Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1974 Jan 1;139(1):108–127. doi: 10.1084/jem.139.1.108

DUAL REGULATORY ROLE OF THE THYMUS IN THE MATURATION OF IMMUNE RESPONSE IN THE RABBIT

Masaru Taniguchi 1, Tomio Tada 1
PMCID: PMC2139507  PMID: 4128443

Abstract

Rabbits thymectomized in early adulthood produced more antihapten antibody than sham-thymectomized controls after hyperimmunization with 2,4-dinitrophenyl bovine gamma globulin (DNP-BGG). The average associated constant of anti-DNP antibody produced by thymectomized animals was more than 10 times higher than that of the controls. Similar effects were obtained by extensive treatment of rabbits with antithymocyte serum (ATS) before and during the immunization with DNP-BGG. The results indicated that relative diminution of thymus-derived lymphocytes (T cells) resulted in a stimulation of antibody-forming cells with a higher affinity. On the other hand, preimmunization of rabbits with different doses of BGG caused either enhancement or suppression of the hapten-specific antibody response, depending on the priming dose of BGG. The suppressed antibody response was always associated with a marked decrease in the antibody affinity. If rabbits were partially tolerized with a large dose of soluble BGG, some of the animals produced little antibody against hapten (DNP) coupled to this carrier, and the affinity of produced antibody was low. However, other rabbits tolerized with BGG produced large amounts of anti-DNP antibody upon hyperimmunization with DNP-BGG, whose affinity was only slightly lower than that of the control. These results can be harmonized if it is assumed that the thymus plays an important role in the maturation of the immune response. It is postulated that T cells, in numbers ordinarily available, would first assist in the proliferation of antihapten antibody-forming cell precursors already selected by antigen, thus accounting for the rapid increase of antibody affinity in the early stage of immunization. However, after a larger number of carrier-specific T cells are made in response to continued immunization, these would suppress antibody-forming cells. The suppression would be greater for cells with higher affinity for antigen, resulting in a decrease in antibody affinity. This postulate explains preferential stimulation and suppression of cells having higher affinity receptors under circumstances in which T cell are relatively depleted or overstimulated, and further permits an explanation for the decrease of antibody affinity after long-term immunization.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARCHER O. K., PIERCE J. C., PAPERMASTER B. W., GOOD R. A. Reduced antibody response in thymectomized rabbits. Nature. 1962 Jul 14;195:191–193. doi: 10.1038/195191a0. [DOI] [PubMed] [Google Scholar]
  2. Abdou N. I., Richter M. Cells involved in the immune response. VI. The immune response to red blood cells in irradiated rabbits after administration of normal, primed, or immune allogeneic rabbit bone marrow cells. J Exp Med. 1969 Apr 1;129(4):757–774. doi: 10.1084/jem.129.4.757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BENACERRAF B., GELL P. G. Studies on hypersensitivity. I. Delayed and Arthustype skin reactivity to protein conjugates in guinea pigs. Immunology. 1959 Jan;2(1):53–63. [PMC free article] [PubMed] [Google Scholar]
  4. Baker P. J., Barth R. F., Stashak P. W., Amsbaugh D. F. Enhancement of the antibody response to type 3 pneumococcal polysaccharide in mice treated with antilymphocyte serum. J Immunol. 1970 May;104(5):1313–1315. [PubMed] [Google Scholar]
  5. Baker P. J., Stashak P. W., Amsbaugh D. F., Prescott B., Barth R. F. Evidence for the existence of two functionally distinct types of cells which regulate the antibody response to type 3 pneumococcal polysaccharide. J Immunol. 1970 Dec;105(6):1581–1583. [PubMed] [Google Scholar]
  6. Baum J., Liebermann G., Frenkel E. P. The effect of immunologically induced lymphopenia on antibody formation. J Immunol. 1969 Jan;102(1):187–193. [PubMed] [Google Scholar]
  7. Chang H., Schneck S., Brody N. I., Deutsch A., Siskind G. W. Studies on the mechanism of the suppression of active antibody synthesis by passively administered antibody. J Immunol. 1969 Jan;102(1):37–41. [PubMed] [Google Scholar]
  8. Claman H. N., Chaperon E. A. Immunologic complementation between thymus and marrow cells--a model for the two-cell theory of immunocompetence. Transplant Rev. 1969;1:92–113. doi: 10.1111/j.1600-065x.1969.tb00137.x. [DOI] [PubMed] [Google Scholar]
