques contained in these samples were a record of the extracellular ap- 
pearance of mature phage particles. 

The results of these experiments are summarized in Fig. 2. I t  can be seen that 
the first intracellular appearance of A25 phage in Group A streptococcal strain 
T258 occurs at approximately 34 min and increases logarithmically up to 75 
rain after infection. In comparison the Group C bacteriophage makes its first 
intracellular appearance before 10 rain and reaches its peak at approximately 
25 rain. There is also a marked difference between the latent periods of these 
two bacteriophages. Whereas the latent period of A25 phage extends to approxi- 
mately 45 rn{n with extracellular phage release continuing to about 80 rain after 
phage infection, the first extracellular appearance of C1 bacteriophage occurs 
as early as 12 m{n after infection. Furthermore, the cycle of thi~ particular 
bacteriophage is completed within 30 rain. 

The fact that the intracellular growth line of the C1 bacteriophage does not 
coincide with the curve denoting the appearance of extraceilular phage can be 
explained by the conditions of the experiment. Since 5 rain are required for 
complete adsorption and an additional 5 min are u ~  in the neutralization 
of any free phage particles, the first sample is obtained 10 rain after the mixture 
of phage and host cells. The appearance of a 10-fold increase in the number of 
intraceUular phage particles at the first sampling suggests that a small percent- 
age of the total streptococcal population has produced mature phage particles 
within the first 10 rain of phage infection. These results were reproducible in 
several experiments. 

Blocking IntracelIular Phage Production with Mercuri~ Ions.--During their 
studies on the inactivation of Group A and Group C bacteriophages by mercu- 
ric ions, Kessler and Kranse (14) noted that mercury-treated phages, while 
retaining their ability to adsorb to the cell surface, were unable to complete 
the viral cycle. While the authors suggested that this blocking action of mercuric 
ions occurred primarily at the cell surface, it was conceivable that mercury also 
exerted an effect at the intracellular level of replication. To test this hypothesis 
preliminary experiments were performed in which the inactivating effect of 
mercuric ions on phage and streptococci were tested with varying concentrations 
of mercuric ions in the medium. As an outgrowth of these studies it was found 
that when phage and streptococci were allowed to interact in the presence of 
2.5 X 10 -6 ~ Hg++, a concentration which did not result in inactivation or 
death of either phage or host, no phage progeny were produced. Since these 
studies mggested that mercury may be exerting an effect on intracellular viral 
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replication, i t  was also possible tha t  this  inact ivat ing effect might  easily be 
reversed b y  the introduct ion of known reducing agents  (14). Accordingly exper- 
iments  were designed in which mercuric ions were introduced a t  known points  
during the viral  cycle and then tested for the reversibil i ty of viral  inact ivat ion 
by  the subsequent introduct ion of reduced glutathione. 

In a typical experiment, 1 ml of a 2.5 X 10 -5~s solution of HgCh in broth was added 
to 9.0 ml of Group A streptococcal strain T258 at a concentration of approximately 5 X 107 
chains/ml. This was incubated at 37°C for 10 rain, at which time 1.0 ml of A25 phage at 
1 X 10 ~ PFU/ml was added to the 9.0 ml of the mercury-treated cells. 30 rain after the ad- 
dition of the A25 phage, the mixture was divided into two equal portions. A solution of re- 
duced gintathione at a final concentration of 1 X I0-2M was added to one portion; plain 
broth to the other. Both samples were then kept at 37°C for the duration of the experiment. 
At timed intervals 0.1 ml aliquots were removed from each sample and diluted into 9.9 ml 
of broth. 1 ml from these dilutions were centrifuged and the supernatants plated by the soft 
agar techniques. 

As can be seen from Fig. 3, the por t ion exposed to the reducing agent  exhib- 
i ted progeny phage release whereas the unreduced port ion did not. Since these 
results indicated tha t  mercury  was blocking some metabolic  pa thway  necessary 
for phage growth or release, experiments were designed to determine a t  what  
points in the viral  cycle mercury  exerted its inact ivat ing effect. 

