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Abstract. The structure of mitotic chromosomes in cul-
tured newt lung cells was investigated by a quantitative
study of their deformability, using micropipettes.
Metaphase chromosomes are highly extensible objects
that return to their native shape after being stretched
up to 10 times their normal length. Larger deformations
of 10 to 100 times irreversibly and progressively trans-
form the chromosomes into a “thin filament,” parts of
which display a helical organization. Chromosomes
break for elongations of the order of 100 times, at
which time the applied force is around 100 nanonew-

tons. We have also observed that as mitosis proceeds
from nuclear envelope breakdown to metaphase, the
native chromosomes progressively become more flexi-
ble. (The elastic Young modulus drops from 5,000 =
1,000 to 1,000 = 200 Pa.) These observations and mea-
surements are in agreement with a helix-hierarchy
model of chromosome structure. Knowing the Young
modulus allows us to estimate that the force exerted by
the spindle on a newt chromosome at anaphase is
roughly one nanonewton.

ITOSIS involves gross physical reorganization of
M chromosomes; the duplicated chromatids are
condensed, resolved, and finally segregated.
These processes can be expected to change the material
properties of chromosomes, notably their elasticity. Elas-
ticity indicates the nature and strength of the interactions
holding materials together, and thus can be used to probe
chromosome structure. Given the poor state of under-
standing of chromosome structure, it is therefore remark-
able how little this subject has been studied. In a pioneer-
ing work, Nicklas (1983) measured that the force applied
to grasshopper chromosomes during anaphase was 700 pi-
conewtons, from which he inferred the chromosome stiff-
ness. More recently, Claussen et al. (1994) stretched human
metaphase chromosomes spread on a cover glass. They
found that after stretching of up to 10 times, the chromo-
somes returned to their original shape. However, these
studies did not address the question of chromosome archi-
tecture.
An often-discussed model is one in which the “thick”
metaphase chromosome is composed of a “thin filament”
of diameter 200-300 nm (Sedat and Manuelidis, 1978;
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Manuelidis, 1990). In fact, Bak et al. (1977) reported that
as isolated human metaphase chromosomes disintegrate,
they can change into a thin filament of diameter 400 nm,
five times the original chromosome length. They suggested
that metaphase chromosomes were formed by helical
wrapping of this thin fiber. On the basis of electron mi-
croscopy, they further proposed that the thin fiber had a
helical structure.

The proposal for a helical structure of metaphase chro-
mosomes is old. Observations of “spiral chromatonema”
during meiotic metaphase I date to at least 1926. Ohnuki
(1968) established that hypotonic treatment stabilized spi-
ral structure in human mitotic metaphase chromosomes.
Boy de la Tour and Laemmli (1988) observed that fluores-
cent anti-topoisomerase II was helically organized when
bound to histone Hl-depleted chromosomes. Recent
work by Hirano and Mitchison (1994) revealed that a pro-
tein heterodimer required for chromosome condensation
in vitro (XCAP-C/E) was localized along a helical track
along the metaphase-like chromatids. These and other
studies (Belmont et al., 1987, 1989; Saitoh and Laemmli,
1993) suggest a chromosome with an internal structure
made of a coiled or folded fiber. However, the spiral struc-
tures observed may be the result of chemical treatments of
the chromosomes (Cook, 1995).

In this paper, we report a simple mechanical study of mi-
totic chromosomes in living cultured newt lung cells using



micropipette aspiration and manipulation. First, we find
that chromosomes display remarkable elasticity, returning
to their initial shape after being extended by up to 10
times. For larger deformations, the chromosome no longer
returns to its initial length. Instead, the thick native chro-
mosome is progressively converted into a thin filament 15
times the length of the original chromosome. This thin fila-
ment is itself elastic; it can be stretched six times before
breaking. After the filament is released, it takes on an ir-
regular but unmistakably helical form. Furthermore, by
measuring force versus deformation, we have determined
the Young elastic modulus of the metaphase chromosome,
the force at which the metaphase chromosome begins to
be converted to thin fiber, and the force required to break
the thin fiber. These measurements reveal the strength of
interactions that stabilize the different levels of structure.
Finally, we have observed that the Young modulus drops
by about fivefold during the interval from nuclear enve-
lope breakdown to metaphase.

Our results lead to a simple unifying picture of chromo-
some elasticity and structure: Our conclusion is that
metaphase chromosomes are composed of an underlying
thin filament. The large range over which the metaphase
chromosome is elastic, the scale of its Young modulus, and
the helical structure of the filament all argue in favor of its
helical folding. By the same line of reasoning, the fact that
the thin filament is elastic over a large range of extensions
suggests that it also has a folded or helical structure. We
also show how the force exerted by the mitotic spindle on
a chromosome and the resistance of the cytoplasm to chro-
mosome movement can be deduced from the Young mod-
ulus measurement and chromosome shape at anaphase.

