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When endotoxic lipopolysaccharides (LPS) are incubated with fresh guinea 
pig serum, a strong interaction between LPS and the complement (C') system 
ensues. C' is "fixed" or consumed (2, 3) while lesions which relate to the ac- 
tivity of the terminal C' components (4, 5) appear on LPS (2, 6.) In this 
interaction pronounced consumption of the classical terminal C' component 
(C'3) is observed, despite only minimal consumption of the earlier-acting C'I, 
C'4, and C'2) (2, 3, 7, 8). The classical C'3 activity (hereafter referred to as 
"C~3-C'9 '') is now known to consist of at least six discrete proteins, termed C'3, 
C'5, C%, C'7, C'8, and C'9 (9-11). These components seem to subserve most 
of the biological functions presently attributed to C' (9, 10). 

These considerations have led us to investigate the interaction of LPS with 
C~3-C'9. We sought to determine whether LPS induced consumption of the 
entire C'3-C'9 sequence or merely initiated the consumption or inactivation of 
a single member protein. The consumption profile of the nine C ~ components 
was determined during the interaction of both LPS and preformed immune 
complexes with fresh guinea pig serum. The results clearly show that despite 
its inability to induce substantial consumption of C'I, C'4, and C'2, LPS 
(like immune complexes) effectively induces consumption of eack of the terminal 
six C' components. 

Materials and Metkods 

Endoto~ LPS.--LPS was isolated from Veillonella alvalesc.ens strain V5 by the phenol- 
water extraction procedure of Westphal and Ltideritz (12). 

Zymosan.--Zymosan was obtained from General Biochemicals Corp., Chagrin Falls, Ohio. 

* Supported by grants ONR 268 (60), NSF (GB-2597), NIH (5R01-A1-02566009), and 
NIH Training Grant 5T1-A1-282-04. 

Presented in part to the American Association of Pathologists 18 April, 1968 (1). 
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Aggregated Human Gamma Globulins (AHGG).--AHGG were prepared by heating of the 
Cohn fraction I I  of human serum (Hyland Laboratories, Los Angeles, Calif.) for 20 min at 
03°C. 

Immune Complexes of Bovine Serum Albumin (BSA) and Rabbit Antiserum (Rabbit Anti- 
BSA).--Crystalline BSA was obtained from Pentex Incorporated, Kankakee, Illinois. Rabbit  
anti-BSA was obtained from Hyland Laboratories, Los Angeles, Calif., and contained 240 
#g antibody nitrogen per ml. 1 BSA and rabbit anti-BSA were reacted at equivalence for 24 hr 
at 4°C in the presence of 0.01 M EDTA. The precipitate was washed twice in EDTA-saline 
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Fro. 1. "Fixation" (consumption) profiles of total C' and the nine known C' components 
in guinea pig serum (0.1 ml in a total volume of 1.0 ml) upon interaction with 200 #g Ve//- 
londla alcalescens lipopolysaccharide (LPS) and 200 #g aggregated human gamma globulins 
(AHGG) during 1 hr incubations at 37°C. Similar results were obtained when smaller amounts 
of LPS and AHGG (10, 25, and 100 #g, respectively) were tested in this manner. 

and resuspended in saline. Final protein concentrations were determined by the assay of 
Lowry et al., (13). 

Guinea Pig Serum.--Pooled guinea pig serum was obtained from Texas Biologicals, Inc., 
Fort Worth, Texas, and maintained at --70°C. 

Complement Consumption ("Fixation").--The ability of LPS, zymosan, AHGG, and BSA- 
anti-BSA complexes to fix C' was tested in diluted (1:10) and/or undiluted guinea pig serum. 
These test reagents (0.1 ml) were reacted with either 0.1 ml guinea pig serum and 0.8 ml 
veronal-bulfered saline, or with 0.9 ml guinea pig serum for I hr at 37°C. Residual total C' and 
C'1, C'4, C'2, and C'3-C'9 (C'-EDTA) activities were measured by minor modifications (14) 
of the methods of Mayer (15) and Nelson et al., (11). Residual C'3, C'5, C'6, C'7, C'8, and 
C'9 activities were quantitated by minor modifications 2 of the methods of Nelson et al. (11). 

I Kindly determined by L. Lichtenstein. 
2 Shin, H. S., and M. M. Mayer. Manuscript in preparation. 
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RESULTS 

The effect of LPS upon each of the six terminal C' components first was 
tested in 37°C reaction mixtures (1.0 ml) which contained 0.1 ml guinea pig 
serum. Under these conditions, LPS induced substantial consumption of each 
C'3, C'5, C%, C'7, C~8, and Ct9, with only limited consumption of C'1, C'4, 
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FIG. 2. "Fixation" (consumption) profiles of total C' and the nine known C t components 
in more concentrated guinea pig serum (0.9 ml in a total volume of 1.0 ml) upon interaction 
with 200 ~g Veillonella alcalescens lipopolysaccharide (LPS), 260/zg washed preformed im- 
mtme complexes of bovine serum albumin (BSA) and rabbit antiserum (anti-BSA) reacted at 
equivalence, and 500/zg zymosan during 1 hr incubations at 37°{2. These profiles represent the 
highest dosages tested in the experiments shown in Table I. 

and Ct2 (Fig. 1). Hence, the entire C'3-C'9 pathway was utilized during this 
LPS-serum interaction even though there was minimal detectable consump- 
tion of the C' components involved in the formation of the known C'3-con- 
vetting enzyme ("C'4, 2a" or C'3 convertase") (16). Conversely, AHGG con- 
sumed large amounts of C'I ,  Ct4, and C'2, but relatively little consumption of 
the individual C'3-C'9 components ensued. Indeed, substantial consumption 
only of the C'3 component was detected in the reaction mixtures; the titers of 
the later-acting C'3-Ct9 components were virtually unchanged (Fig. 1). 

I t  is known that the pattern of consumption of the classical C' components 
may differ depending upon whether incubations are performed in diluted or 
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undiluted serum (3, 17, 18). Therefore, the interactions of the C' system with 
graded amounts of LPS, zymosan and immune complexes were tested in un- 
diluted guinea pig serum. Again, despite minimal consumption of C'I, C'4, and 
Ct2, even small amounts of LPS had potent capacity to bring about fixation of 
each of the six terminal C' components (Table I; Fig. 2). Zymosan also brought 
about consumption of each of the C'3-C'9 components with only minimal 
detectable uptake of the earlier-acting C' components; however, on a weight 
basis much larger amounts of zymosan than LPS were required to consume 
equal amounts of the terminal C ~ components. Immune precipitates also in- 
duced substantial consumption of the C'3-C'9 components, but in the process 
large amounts of C'I, C'4, and C'2 were consumed. 

It  should be noted that incubation of LPS with purified preparations of any 
of the six terminal C' components did not lead to their consumption; hence, 
other serum factors were needed. Whether these included the earlier-acting 
C 1 components is not yet clear. 

DISCUSSION. 

Previous investigations have shown that endotoxic LPS fixes large amounts 
of classical C'3 during incubation with guinea pig serum, despite minimal 
consumption of CI1, C'4, and C'2 (2, 3). Classical C'3 now is known to consist 
of at least six separate proteins (9-11). The appearance of characteristic C l- 
mediated lesions on LPS during its reaction with guinea pig serum (2, 6, 1 9 ) -  
an event which on the erythrocyte is associated with the activity of the terminal 
C' components (4, 5)--indirectly suggested the C' sequence reached completion 
on LPS. The chief purpose of the present investigation was to determine directly 
whether substantial consumption of each of the six terminal C' components 
occurs during the LPS-guinea pig serum interaction. 

I t  was found that each of the six C'3-C'9 components was consumed even by 
small amounts of LPS (10-25/zg) during these incubations. Given amounts of 
LPS consumed greater quantities of the C'3-C'9 components than did immune 
complexes or AHGG, even though they consumed much smaller quantities of 
the earlier-acting C' components. Such a relatively "preferential" consump- 
tion of classical C~3 during serum-polysaccharide (20) and serum-lipopoly- 
saccharide interactions (2, 3, 7, 8) had previously been observed, as had rela- 
tively preferential consumption of the earlier-acting C' components during 
incubations of serum with preformed immune complexes and AHGG (2, 3, 
8, 20-23). 

Earlier it had been found that the addition of hyperimmune rabbit anti- 
endotoxin serum to incubation mixtures of normal guinea pig serum and LPS 
led to consumption of large amounts of C'I, C~4, and C'2, as well as to consump- 
tion of classical C'3 (C~3-C'9) (3). As expected, LPS reacting with hyperimmune 
serum leads to a C ~ consumption profile similar to that induced by the ira- 



1054 CONSUMPTION OF COMPLEMENT COMPONENTS BY E N D O T O X I N  

mune complexes. Whether this effect of heterologous hyperlmmune serum 
relates to the nature or the amounts of the immunoglobulins present, to the 
antigenic sites against which they are directed, or to the species of origin is not 
yet clear. 

When highly purified preparations of any of the six terminal C' components 
were incubated with LPS, no consumption occurred which implied that other 
serum factors were needed. The nature of these other factors in the LPS- 
normal serum interaction is not yet clear and is beyond the scope of the present 
investigation. Even though LPS can efficiently consume the C'3-C'9 compo- 
nents without apparent consumption of Crl, C'4, and C'2, these early-acting 
factors cannot be excluded as a pathway to consumption of C'3-C'9 since 
LPS might promote extremely efficient convertase (Ct4, 2a) formation. On the 
other hand, there could be other pathways to consumption of the C'3-C'9 
components. 

These investigations suggest LPS may be a valuable reagent in the study of 
the interactions of the C'3-C'9 components and in the chemical definition 
of the cellular C r substrates (2, 3, 6, 24), the activated CP3-Cr9 components and 
the biologically active "split products" derived from them (2, 25, 43). Since 
LPS is derived from the outer bacterial membrane (26-28) and itself has 
membrane-like structure (2, 28-30), perhaps it will serve as a model of C p- 
membrane interactions in general. 

The ability of LPS to induce fixation of the six terminal C p components may 
have real biological meaning, because these components are known to subserve 
several activities including immune adherence agglutination of platelets (7, 31) 
and neutrophils (32), generation of vasoacfive factors with anaphylatoxic (17, 
33-35) and neutrophil chemotactic (36, 37) properties, and cytocidal reactions 
(9-11, 15). Since these modal/ties are prominent among the events which 
follow the injection of LPS into several experimental animals (38, 39), it may 
be through the C' system that certain of the biological effects induced by LPS 
are mediated (2, 3, 40-42). Indeed, ongoing studies in these laboratories have 
shown that the interaction of LPS with fresh guinea pig serum leads to genera- 
tion of anaphylatoxin(s) and neutrophil chemotactic factor(s) via the C ~ 
system (25, 43). It is possible that the property of consuming the Cr3-C~9 
components, common to LPS and immune complexes, accounts for some of the 
known similarity (44, 45) in reactivities which they evoke in various animal 
species. 

SUMMARy 

Large amounts of each C'3, C'5, C'6, C~7, C'8, and C'9 were consumed when 
guinea pig serum was incubated with endotoxic lipopolysaccharide, zymosan, 
or preformed immune complexes. Since these C' components subserve several 
of the biological activities which follow the injection of endotoxins into experi- 
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mental animals, these experiments support the hypothesis that  certain bio- 
logical effects induced by  endotoxins may  be mediated via the C' system, and 
may account for some of the known similarity in the reactivities evoked by  
endotoxins and immune complexes in vivo. 

The authors gratefully acknowledge the generous suggestions and encouragement of Dr. 
M. M. Mayer. 
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