9 ml of log phase Group A streptococcal strain T258 at 5 X 10 ~ chalns/ml was added to 
1.0 ml of a 5 X 10 r PFU/ml concentration of A25 phage and incubated at 37°C. At timed 
intervals of 10, 20, 30, and 40 rain, 0.9 ml aliquots were removed and added to 0.1 ml of a 
2.5 X 10 -5 ~x concentration of HgCh in broth. Incubation of these samples were then con- 
tinued until a total elapsed time of 70 min from the time of phage-host interaction had been 
reached. At timed intervals during the experiment 0.1 ml aliquots of these samples were re- 
moved, diluted 1:100, centrifuged to sediment the cells, and the supernatants then titered 
by the soft agar technique. At the end of the 70 min incubation period, 0.1 ml aliquots were 
removed from the 10, 20, 30, and 40 rain samples and diluted into 0.9 ml of activated phage- 
associated lysin. These samples were incubated at 37°C for another 10 min to assure complete 
lysis of the infected cells. 0.1 ml of each of the samples was then removed, diluted, and plated 
by the soft agar technique. 

I t  can be seen in Fig. 4 tha t  if mercury is introduced within the first 20 min of 
phage-host  interact ion no further  product ion of ma ture  virus part icles occurs. 
This  is true even though the infected cells are incubated well beyond the normal  
la ten t  period for the A25 phage before being lysed (see Fig. 2). However,  when 
mercury is introduced at  30 and 40 min, t imes in which intracellular  phage are 
known to be present,  then increasing amounts  of ma ture  virus part icles are 
released following lysis of the cells. Thus  the number  of phage part icles found 
intracellularly during the viral  cycle is d i rect ly  proport ional  to the t ime a t  
which the mercury was added to the phage-host  system; i.e., more bacterio- 
phage being found the la ter  the mercury is added. 

In  order to test  the reversibil i ty of this blocking action a similar experiment  
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was performed in which I X 10 -2 xr-reduced glutathione was introduced at 70 
rain in place of the phage enzyme. The mixture was incubated for an additional 
60 min during which time samples were removed and tested for phage content. 
I t  was found that in the presence of reduced glutathione the viral cycle was 
completed. In addition, the release of mature virus particles was directly related 
to the time at which mercury was added to the system. Lysis occurred first in 
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FIG. 3. Adsorption of A25 phage to mercury-treated Group A cells (solid line) and re- 
activation with reduced glutathione as compared with nonreduced cells, (diverging dotted 
lines). Control line refers to the normal one-step growth curve. 
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those samples in which mercury was added late in phage multiplication and 
last in those in which mercury was added soon after phage infection. These 
results clearly demonstrate that the introduction of mercury at any given point 
during the eclipse or latent period of the A25 phage stops any further matura- 
tion of the phage. This inhibition can be reversed at any time by the addition 
of reduced glutathione. 

DISCUSSION 

Using the one-step growth curve method, Kjems (7) and more recently 
Friend and Slade (5) reported that the average burst size of Group A strep- 
tococcal bacteriophages was 32. Their results in general agree with the data 
reported in this study when figures for the mean burst size are used. However, 
when median burst size figures are substituted (see Table 13, then the burst 
size of Group A bacteriophages is considerably less than that reported by the 
other authors. In a similar fashion, the discrepancies in the mean burst size for 
the two Group A bacteriophages, A25 and A6, reported by Friend and Slade 
(5) may, in part, be explained by the data here concerning the relationship 
between the mean burst size and its vaxiation--that is, the larger the mean 
burst size, the larger the standard error of the mean. 

While the one-step growth curve experiments of Kjems and Friend and 
Slade give figures for the burst size of streptococcal bacteriophages, it must be 
emphasized that their results were obtained from thousands of phage-infected 
bacteria and are therefore only an indication of the average number of phage 
particles produced. In contrast, the single cell burst technique utilized in this 
paper renders it possible to study the events of phage multiplication in in- 
dividually infected streptococci. The fact that the samples were immediately 
frozen after the latent period and rapidly plated individually after defrosting 
was a crucial point in this technique since it prevented either reinfection or 
burst of those cocci adjacent to the infected cell. Thus the avoidance of sec- 
ondary bursts previously noted by Kjems (7) and Friend and Slade t5) per- 
mitted an estimate of the virus particles in single-infected cells. 

The data concerning the proportion of positive plates and the burst size of 
streptococcal bacteriophages are, in part, a function of the joint and conditional 
distribution of three variables. These variables may be summarized as follows: 
(a) the number (and distribution) of streptococcal chains with at least one 
infected cell in aliquots drawn from the total pool; (b) the distribution of chain 
lengths (number of cells per chain) for a given propagating strain; and (c) the 
number of infected cells per chain in a sample. 

A positive plate will be obtained if at least one chain with one infected cell is 
included in the aliquot drawn from the total pool. The number of streptococcal 
chains with one or more infected cells included in such samples is a variable 
which follows the Poisson distribution. The observed proportion of positive 
plates is a function of the mean or expected number of chains with at least one 
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infected cell included in a sample taken from the pool. Using experimental data 
then, it is possible to estimate the probability that one or more than one chain 
with one or more infected cells is included in a given sample. 