  9. Davie J. M., Paul W. E. Immunological maturation. Preferential proliferation of high-affinity precursor cells. J Exp Med. 1973 Jan 1;137(1):201–204. doi: 10.1084/jem.137.1.201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Davie J. M., Paul W. E. Receptors on immunocompetent cells. V. Cellular correlates of the "maturation" of the immune response. J Exp Med. 1972 Mar 1;135(3):660–674. doi: 10.1084/jem.135.3.660. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. EISEN H. N., CARSTEN M. E., BELMAN S. Studies of hypersensitivity to low molecular weight substances. III. The 2,4-dinitrophenyl group as a determinant in the preciptin reaction. J Immunol. 1954 Nov;73(5):296–308. [PubMed] [Google Scholar]
  12. EISEN H. N. EQUILIBRIUM DIALYSIS FOR MEASUREMENT OF ANTIBODY-HAPTEN AFFINITIES. Methods Med Res. 1964;10:106–114. [PubMed] [Google Scholar]
  13. EISEN H. N., SISKIND G. W. VARIATIONS IN AFFINITIES OF ANTIBODIES DURING THE IMMUNE RESPONSE. Biochemistry. 1964 Jul;3:996–1008. doi: 10.1021/bi00895a027. [DOI] [PubMed] [Google Scholar]
  14. FARR R. S. A quantitative immunochemical measure of the primary interaction between I BSA and antibody. J Infect Dis. 1958 Nov-Dec;103(3):239–262. doi: 10.1093/infdis/103.3.239. [DOI] [PubMed] [Google Scholar]
  15. Falkoff R., Kettman J. Differential stimulation of precursor cells and carrier-specific thymus-derived cell activity in the in vivo reponse to heterologous erythrocytes in mice. J Immunol. 1972 Jan;108(1):54–58. [PubMed] [Google Scholar]
  16. Feldmann M., Basten A. Specific collaboration between T and B lymphocytes across a cell impermeable membrane in vitro. Nat New Biol. 1972 May 3;237(70):13–15. doi: 10.1038/newbio237013a0. [DOI] [PubMed] [Google Scholar]
  17. GOOD R. A., DALMASSO A. P., MARTINEZ C., ARCHER O. K., PIERCE J. C., PAPERMASTER B. W. The role of the thymus in development of immunologic capacity in rabbits and mice. J Exp Med. 1962 Nov 1;116:773–796. doi: 10.1084/jem.116.5.773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gershon R. K., Kondo K. Infectious immunological tolerance. Immunology. 1971 Dec;21(6):903–914. [PMC free article] [PubMed] [Google Scholar]
  19. Gershon R. K., Paul W. E. Effect of thymus-derived lymphocytes on amount and affinity of anti-hapten antibody. J Immunol. 1971 Mar;106(3):872–874. [PubMed] [Google Scholar]
  20. Goidl E. A., Paul W. E., Siskind G. W., Benacerraf B. The effect of antigen dose and time after immunization on the amount and affinity of anti-hapten antibody. J Immunol. 1968 Feb;100(2):371–375. [PubMed] [Google Scholar]
  21. Gorczynski R. M., Miller R. G., Phillips R. A. Initiation of antibody production to sheep erythrocytes in vitro: replacement of the requirement for T-cells with a cell-free factor isolated from cultures of lymphoid cells. J Immunol. 1972 Feb;108(2):547–551. [PubMed] [Google Scholar]
  22. Grantham W. G. The secondary response to high and low dose priming in mice. J Immunol. 1972 Feb;108(2):562–565. [PubMed] [Google Scholar]
  23. Jacobson E. B., Herzenberg L. A. Active suppression of immunoglobulin allotype synthesis. I. Chronic suppression after perinatal exposure to maternal antibody to paternal allotype in (SJL x BALB-c)F 1 mice. J Exp Med. 1972 May 1;135(5):1151–1162. doi: 10.1084/jem.135.5.1151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Katz D. H., Benacerraf B. The regulatory influence of activated T cells on B cell responses to antigen. Adv Immunol. 1972;15:1–94. doi: 10.1016/s0065-2776(08)60683-5. [DOI] [PubMed] [Google Scholar]
  25. Katz D. H., Paul W. E., Benacerraf B. Carrier function in anti-hapten antibody responses. VI. Establishment of experimental conditions for either inhibitory or enhancing influences of carrier-specific cells on antibody production. J Immunol. 1973 Jan;110(1):107–117. [PubMed] [Google Scholar]
  26. Katz D. H., Paul W. E., Goidl E. A., Benacerraf B. Carrier function in anti-hapten immune responses. I. Enhancement of primary and secondary anti-hapten antibody responses by carrier preimmunization. J Exp Med. 1970 Aug 1;132(2):261–282. doi: 10.1084/jem.132.2.261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Kishimoto T., Ishizaka K. Regulation of antibody response in vitro. 3. Role of hapten-specific memory cells and carrier-specific helper cells on the distribution of anti-hapten antibodies in IgG, IgM and IgE classes. J Immunol. 1972 Sep;109(3):612–622. [PubMed] [Google Scholar]
  28. McConahey P. J., Dixon F. J. A method of trace iodination of proteins for immunologic studies. Int Arch Allergy Appl Immunol. 1966;29(2):185–189. doi: 10.1159/000229699. [DOI] [PubMed] [Google Scholar]
  29. Miller J. F., Mitchell G. F. Thymus and antigen-reactive cells. Transplant Rev. 1969;1:3–42. doi: 10.1111/j.1600-065x.1969.tb00135.x. [DOI] [PubMed] [Google Scholar]
  30. Okumura K., Tada T. Regulation of homocytotropic antibody formation in the rat. 3. Effect of thymectomy and splenectomy. J Immunol. 1971 Apr;106(4):1019–1025. [PubMed] [Google Scholar]