Materials and Methods

Tissue Culture and Solutions

Newt lung cultures were prepared in a Rose chamber following standard
procedures (Rieder and Hard, 1990). Newts (Notophthalamus viridescens,
Connecticut Valley L500) were killed by immersion for 20 min in 1 mg/ml
Tricaine (A-5040; Sigma Chemical Co., St. Louis, MO) in distilled water.
The lungs were immediately dissected and cut into 1-mm? pieces under
sterile conditions and then soaked for 24 h in culture buffer (50% L-15,
L-5520 [Sigma Chemical Co.]; 42% distilled water; 8% FBS, F-2442
[Sigma Chemcial Co.]; 40 U/ml Pen-strep, 15075-013 [GIBCO BRL, Gaith-
ersburg, MD]; 1 pg/ml Fungizone, 0437-60 [Bristol-Myers Squibb, New
York]). The lung fragments were then lightly squashed between the lower
glass of the Rose chamber and a dialysis filter (SpectraPor 12-14 kD, 08-
667E [Fisher Scientific, Pittsburgh, PA]); the Rose chamber was filled
with culture buffer. A monolayer of epithelial cells formed after 3 or 4 d.
The dialysis filter was removed after 7 d, leaving the monolayer in the bot-
tom of a shallow dish suitable for micromanipulation. Mitotic activity was
usually most intense over the next 48 h. Almost all experiments were done
before the cultures were 12 d old.

Microscopy and Micromanipulation

All microscopy was done with an inverted microscope (Carl Zeiss, Inc.,
Thornwood, NY) using a 60X, 1.4 NA differential interference contrast
objective and an XY motorized stage. Glass micropipettes were prepared
using a puller (model 87; Sutter Instrument Co., Novato, CA) and were
then cut using a forge to obtain sharp edges. A hydraulic micromanipula-
tor was used to move the pipettes. All mechanical experiments were car-
ried out using a combination of stage and manipulator movement. When
strong adhesion of the chromosome to the micropipette was required, the
micropipette was filled with culture buffer. For elasticity measurements
using aspiration, 10 g/liter BSA (A3156; Sigma Chemical Co.) was added
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to the filling solution to prevent sticking of the chromosome to the glass
micropipette.

Stretching Single Chromosomes Using a Micropipette

The micropipette diameter (2 pm) must be chosen to be slightly less than
the total chromosome diameter (3 wm) to ensure strong chromosome—
pipette contact. After insertion of the pipette into a mitotic cell while pos-
itive pressure difference (relative to atmospheric pressure) of 100 Pa was
maintained, the first 2-4 wm of a chromosome was aspirated using 100 Pa
of suction. After 30 s, the chromosome was stuck to the glass, and further
aspiration was not necessary. The pipette could then be moved from the
cell to stretch the chromosome, while it was anchored at its other end to
the mass of other chromosomes.

The bending of the pipette, when translated perpendicular to its axis,
measured the force it exerted on the chromosome. However, since one
uses a stiff pipette to penetrate the cell, this measurement is not very sen-
sitive. The elasticity of the pipette is 107 = 30% Newton/um; this was de-
termined by a two-step calibration procedure. First, the elasticity of a thin
wire was measured using a balance. This wire was then used, under the mi-
croscope, to bend the micropipette.

Measurements of Young Modulus

Chromosome elasticity for small deformations was measured using aspira-
tion into the micropipette. Contrary to the stretching experiment de-
scribed above, the pipette was this time fixed and maintained inside the
cell, and pressure difference inside was used to extend the chromosome.
As before, a pipette is introduced inside the mitotic cell, and weak suction
is used to grab a chromosome. At some point as the chromosome slides in,
a seal is made at the end of the pipette. From this point on, the only part of
the chromosome that can be deformed is the portion inside the micropi-
pette. The length of that portion is then measured as a function of pres-
sure. Note that to avoid adhesion of the chromosome inside the pipette,
the medium filling the pipette contained BSA.

The length measurement was made by digitizing images on a computer
and has a precision of 5%. The uncertainty on the pressure measurement
is also in the range of 5%, mainly because of drift problems. Finally, possi-
ble sticking of chromosomes to the pipette glass added another uncer-
tainty. After the release of pressure, if the measured length was different
from the original one by more than 10%, the measurement was discarded.

Elasticity Definitions and Relations

Strain. The strain used in this paper is longitudinal deformation and is de-
fined as e = AL/L, where L is the original length of the chromosome and
AL is the added length due to the application of tension. (Note that the
precise definition of the strain includes a term proportional to (AL)?,
which may be ignored for measurements of the Young modulus as long as
data for AL/L <1 are used; see Landau and Lifshitz [1986].)

Young Modulus. The Young modulus Y is the proportionality factor be-
tween the force per unit area (or pressure) exerted and the resulting di-
mensionless deformation: P = Ye. Typical hard materials (e.g., metals and
glass) have a Young modulus of the order of 10'° Pa. (1 Pascal = 1 New-
ton/m? is the unit of pressure). For synthetic polymer gels, Y is in the
range of 10*-10° Pa (Horkay et al., 1989).

Poisson Ratio. A longitudinal deformation of a solid is always accompa-
nied by a change (almost always a decrease) in its thickness. The Poisson
ratio o relates relative change in the thickness, €y, to relative change in
length: €, = —o€. A typical value is o = 0.3.

Bending Modulus. The bending of a thin rod is characterized by one
elastic coefficient, called the bending modulus B (Love, 1944). The elastic
energy E per length of rod is proportional to the square of its curvature k:
E/L = B «?/2. Curvature is just the inverse of the radius of the circle that
describes the bend. If the curvature varies with arc length s along the rod,
the total energy is just given by the integral E = (B/2)[«’ds. Thus, the
minimum-energy shape is straight (x = 0). The bending modulus in terms
of the Young modulus of the rod and the rod radius R is B = (m/4)YR*
(Love, 1944). B has dimensions of energy times length.

Polymer Definitions and Relations

Persistence Length. A thin rod can be bent by thermal fluctuations. The
persistence length of a thin rod is defined as L, = B/kgT, where kg =
1.4 X 1072 J/K is Boltzmann’s constant, and T is absolute temperature.



To see what this means, consider that a typical thermal fluctuation has en-
ergy kgT; thus, given the bending energy above, the length of rod L that
can be bent through an angle of one radian by thermal fluctuation satisfies
kgT =~ B/L. So the persistence length is the length of rod that is typically
deflected by about a radian by thermal fluctuations. Roughly speaking, L,
is the smallest length scale over which bending fluctuations can be ob-
served; a rod is essentially straight on scales smaller than its L,,. For dou-
ble-stranded DNA, L,~ 0.05 wm; for polymerized actin, L,~ 0.5 wm; for
microtubules L, =~ 5 mm.

End-to-End Size of Thermally Bent Rod. Consider a rod of length L >
L, Thermal fluctuations produce random bends along the rod. Thus, the
rod becomes a “random walk” of L/L,, steps, each of length L. The aver-
age distance between ends of a random walk grows as the square root of
the number of steps in the walk. Thus the mean distance between the ends
of the rod will be L. =~ L, ‘/L/Lp. (The exact result for the average of L2
is 2L L,; note that the average end-to-end displacement in any direction is
zero since the polymer may reorient in any direction.) Applied to a poly-
mer (e.g., a DNA longer than a few kilobuses), L, corresponds to the size
of a typical “random coil” conformation (de Gennes, 1988).

Elastic Response of a Single Polymer. Consider a single polymer sub-
jected to a force F between its ends. Knowing that the spontaneous fluctu-
ation of the end-to-end distance is L, indicates that if we force the ends of
the chain to be a distance X apart, there will be a free energy cost of
~kgT(X/L.)* (assuming that X is small compared to L). This free energy
cost is due to there being fewer configurations available to the chain (its
entropy is reduced) if its ends are pulled apart. The derivative of the free
energy with X is just the force required to obtain extension X, or F = kg
TX/L2. A single flexible polymer thus displays linear entropic elasticity
that is strictly of thermal origin. Since the unperturbed overall size of the
polymer is L., we define its strain as € = X/L,; giving us F = (kgT/L,)e.

Polymer Gel and Young’s Modulus. A polymer gel is a network of cross-
linked polymers, swollen in a solvent that has affinity for the chains.
(Think of a three-dimensional jungle gym with flexible links.) From the
point of view of this paper, it is immaterial whether the gel is composed of
many polymers cross-linked together (e.g., an agarose gel as prepared for
electrophoresis), or a single tremendously long fiber cross-linked to itself
many times (a conceivable model for a condensed chromosome). The rel-
evant polymer length is the amount of chain between successive
crosslinks. If this is more than a persistence length, each chain segment in
the gel will display entropic elasticity, and therefore the network as a
whole will be an elastic medium.

Suppose the average length of chain between cross-links is L. A simple
estimate for the elasticity of a gel is obtained by summing up the elastici-
ties of all the inter—cross-link segments, assuming each to be a random
walk when no stress is placed on the network and further assuming each to
be equally deformed when stress acts. Note that these assumptions imme-
diately limit the maximum strain toe = L/L, = \/L/2Lp (the ratio of total
length of a typical segment to its random walk size).

Given the distance between cross-links &, we can estimate the force per
area, or pressure, corresponding to a given strain. Note that £ may be less
than L.; given one cross-link, the nearest cross-link may not be along the
same chain. Consider a volume L, on a side. The number of chains in that
volume is (L,/£)’, and therefore the number of chains per area is L /&*. To
have an overall strain €, each chain must have a strain e, so the force per
area in the gel is p = (kgT/€)e. Following the definitions above, the gel
Young’s modulus is Y = kg7/€. Notice that this is precisely one kgT per
cross-link, which gives the intuitively reasonable result that there is a free
energy cost of kg7 per constraint imposed on the network. (In general,
“freezing” one microscopic thermally fluctuating degree of freedom costs
kgT in free energy.)

If the polymers in the gel are thin filaments of cross-sectional radius R
as above, then the fraction of space (volume fraction) ¢ taken up by the
polymer is ¢ = wR2L/¢. Thus, the gel Young modulus may be expressed
in terms of the length of inter—cross-link fibers and the volume fraction as
Y = kT ¢/(wLR?) (de Gennes, 1988). The latter formula with ¢ = 1 cor-
responds to the elasticity of a network after all solvent is removed and is a
rough description of a piece of rubber.

Effect of Entanglements on a Gel. Two chain segments in a gel may be
entangled together, meaning that they may not be individually free to ex-
plore all random walk conformations thanks to unremovable links or
knots. This is a poorly understood area of polymer statistical mechanics,
but entanglements may be very roughly taken into account by considering
each entanglement to contribute an additional cross-link to the network.
If we suppose that there are n entanglements per chain segment in our gel,
a very rough estimate of the gel modulus is Y = kg Td(1 + n)/(wLR?). This
line of argument indicates that increased entanglement boosts the modu-
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lus of a gel (stiffens it); resolution of entanglements in a gel will reduce its
modulus.

Results

The large size of newt cells (~100 wm) and of their mitotic
chromosomes (~20 pm long) make them ideal for micro-
manipulation. In the following, the term “chromosome”
always refers to a pair of sister chromatids; all stretching
experiments were performed on the two sisters together.

Two types of experiments are described below. The first
was used to study large deformations and forces by
stretching the chromosomes between the cell and a mi-
cropipette. The micropipette, when moved perpendicular
to the stretching direction, was observed to bend. Calibra-
tion of this bending allowed simultaneous measurement of
force and strain. The second was used to measure small
deformation and forces by stretching the chromosome un-
der suction inside the micropipette, the tip of which was
corked by the chromosome. The elastic (Young) modulus
was thus deduced.

Large Deformation of Chromosomes and Thin
Fiber Formation

Large deformations were studied by exploiting the very
strong adhesion of the chromosome to the pipette at one
end and to the mass of other chromosomes at the other
end. The chromosome is suspended between the pipette
and the cell, in the culture buffer. The pipette is then
moved to deform the chromosome by a given amount and
brought back (Fig. 1).

The resulting shape of the chromosome depends on this
deformation. We define the length of the chromosome af-
ter each cycle as the minimal length over which the chro-
mosome is straight. (If the pipette is pushed closer to the
cell, one observes bends or helicies along the chromo-
some.) We first observe that the final shape of the chromo-
some depends only on the imposed deformation. Expo-
sure to the buffer for a long time (1 h) or restretching the
chromosome by the same amount does not change the
chromosome morphology.

The different chromosome morphologies obtained after
different deformations can be categorized as follows:

Elastic Regime. For e < 10, the chromosome is highly
elastic, relaxing to its initial “native” length and appear-
ance (Fig. 2 a). Such a large range of elasticity is rare (most
materials are elastic only for € < 0.01) but is characteristic
of polymer gels (Horkay et al., 1989) or of extensible elas-
tic objects, such as a helical spring (Love, 1944). The elas-
tic Poisson coefficient can be evaluated directly from the
images (the diameter of the chromosome decreases as € in-
creases) giving 0.20 = 0.05. This regime of perfect elastic-
ity indicates that there is a well-defined elastic modulus for
a chromosome.

Plastic Regime. When € is larger than 10, the relaxed
chromosome is longer than its original length; it no longer
returns to its native state (Fig. 2, b—d). For example, a
chromosome with native length of 20 wm, after stretching
to 300 wm (e = 14), relaxes to a length of about 30 pm.

This increase in length is inhomogeneous: Part of the
chromosome remains thick while part of it is thinned. The
border between these two regions is usually at the kineto-



chore. In contrast to the elastic regime, the length and di-
ameter after plastic deformation vary with e. The thinned
chromosome diameter decreases from 3 to ~0.8 pm as € is
increased from 10 to 25-35 (depending on the rate of de-
formation).
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Figure 1. The tip of a chro-
mosome is grabbed inside
the micropipette, and the
chromosome is suspended
between the ensemble of
other chromosomes and the
pipette (a). The portion be-
tween kinetochore and pi-
pette is then progressively
stretched by a factor of 10
(b—d). The micropipette is
then brought back to the
original position (e). No plas-
ticity is observed, and the
chromosome recovers its
original length. The duration
of the deformation-release
cycle was 30 s. Bar, 10 pm.

Fig. 3 shows an interesting aspect of the plastic behavior
for € = 20. When the micropipette tip is brought back near
the cell so as to slightly compress the chromosome, tran-
sient undulations develop along parts of the chromosome.
Those undulating regions relax into a region of thicker

Figure 2. The state of the chromosome af-
ter different cycles of deformation—
release, when the pipette is brought back
near the cell. (a) e = 10, similar to Fig. 1 e;
(b) e = 15; (c) € = 20; and (d) € = 55. Dur-
ing the last cycle (bottom), the chromo-
some broke and was released from the pi-
pette. The shape observed is stable over at
least 1 h. Bar, 10 pm.



Figure 3. After a chromosome elongation of 20 times, the pipette was brought back near the cell. An undulating shape appeared near
the tip (@), which relaxed (b and c) to a straight line (d) after 1.5 s (photographs taken every 0.5 s). Bar, 10 pm.

straight chromosome after 1 to 2 s. If the pipette is pushed
closer, stable helices appear (Fig. 4). Some but not all of the
plastic deformation can be reabsorbed by the chromosome.

Thin Filament. For € larger than ~ 30, the relaxed chro-
mosome converts to a thin filament that is 15 times the
length of the original thick chromosome. Further elonga-
tion proceeds by elastic deformation of this thin filament.

The conversion of the chromosome to thin filament is
not only irreversible, but it also depends on the rate of de-
formation. Most of our cycles of deformation-release are
done at speeds of less than 20 wm/s. At higher speed, the
transition is abrupt, with part of the chromosome suddenly
relaxing while the remainder extends to thin filament.

Finally, for e = 100, the filament breaks. (The precise
value of € at breaking depends on rate of elongation, rang-
ing from 60 to 100; Fig. 5.) The deflection of the micropi-
pette at the breaking point indicates a force between 90 to
150 nanonewtons. It is not easy to deduce the Young mod-
ulus of the thin filament from the force measurement. The
thickness d of the thin filament when highly stretched is at
the resolution limit of the microscope, and its measure-
ment is critical for the Young modulus [Yy,, = F/(ed?)].
Our best estimate is Yy,;,, = 1-5 X 10° Pa.
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When the tension on the thin filament is released, fol-
lowing either partial or total conversion of the chromo-
some to this form, portions of it take on a helical shape.
Each helical turn involves 5 to 10 pm of relaxed thin fila-
ment. Both left- and right-handed curls were observed.
Fig. 6 a shows a thin filament after its breakage. If we then
perturb it with a flow, the helical filament behaves like a
spiral spring (Fig. 6, b—d).

Young Modulus Measurements

We now return to the elasticity regime where the deforma-
tions are relatively small (e < 2). Using aspiration of chro-
mosomes, we measured the deformation as a function of
pressure inside the pipette (Fig. 7). Results for 10
metaphase chromosomes are shown in Fig. 8; at meta-
phase Y., = 1,000 = 200 Pa. As mentioned above, the
Poisson ratio of metaphase chromosomes was measured to
be 0.20 = 0.05. Thus, the metaphase chromosome has a
Young modulus about two orders of magnitude less than
that of the thin filament.

The same type of experiment was also carried out for



Figure 4. Stable helix formed after a plastic deformation. Bar, 10 pm.

cells at prometaphase, immediately following (<10 min)
nuclear envelope breakdown (NEB).! Data from three
NEB chromosomes are shown in Fig. 8; Yygg = 5,000 =
1,000 Pa. Between NEB and metaphase, the chromosome
Young modulus ranges from 5,000 to 1,000 Pa, but it is dif-
ficult to follow this variation since the duration of mitosis
varies from cell to cell.

Discussion

Let us summarize our observations. Metaphase chromo-
somes have a Young modulus of 1,000 Pa and are elasti-
cally deformable by up to 10 times. Under higher stress,
they are transformed into a thin fiber that is 15 times the

1. Abbreviation used in this paper: NEB, nuclear envelope breakdown.
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native chromosome in length. The thin filament is itself
elastically deformable by at least a factor of six, and its
Young modulus is in the range of 1-5 X 10° Pa.

In the following, we present a model for the structure of
thick chromosome and thin filament consistent with our
observations. We also discuss the variation of the Young
modulus during the cell cycle. We finally show that the
shape of the anaphase chromosome allows us to deduce
the resistance of the cytoplasm to the motion once the
Young modulus is known.

Chromosome Structure

Remarkably, the metaphase chromosome returns to its
original size after being lengthened by a factor of 10.
There are two classes of materials that exhibit elasticity
over such a large range of extension.

Chromatin Gel. The first possibility for the structure of
the metaphase chromosome is that of a polymer gel, i.e.,
where the length is stored in random thermal fluctuations
of a cross-linked network of flexible chains. Since each
chromatid is composed of a single contiguous chromatin
fiber, chromatin is known to be flexible (recent experi-
ments indicate a persistence length of roughly L, =~ 50 nm
[Castro, 1994]), and it is known that the chromatin is peri-
odically constrained (i.e., to form the “loops” discussed by
many authors [Paulson and Laemmli, 1977, Gasser et al.,
1986; Cook et al., 1990; Saitoh and Laemmli, 1993]), it be-
hooves us to consider whether chromosome elasticity can
be plausibly attributed to elasticity of a chromatin gel,
rather than to the rigidity of some internal “scaffold.”
Stretching a gel forces the chains to extend, reducing their
entropy, thus requiring work to be done. The maximum
extension possible for a polymer gel is roughly the ratio of
the length of the chains between cross-links to the random
walk size of the chains (see Materials and Methods).

Our measurement of the Young modulus (1,000 Pa)
rules out the possibility that the initial elasticity is that of a
chromatin gel. To see this, consider that the observed ex-
tensibility by 10 times requires that the length of fiber be-
tween cross-links be L = 200L, =~ 10 um (Materials and
Methods). Such a gel will have a Young modulus of
roughly kgT/(mwLR?), where ¢ is the fraction of volume
occupied by the polymer. (The remaining fraction 1 — ¢ is
supposed to be occupied by “solvent,” or more precisely
the fraction of cytosol that can freely enter and leave the
spaces between chromatin fibers.) Plugging in the required
L = 10 pm, setting ¢ = 1 (this maximizes the modulus es-
timate) and using kg7 = 4 X 1072! J and R = 15 nm, we
find Y, = 0.6 Pa. The large L required by the observed
extensibility necessitates a tiny elastic modulus. The ob-
served elasticity is not plausibly due to that of the constitu-
ent chromatin and therefore must be due to the springlike
elasticity of a coiled or folded internal fiber.

Folded or Coiled Fiber. The second possibility is that of a
fiber with permanent bends along its length. The perma-
nent bends store a large amount of length that can be lib-
erated by tension. The simplest example of such a structure
is a regular helical spring, but one could envision a mixture
of left- and right-handed helical turns, or a zigzag structure.

This case is compatible with the idea of a folded or
coiled chromosome scaffold (Paulson and Laemmli, 1977,
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Figure 5. Breakage of the thin filament after 75 times extension. Note the irregular undulating shape that appeared. (a) t = 0.0s; (b) t =
0.2s;(c) t = 0.5 s; and (d) t = 0.8 s. Because of the fast breakage and relaxation dynamics, it is hard to keep the filament in focus. Bar, 10 pm.

Gasser et al., 1986; Boy de la Tour and Laemmli, 1988; Sai-
toh and Laemmli, 1993; Hirano and Mitchison, 1994) and
is consistent with several of our observations. First, we ob-
serve a sharp transition from thick chromosome to thin fi-
ber; the transition is sharpened by rapid extension. Sec-
ond, after relaxation, the thin fiber is mechanically stiff
and has a permanent undulating shape. Third, a geometri-
cal argument can be advanced to support the picture of a
thin filament that is bent or wrapped into the metaphase
chromosome, as follows. Suppose the thin filament of di-
ameter d is wrapped into N successive solenoidal turns of
diameter D that form the thick chromosome. The length
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of the thick chromosome is then L = Nd, while the length
of the filament / = NwD, so l/LL = wD/d. This is consistent
with our observed elongation /L = 15 and diameter re-
duction D/d = 4, when the thick chromosome is converted
to thin filament.

Thin Filament Structure

For € > 10, metaphase chromosomes were permanently
lengthened. Supposing that the metaphase chromosome is
composed of a folded or coiled filament, this plasticity and
the extraction of the thin filament is to be interpreted as
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Figure 6. A broken thin filament attached to the pipette and deformed by flow. From top to bottom: (a) the original shape; (b) the fila-
ment stretched by the flow (the flow was produced by movement of the XY stage relative to the pipette); (c) 1.4 s after flow stopped,;

and (d) 2.8 s after flow stopped. Bar, 10 pm.

the progressive failure of structural elements that define
its intrinsic shape. Eventually, the entire chromosome is
converted into a thin filament that displays elasticity over
a sixfold range of extensions and a Young modulus of
Yihin = 1-5 X 10° Pa.

We are thus faced with a second case of a large range of
elasticity. Since Yy = 107 Yipera, We can reuse the argument
of the previous section to again argue against the thin fila-
ment being a polymer gel. The thin filament itself should
therefore be constituted of a “basic fiber” that is wrapped
or folded so as to again provide a reservoir of length.

In the experiments described above, the two sister chro-
matids were always deformed together, while our discus-
sion of their unfolding considers them as independent. In
the initial elastic regime, the main question is of the contri-
bution of interchromatid entanglement to the Young mod-
ulus. In the next subsection, we will see that this is at most
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a small part of the measured Young modulus. During the
plastic deformation, the permanent and irreversible bends
that form may indicate that the original compactions of
the two underlying sister thin filaments are correlated. An
observation due to Boy de la Tour and Laemmli (1988) of
opposite helical handedness of sister chromatids indicates
the same conclusion. On the other hand, the helical shape
of the thin filament may reflect that the two chromatids
have been forced to uncoil during their extension (possibly
in conjunction with the constraint that they stay alongside
one another) and when released have refolded in some
way unrelated to their native folding. This direction of ar-
gument again suggests that the helical shape of the thin fi-
ber comes from the necessity that the chromatids be un-
coiled to be lengthened. Further experiments are needed
to clarify this issue. It would be very interesting to study
single chromatids assembled from Xenopus egg extracts,



for which there is some evidence for a helical “scaffold”
(Hirano and Mitchison, 1994).

Decrease of Young Modulus during Mitosis

We observed that the chromosome Young modulus de-
creased from 5,000 Pa at NEB to 1,000 Pa at metaphase.
This gradual weakening of the chromosome can simply be
explained by supposing a structural change in the internal
scaffold. Just to raise one possibility, it is known than 70%
of the topoisomerase II present at NEB is progressively
removed before anaphase (Sweldow et al., 1993). This re-
moval may reduce the chromosome stiffness.

A second possibility is that resolution of entanglements of
the sister chromatids during NEB to metaphase might
weaken the chromosome elasticity. The maximum change in
Y that can be possibly obtained is (L/L,)kgT/(wLR?) = k,T/
(wL,R?). This supposes maximal entanglement (one per per-
sistence length of chromatin, certainly a large overestimate)
at NEB and total disentanglement at metaphase. This ex-
treme estimate only accounts for an ~100 Pa change in Y.
We conclude that the observed change in Y is due to a struc-
tural change of the bent scaffold.
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Figure 7. Young modulus measurements:
deformation of the chromosome inside the
pipette under aspiration. Deformation is
measured as a function of the pressure dif-
ference (AP) between inside the pipette
and the culture medium. From top to bot-
tom: (a) AP = 0; (b) AP = 44 Pa. Arrows in-
dicate the tip of the chromosome. Bar, 5 pm.

Young Modulus and the Shape of
Anaphase Chromosomes

This paper was mainly dedicated to the elasticity of the
chromosomes as a probe of their internal structure, but
our results also allow us to solve an apparent paradox con-
cerning the forces exerted during anaphase.

Nicklas (1983) measured that the spindle exerts a force
of ~700 piconewtons on a chromosome at anaphase. This
level of force was puzzling because previous calculations
(Nicklas, 1965; Taylor, 1965) had shown that even assum-
ing a cytoplasm viscosity as large as 1 Poise, the force
needed to move a chromosome at 0.3 pm/min would be
only about 0.1 piconewton. The spindle is thus applying a
force 10* times larger than might be expected. To explain
this paradox, Nicklas considered a few mechanisms, in-
cluding a feedback system to limit chromosome velocity.

The basic physical facts indicate that these large forces
are really required to move chromosomes. The shape of
the chromosome, its Young modulus, and the force ex-
erted by the cytoplasm are closely related. An elastic cylin-
der pulled by its center and moving through any medium is
submitted to a drag force that tends to bend it. At constant
speed, the force exerted by the medium equals the force
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Figure 8. Young modulus measurement. Pressure vs. deforma-
tion for chromosome just after NEB (closed circles) and at
metaphase (open circles). The slope of the curves is the Young
modulus. Yygg = 5,000 = 1,000 Pa; Y, = 1,000 = 200 Pa.

that pulls the object. The bigger the force, the more severe
the bending. In the case of high drag force, a cylindrical
object takes a U shape, which is what is observed for chro-
mosomes pulled at their kinetochore by the spindle. The
distance X between the arms of the U, the exerted force
Fy, the Young modulus Y, and the radius R of the chromo-
some are related by F, = 6mYR*X?, which can be ob-
tained using classical elasticity theory (see Appendix).

Note that this result can be estimated by dimensional
analysis: The bending modulus B = YR* and the distance
X are the only quantities in the problem, and the only way
to form a force from them is the ratio B/X? To obtain this
relation, no assumption about the effective viscosity of the
cytoplasm, or even whether or not it has Newtonian be-
havior, is required; only the fact that there is a drag (fric-
tion) force in balance with the driving force is invoked.

For newt chromosomes, X = 2 pm, R = 0.7 pm, and Y
= 1,000 Pa, so the force exerted by the spindle, and there-
fore the total resistance presented by the surrounding me-
dium, is ~1,000 piconewtons. This means that the resis-
tance of the cytoplasm to the movement of the chromosome
is orders of magnitude higher than what would be encoun-
tered in a 1-Poise viscous fluid, as supposed by Nicklas and
Taylor. This is not surprising if one considers that a large
object like a chromosome has to move by deformation of a
network of cytoplasmic filaments. The drag force on a
large object could consequently be much larger than the
drag inferred from motion of small molecules.

It should be remarked that the bending modulus of the
chromosome has not been directly measured, but rather
deduced from the Young modulus. The relation B =
wYR*4 holds for uniform solids because bending causes
the same kind of local deformations as stretching. (Note
that on the outer edge of a bend, an object is stretched,
while on the inner edge, it is compressed.) However, one
can imagine a chromosome with a very flexible yet inex-
tensible filament running down its center, or a chromo-
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some that is predominantly liquid. Our observations of
elastic and plastic behavior make these possibilities seem
unlikely, but of course they must be checked experimen-
tally. We are planning a direct measurement of the bend-
ing modulus to definitively settle this point.

Appendix

Computation of the Resistive Force during Anaphase

The relation F, = 6mYR*X? introduced in the last section
relates drag forces to the U shape of the chromosome dur-
ing anaphase movement. In this appendix, three routes to
this equation are described, in order of increasing detail.
We consider an elastic rod of length 2L , pulled at its cen-
tral point (centromere) by a (spindle) force F. The rod ex-
periences resistive (drag) forces K distributed along its
length (K is a force per length of rod), which when
summed balance F, (Fig. Al). Under the action of these
forces, the rod bends to form a U shape.

Our first estimate will be the simplest and least satisfy-
ing. We consider the situation where the force is large
enough that the rod is tightly bent near its center, with its
nearly parallel arms lagging behind. The drag forces will
be spread nearly evenly along the arms, so we can estimate
that K = Fy/L in order for total drag force to balance the
spindle force. Arguing that the deformation and therefore
the elastic energy is concentrated at the hairpin bend and
the radius of the bend is approximately X, we estimate the
elastic energy to be E =~ B/X. The length of rod in the
bend is ~X and the curvature is ~1/X (see Materials and
Methods). Since the bend is made by forcing the ends of
the bent region together by a distance ~X, the (drag)
force that must be applied to make such a bend should be
just E/X, or B/X?. Thus, we arrive at a relation between
the total drag force ~KL, which is in balance with the
spindle force Fy, and X: Fy = KL = YRYX?.

The first estimate is essentially dimensional analysis and
does not address the complications that X is not precisely

Figure Al. Bending of an elastic rod due to drag forces distrib-
uted along its length.
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given by the radius of curvature of the hairpin bend and
that both drag forces and the deformation are not uni-
formily spread along the entire length of chromosome.
The complete equations of elastic equilibrium for the rod
are (Landau and Lifshitz, 1986)

d’o .
B— =Fsno (A1)
ds
dF _
- K (A2)
B(s=0)= g (A3)
do
ds|s=*L=0 (A4)

where s is the contour length along the rod (s = O corre-
sponds to the middle of the rod, or centromere), 6 is the
angle between the y-axis and the tangent to the rod at
point s, F(s) is the net external force acting on the rod
from point s to its free end L, B is the bending modulus
(for a cylinder of radius R, B = mYR*/4; see Materials and
Methods), K is the density of external forces acting on the
rod at point s, and

=+L
Kds=F

(see Fig. Al). Note that as the applied forces are symmet-
ric, one needs only to solve these equations for one half of
the rod (i.e., for 0 < s < L), with the equivalent boundary
condition that the rod be “clamped” ats = 0.

Before going to the complicated case in which K is
spread along the entire rod, we solve these equations for a
simpler case which the drag force is concentrated at the
lagging ends. Suppose that instead of resistive forces dis-
tributed along the rod, we have drag forces of Fy/2 (note
that the total drag must balance the spindle force F)) ap-
plied to the ends (s = *=L). This simple case is the classic
problem of a rod clamped to a table and bent by a weight
hung from its free end (Landau and Lifshitz, 1965; Sec. 19,
problems 1 and 2), which has exact solution

(L sin 6 d6
X =2/B/F :
Nwoe AJcos[B(L)] — cosb
where 6(L) is the angle between the tangent to the rod at

the extremity (S = L). Replacing B and computing the in-
tegral,

(AS5)

4
Fo = R (cosfa(L)))>.
X

(A6)

For strong pulling, the rod ends will be forced to be along
the y-axis, giving cos [6(L)] =1. (The precise value of cos
[6(L)] can of course be computed from the exact solution.)
So, the magnitude of the resistive force can thus be de-
duced from the bending of the rod. As before, we find that
Fy= YRYX.

Finally, consider the case of a chromosome pulled dur-
ing anaphase toward the pole. As the migration speed is
constant, the pulling force and the drag forces balance,
and the chromosome bends. The amplitude of these forces
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can be inferred from the bending since we know the elas-
ticity constant from other measurements. The problem is
to choose a reasonable model for the drag forces. As the
chromosome has to pass through a network of filaments,
the frictional forces applied to a small segment of it plausi-
bly depend on its projected length in the x direction, or

K(s) = gsin[B(s)]. (A7)

This accounts for the effect that a segment of chromosome
will experience a bigger force if it is parallel to the x-axis
(with its tangent perpendicular to velocity) than if it is
parallel to the y-axis (tangent parallel to velocity). The co-
efficient g depends on the deformability of the filament
network, on the speed of the chromosome, and other
shape-independent parameters.

Using this expression for the drag force density, inte-
grating the differential equations Al and A2 and using
boundary conditions in Egs. A3 and A4, we find

3

— FO A8
9= |&Bcos[B(L)] (A8)
and

1/6
ds = 2 65— (cos{6(L)]) d2/3. (A9)
Fo(cos[B(L)] - cosh )
The distance X between the arms is
X = 2-rsineds: 2ﬁ§ (cos[6(L)])Y2, (A10)
0 0

which again reduces to Fy = YR*/X? for strong pulling (cos
[6(L)] = 1).

The value of the drag force is not very sensitive to the
choice of the form of the force density function K(s); the
extreme choice of all drag force concentrated at the telo-
meres gave the same magnitude of spindle force and bend-
ing. It should be noted that Nicklas (1965) has observed
that the velocity of chromosomes during anaphase is inde-
pendent of their length. This is in good agreement with our
model: The value of the spindle force required to move the
chromosomes is independent of the chromosome’s length
L, as long as L > 2(B/F,)"? = 1 pm for newt chromo-
somes.

In summary, the force which resists chromosome move-
ment during anaphase is also responsible for chromosome
bending and can be deduced by measuring their deforma-
tion.
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