The methods used here have attempted to maximize the probability that 
one and only one cell in any given chain will be infected by one phage particle. 
However, streptococcal chain length is a variable and the probability that a 
given chain has none, one or more infected cells is related to chain length; i.e., 
the probability of finding at least one infected cell in a chain of length eight is 
greater than that probability for a chain of length four in a given pool. 

The number of infected cells per chain is assumed to follow a binomial distri- 
bution. Under this model, the probability of any given cell being infected is 
assumed to be constant. Using experimental data, then, it is possible to estimate 
the probabilities of obtaining a sample that contains a chain of given length with 
one or more infected cells. The observed variation in the distribution of phage 
counts for a given propagating strain and bacteriophage may be a function of 
the inclusion of more than one chain with at least one infected cell in the sample 
and/or the inclusion of a single chain with more than one infected cell. 

The expression of burst size on a per chain basis used here is subject to these 
components of variation which should be controlled if this measure is to be 
expressed on a per cell basis. Further work is currently being undertaken in 
these laboratories in order to permit the precise specification of the several 
distributions considered here, and to estimate the effects of these components 
of variation on the proportion of positive plates and on the estimates of burst 
size. I t  is hoped that these investigations will permit the precise estimation of 
of burst size on a per cell basis. 

The fact that the average burst size of the A25 phage was 12 PFU per infected 
cell as compared with the C1 phage which produced 136 PFU sheds some light 
on the results obtained in recent electron microscopy studies of Group A and 
Group C bacteriophages. Morgan's * inability to observe A25 phage particles 
within the streptococcal cell whereas Cole (15) reported the presence of C1 
phage aggregates, might be explained by the differences in burst size obtained 
with these two phages. 

The intracellular growth studies of Group A and Group C bacteriophages 
were of interest since they demonstrated that the eclipse period of 34 rain for 
the A25 phage is more than three times that noted for the C1 phage. Since the 
eclipse is that part of the latent period during which the materials for bacterio- 
phage progeny are being produced, one might have expected more mature 
phage particles in the A25 phage system. Yet, the number of C1 phage particles 
released was 10 times that observed with A25 phage. These results suggest that 
the mechanism for A25 phage production is either more complex than that for 

C. Morgan. Personal communication. 
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the Group C system or that the synthesis of virus units in the A25 phage-host 
system is faulty. 

Another interesting aspect of these studies of intracellular phage growth was 
the observation that the first intraceUular appearance of the C1 phage occurred 
as early as 10 rain after infection. This coincides with the first intraceUular 
appearance of the C1 phage-associated enzyme as reported by Fox and Wittner 
(16). The excessive amount of this enzyme coupled with the fact that its produc- 
tion begins at a point in time closely associated with the completed virus 
suggests that the enzyme is intimately associated with the replication of virus 
particles. 

The use of mercuric ions in high concentration as a means of inactivating 
phage has been known for many years (Krueger and Baldwin (17), Kessler and 
Krause (14)). However, little is known concerning the effect of low concentra- 
tions of mercuric ions on the intracellular production of phage progeny. Experi- 
ments in this report illustrate the fact that mercuric ions at concentrations 
which do not inactivate A25 bacteriophage nor kill Group A streptococci pro- 
duce a profound effect when added to a phage-host mixture of these organisms. 
The effect is primarily at the intracellular level and the studies clearly demon- 
strate that mercuric ions have the ability to block phage maturation at any 
stage of the eclipse or latent period. This blockage can be maintained for a 
number of minutes, then quickly reversed by the addition of reduced gluta- 
thione. The ability of these ions to stop viral production at various points during 
the latent period and its easy reversibility by glutathione offers an important 
tool in studying the precise events of the viral latent period in streptococcal 
phage-host interactions. 

SUMMARY 

Evidence has been presented that the burst size in the Group A and Group C 
streptococcal phage-host systems are in general similar producing approxi- 
mately 13 phage particles per infected coccus. The exception was the C1 phage 
which produced 10 times more virus particles than all the other phages tested. 
The eclipse period for the A25 phage-host system was found to extend for 34 
min, while the C1 phage were found as early as 10 rain after infection. Con- 
clusive evidence has been presented indicating that mercuric ions at 2.5 X 10 -~ 
M concentration have the ability to halt intracellular phage production at any 
point during the infective cycle of A25 bacteriophages. This blocking action 
can then be quickly reversed with the addition of reduced glutathione with 
subsequent completion of the viral cycle. 
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