  31. Okumura K., Tada T. Regulation of homocytotropic antibody formation in the rat. VI. Inhibitory effect of thymocytes on the homocytotropic antibody response. J Immunol. 1971 Dec;107(6):1682–1689. [PubMed] [Google Scholar]
  32. Okumura K., Tada T. Suppression of hapten-specific antibody response by carrier-specific T cells. Nat New Biol. 1973 Oct 10;245(145):180–182. doi: 10.1038/newbio245180a0. [DOI] [PubMed] [Google Scholar]
  33. Ozer H., Waksman B. H. Appendix and M antibody formation. V. Appendix and thymus cell synergism in the direct and indirect plaque-forming cell responses to sheep erythrocytes in the rabbit. J Immunol. 1972 Aug;109(2):410–412. [PubMed] [Google Scholar]
  34. Ozer H., Waksman B. H. Appendix and gamma-M antibody formation. IV. Synergism of appendix and bone marrow cells in early antibody response to sheep erythrocytes. J Immunol. 1970 Sep;105(3):791–792. [PubMed] [Google Scholar]
  35. Paul W. E., Katz D. H., Goidl E. A., Benacerraf B. Carrier function in anti-hapten immune responses. II. Specific properties of carrier cells capable of enhancing anti-hapten antibody responses. J Exp Med. 1970 Aug 1;132(2):283–299. doi: 10.1084/jem.132.2.283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Rajewsky K., Schirrmacher V., Nase S., Jerne N. K. The requirement of more than one antigenic determinant for immunogenicity. J Exp Med. 1969 Jun 1;129(6):1131–1143. doi: 10.1084/jem.129.6.1131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Rich R. R., Pierce C. W. Biological expressions of lymphocyte activation. II. Generation of a population of thymus-derived suppressor lymphocytes. J Exp Med. 1973 Mar 1;137(3):649–659. doi: 10.1084/jem.137.3.649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Richter M., Abdou N. I. Cells involved in the immune response. VII. The demonstration, using allotypic markers, of antibody formation by irradiation-resistant cells of irradiated rabbits injected with normal allogeneic bone marrow cells and sheep erythrocytes. J Exp Med. 1969 Jun 1;129(6):1261–1273. doi: 10.1084/jem.129.6.1261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Richter M., Rose B., Abdou N. I. Cells involved in the immune response. XV. The organ source of the antigen reactive cells in the normal rabbit. Int Arch Allergy Appl Immunol. 1970;38(3):269–281. doi: 10.1159/000230280. [DOI] [PubMed] [Google Scholar]
  40. Rubin A. S., Coons A. H. Specific heterologous enhancement of immune responses. IV. Specific generation of a thymus-derived enhancing factor. J Exp Med. 1972 Dec 1;136(6):1501–1517. doi: 10.1084/jem.136.6.1501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Sarvas H., Mäkelä O. Haptenated bacteriophage in the assay of antibody quantity and affinity: maturation of an immune response. Immunochemistry. 1970 Nov;7(11):933–943. doi: 10.1016/0019-2791(70)90054-6. [DOI] [PubMed] [Google Scholar]
  42. Schimpl A., Wecker E. Replacement of T-cell function by a T-cell product. Nat New Biol. 1972 May 3;237(70):15–17. doi: 10.1038/newbio237015a0. [DOI] [PubMed] [Google Scholar]
  43. Schirrmacher V., Rajewsky K. Determination of antibody class in a system of cooperating antigenic determinants. J Exp Med. 1970 Nov;132(5):1019–1034. doi: 10.1084/jem.132.5.1019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Siskind G. W., Dunn P., Walker J. G. Studies on the control of antibody synthesis. II. Effect of antigen dose and of suppression by passive antibody on the affinity of antibody synthesized. J Exp Med. 1968 Jan 1;127(1):55–66. doi: 10.1084/jem.127.1.55. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Steiner L. A., Eisen H. N. Sequential changes in the relative affinity of antibodies synthesized during the immune response. J Exp Med. 1967 Dec 1;126(6):1161–1183. doi: 10.1084/jem.126.6.1161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Tada T., Okumura K., Taniguchi M. Regulation of homocytotropic antibody formation in the rat. 8. An antigen-specific T cell factor that regulates anti-hapten homocytotropic antibody response. J Immunol. 1973 Sep;111(3):952–961. [PubMed] [Google Scholar]
  47. Tada T., Okumura K., Taniguchi M. Regulation of homocytotropic antibody formation in the rat. VII. Carrier functions in the anti-hapten homocytotropic antibody response. J Immunol. 1972 Jun;108(6):1535–1541. [PubMed] [Google Scholar]
  48. Taub T. N. Biological effects of heterologous antilymphocyte serum. Prog Allergy. 1970;14:208–258. [PubMed] [Google Scholar]
  49. Werblin T. P., Siskind G. W. Effect of tolerance and immunity on antibody affinity. Transplant Rev. 1972;8:104–136. doi: 10.1111/j.1600-065x.1972.tb01566.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES