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Abstract
Evidence for an important link between sensitization of midbrain dopamine (DA) neuron reactivity
and enhanced self-administration of amphetamine and cocaine has been reported. To the extent that
exposure to nicotine also sensitizes nucleus accumbens DA reactivity, it is likely that it will also
impact subsequent drug taking. It is thus necessary to gain an understanding of the long-term effects
of exposure to nicotine on nicotinic acetylcholine receptors (nAChRs), neuronal excitability and
behavior. A review of the literature is presented in which different regimens of nicotine exposure are
assessed for their effects on upregulation of nAChRs, induction of LTP in interconnected midbrain
nuclei and development of long-lasting locomotor and DA sensitization. Exposure to nicotine
upregulates nAChRs and nAChR currents and produces LTP of excitatory inputs to midbrain DA
neurons. These effects appear in the hours to days following exposure. Exposure to nicotine also
leads to long-lasting sensitization of nicotine’s nucleus accumbens DA and locomotor activating
effects. These effects appear days to weeks after drug exposure. A model is proposed in which
nicotine exposure regimens that produce transient nAChR upregulation and LTP consequently
produce long-lasting sensitization of midbrain DA neuron reactivity and nicotine-induced behaviors.
These neuroadaptations are proposed to constitute critical components of the mechanisms underlying
the initiation, maintenance and escalation of drug use.
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1. Introduction
Many abused drugs, including amphetamine, cocaine, opiates and nicotine, activate brain
dopamine (DA) neurotransmission, increase locomotor activity and support self-
administration in humans and laboratory animals. When repeatedly administered, these effects
are enhanced so that re-exposure to the drug, weeks to months later, produces greater
dopaminergic and behavioral activation than seen initially. This long-term enhancement in the
ability of such drugs to activate DA neurotransmission and elicit appetitive behaviors is termed

*, Correspondence: Department of Psychiatry, The University Of Chicago, 5841 S. Maryland Avenue, MC3077, Chicago, IL 60637,
TEL: 773/702-2890, FAX: 773/702-0857, E-MAIL: pvezina@yoda.bsd.uchicago.edu.
Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting
proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could
affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
Prog Neuropsychopharmacol Biol Psychiatry. Author manuscript; available in PMC 2007
December 14.

Published in final edited form as:
Prog Neuropsychopharmacol Biol Psychiatry. 2007 November 15; 31(8): 1625–1638.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



sensitization and may have relevance to the initiation, maintenance and escalation of drug use
that is characteristic of the transition from casual experimentation with drugs to drug craving
and abuse in humans. Sensitization may also contribute to the reinstatement of drug taking in
individuals after prolonged abstinence. Understanding the mechanisms that underlie the
induction and expression of sensitization may thus help elucidate the neural events and
neuroadaptations underlying the development, maintenance and reinstatement of drug abuse
and indicate how they may be prevented.

Among these drugs, nicotine has received far less attention and little is known about its long-
term effects or their impact on the pursuit and self-administration of the drug. Considering that
rats, like humans, will work to obtain this drug, and that its use is most often characterized by
habitual, repeated intake over long periods of time, it is clear that the potential is present for
the development of long-term effects with harmful consequences for the individual. This is
underscored by the findings of epidemiological studies strongly suggesting that previous
exposure to nicotine places individuals at risk for future nicotine use despite widespread
appreciation of the dangers associated with continued exposure to tobacco.

This review focuses on sensitization as a potential adaptation that impacts the pursuit and self-
administration of nicotine. As such, it is not meant to provide a comprehensive review of all
adaptations that have been reported following exposure to the drug. Indeed, other adaptations
like tolerance have received far more attention (Collins et al., 1988; Stolerman, 1999; Perkins,
2002). The contribution of other effects of nicotine, such as its ability to interact associatively
and non-associatively with contextual stimuli, has been addressed by others (Caggiula et al.,
2002; Donny et al., 2003) and will not be discussed here (for a discussion of conditioning-
sensitization interactions, see Stewart and Vezina, 1988, 1991; Anagnostaras and Robinson,
1996). Rather, this review concentrates on describing the background and rationale for a model
outlining how nicotine exposure can lead to long-lasting sensitization of midbrain DA neuron
reactivity and nicotine-related behaviors. The neuroadaptations leading to this form of
plasticity are proposed to constitute critical components of the mechanisms underlying the
initiation, maintenance and escalation of drug use.

2. Exposure to nicotine and the subsequent pursuit of the drug
Tobacco use in humans is the leading cause of preventable, premature death in the United
States (US Department of Human and Health Services, 1988). This 1988 report of the Surgeon
General concluded that nicotine is the drug in tobacco that causes addiction and it has been
reported that almost all smokers meet diagnostic criteria for dependence. The enormous
negative impact of tobacco use on the health of the individual and society as a whole has created
an urgent need to identify the neuronal mechanisms underlying the generation of nicotine
seeking behaviors as well as those factors that place individuals at risk for such behaviors.
Many social and family environmental risk factors have been identified that promote tobacco
use. In addition, the contribution to smoking of identified nonnicotine factors including sensory
cues, components of tar that reduce nicotine irritation, and MAO inhibitors contained in
tobacco smoke must not be overlooked (Rose, 2006). However, such factors do not negate the
primary reinforcing role of nicotine. Indeed, a number of studies point to the harmful impact
exposure to nicotine, in and of itself, may have on the subsequent display of nicotine seeking
behavior in the adult individual.

Several epidemiological studies have now shown that exposure to nicotine in utero (Kandel et
al., 1994; Hofvendahl et al., 1997; Isohanni et al., 1991; cf, Fergusson et al., 1998), during
childhood (Osler et al., 1995) or adolescence (Kandel, 1975; Kandel et al., 1992) can lead to
a greater predisposition to use nicotine and other drugs in adulthood. Considering that the use
of nicotine is most often characterized by habitual, repeated intake over long periods of time,
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it is likely that short- and long-term drug effects are produced that would serve to perpetuate
the pursuit of the drug in adults. It has been suggested, for example, that exposure to nicotine
during development or in adulthood may induce modifications in the mesoaccumbens DA
system that increase individuals’ predisposition to initiate and maintain tobacco use (Kandel
et al., 1994). Curiously, there have been few animal studies of the effect of nicotine exposure
on the subsequent pursuit of the drug and consequently few attempts made to investigate such
a possibility. In one study, adult rats were exposed to seven daily injections of nicotine and
tested for self-administration of the drug starting the day following the last exposure injection.
Slight but significant enhancements in the acquisition of nicotine self-administration were
found in drug compared to saline exposed animals (Shoaib et al., 1997). In another study, again
conducted in the adult rat, it was shown that previous exposure to nicotine enhanced this drug’s
ability to support conditioned place preference (Shoaib et al., 1994). These limited findings,
suggesting that the pursuit of nicotine is enhanced by prior exposure to the drug, are reminiscent
of the effects of other psychomotor stimulant drugs. These are reviewed below.

3. Mesoaccumbens DA, sensitization and drug seeking
Psychomotor stimulant drugs produce their locomotor effects and support self-administration
behavior at least in part through their action on the mesoaccumbens DA system. VTA DA
neurons that project to the NAcc are a central component of recent theories of drug taking and
are a focus for many investigations of underlying mechanisms.

Wise and Bozarth (1987) argued, for example, that a wide range of addictive substances,
including nicotine, have in common the ability to elicit approach behaviors by virtue of their
actions on this system. For the psychomotor stimulants, there is considerable evidence to
support this view (Deminiere et al., 1989; Bozarth, 1991), both for self-administration of
(Roberts et al., 1980; Pettit et al., 1984; Woolverton and Virus, 1989; Caine and Koob, 1994)
and locomotor responding to these drugs (Clarke at al., 1988b; McCreary and Marsden,
1993; Meyer et al., 1993; Vezina, 1996).

Robinson and Berridge (1993) have proposed that addictive drugs and associated
environmental stimuli elicit excessive incentive salience and craving due to their ability to
sensitize mesoaccumbens DA neuron reactivity, an effect known to accompany long-term
locomotor sensitization to these drugs. Repeated exposure to amphetamine and cocaine is well
known to lead to long-term enhancements in NAcc DA overflow and locomotor responding
to these drugs (for references, see Vanderschuren and Kalivas, 2000; Vezina, 2004). In a
manner paralleling this sensitization, previous exposure to these drugs not only promotes self-
administration, but also enhances the acquisition and expression of conditioned place
preference (Lett, 1989; Shippenberg and Heidbreder, 1995). Prenatal exposure to cocaine leads
to enhanced self-administration of the drug in adult rats (Keller et al., 1996; cf, Hecht et al.,
1998). Exposing adult rats to a regimen of amphetamine or cocaine injections known to produce
locomotor and dopaminergic sensitization leads to long lasting enhancements in the subsequent
self-administration of both low doses (Woolverton et al., 1984; Piazza et al., 1989, 1991;
Horger et al., 1990, 1992; Valadez and Schenk, 1994; Pierre and Vezina, 1997, 1998) and high
doses of these drugs (Lorrain et al., 2000; Mendrek et al., 1998; Vezina et al., 2002; for review,
see Vezina, 2004). In addition, enhanced amphetamine self-administration is accompanied by
enhanced extracellular DA levels in the NAcc (Lorrain et al., 2000; Vezina et al., 2002).
Importantly, manipulations known to block the induction of locomotor and DA sensitization
by amphetamine, such as preceding pre-exposure injections of this drug with antagonists for
D1 DA receptors, also block the facilitation of drug self-administration (Pierre and Vezina,
1998; Suto et al., 2002). Similarly, antagonists of AMPA, NMDA and mGlu receptors also
block the facilitation of cocaine self-administration (Suto et al., 2003; for a review, see Vezina
and Suto, 2003). Finally, previous exposure to drugs like Δ9-THC, that fails to sensitize NAcc
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DA overflow in response to amphetamine, does not enhance self-administration of
amphetamine (Vezina et al., 2003). Taken together, these findings strongly support an
important link between the sensitization of midbrain dopamine neuron reactivity and the
facilitation of self-administration of psychomotor stimulant drugs. To the extent that exposure
to nicotine produces sensitization of both its locomotor and NAcc DA activating effects, it is
likely that it will also impact subsequent drug taking. These critical experiments with nicotine
remain to be conducted and carefully evaluated.

4. Mesoaccumbens DA, sensitization and nicotine-induced behavior
In the rat, acute systemic administration of nicotine produces locomotor activation. This
activation may sometimes be preceded by a period of locomotor depression depending on the
dose administered and whether or not animals were first habituated to the test environment
(Clarke and Kumar, 1983a,b; Ksir et al., 1985). When injections are repeated, tolerance
develops to the depressant effect (see Collins et al., 1988) and sensitization of the stimulant
effect of the drug is observed (Clarke and Kumar, 1983a; Ksir et al., 1985). It has also been
demonstrated in several laboratories that intravenous nicotine can maintain stable levels of
self-administration in the rat (Corrigall and Coen, 1989; Donny et al., 1995; Tessari et al.,
1995; Shoaib et al., 1996, 1997; Shaham et al., 1997; cf, Dworkin et al., 1993).

4.a. Acute responding to nicotine
There are several lines of evidence indicating that nicotine, in a manner similar to the above
stimulants, produces these behavioral effects via actions on the mesoaccumbens DA system
(Pich et al., 1997; for a review, see Rose and Corrigall, 1997). Different subtypes of nAChRs
are expressed both on the perikarya and the terminals of neurons in this system (Clarke and
Pert, 1985; Pidoplichko et al., 1997) as well as by non-DA cells and afferent terminals in the
VTA (Schilstrom et al., 1998a,b; Clarke et al., 1985; Dominguez et al., 1994; see below).
Systemically or iontophoretically applied nicotine increases the rate of firing and the
prevalence of burst firing in mesoaccumbens DA neurons (Lichtensteiger et al., 1982; Grenhoff
et al., 1986; Mereu et al., 1987). Studies using a variety of techniques have also shown that
locomotion-inducing systemic or local applications of nicotine increase DA utilization
(Grenhoff and Svensson, 1988; Vezina et al., 1992) and release (Imperato et al., 1986; Mifsud
et al., 1989; Rahman et al., 2003). These, as well as the locomotor effects of nicotine, are
blocked by centrally but not peripherally acting nicotine receptor antagonists (Clarke and
Kumar, 1983a). Nicotine preferentially stimulates activity in and release from DA neurons in
the mesoaccumbens relative to the nigrostriatal system (Mereu et al., 1987; Imperato et al.,
1986; Benwell and Balfour, 1997). Within the NAcc, acute nicotine-induced DA overflow is
observed preferentially in the shell relative to the core (Pontieri et al., 1996). nAChR blockade
in the VTA (but not in the NAcc) reduces the ability of systemically administered nicotine to
increase NAcc DA release (Nisell et al., 1994a) and locomotion (Corrigall and Coen, 1994)
and to support self-administration (Corrigall et al., 1994). Infusion of nicotinic agonists into
this site produces locomotor activation (Reavill and Stolerman, 1990; Leikola-Pelho and
Jackson, 1992; Museo and Wise, 1995; Panagis et al., 1996) and increases NAcc DA release
(Nisell et al., 1994a,b). Finally, DA receptor blockade (Corrigall and Coen, 1991; O’Neill et
al., 1991; Museo and Wise, 1995) and selective lesions of the mesoaccumbens DA system
(Clarke et al., 1988a; Louis and Clarke, 1998; Corrigall et al., 1992) have each been reported
to prevent the ability of nicotine to produce locomotor activation and support its self-
administration. Thus, it is clear from these findings that the mesoaccumbens DA system, and
particularly the VTA, plays a large and critical role in the ability of nicotine to impact behavior.
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4.b. Sensitized responding to nicotine
Based on the findings outlined above, it is reasonable to expect that repeated exposure to
nicotine would produce sensitization of its NAcc DA activating effect. Initial studies produced
mixed results. Although some reported sensitized NAcc DA overflow in response to nicotine
(Benwell and Balfour, 1992; Balfour et al., 1998), others observed either no change (DOPA
accumulation: Mitchell et al., 1989; in vitro [3H]DA release: Harsing et al., 1992; in vivo
microdialysis: Damsma et al., 1989; Nisell et al., 1996) or decreased responding to the drug
(DA utilization: Clarke et al., 1988a; Vezina et al., 1992; Lapin et al., 1989). Following
exposure to nicotine and other drugs, enhanced DA overflow has also been reported by some
to occur in the core rather than the shell of the NAcc (Cadoni and Di Chiara, 1999, 2000;
Cadoni et al., 2000; Iyaniwura et al., 2001), although the opposite has been reported by others
(Pierce and Kalivas, 1995). While attempts have been made to incorporate these findings into
comprehensive models of drug addiction that attribute different specific functions to the NAcc
subnuclei (e.g., Balfour et al., 2000; Di Chiara, 2002), it is important to note that, with the
exception of the experiments by Pierce and Kalivas (1995), testing of NAcc DA responsivity
in the above studies was conducted at short withdrawal times (usually one day) following the
repeated nicotine injections. This point may be critical to the interpretation of these results.
Enhanced NAcc DA overflow in response to amphetamine or cocaine is not observed one to
two days but rather has been reported 10 days to three months following exposure to these
drugs (Hamamura et al., 1991; Hurd et al., 1989; Segal and Kuczenski, 1992a,b; Paulson and
Robinson, 1995; for reviews, see Vanderschuren and Kalivas, 2000; Vezina, 2004), indicating
that it may be associated with the persistence of behavioral sensitization. Consistent with these
findings, one recent report showed that previous exposure to nicotine three weeks earlier led
to enhanced electrically evoked [3H]DA release from NAcc slice (Schoffelmeer et al., 2002).
Thus, it is conceivable that enhanced NAcc DA responding to nicotine is preferentially
expressed after long withdrawal periods, similar to amphetamine and cocaine. Interestingly,
sensitized locomotor responding to nicotine in the absence of enhanced NAcc DA overflow at
early withdrawal times may be mediated, as proposed for amphetamine and cocaine (Wolf et
al., 1994; Kim et al., 2001; De Vries et al., 2002), by functional upregulation of DA receptors
in the NAcc (Suemaru et al., 1993; Birrell and Balfour, 1998; Le Foll et al., 2003).

Another factor that influences NAcc DA responding to nicotine is the intensity of the drug
exposure regimen. One day following discontinuation of exposure to high drug concentrations
delivered continuously over several days (as with an osmotic pump), rats show a decreased
NAcc DA response to a drug challenge injection. Similar findings have been reported for
several drugs of abuse including amphetamine (Wise and Munn, 1995), cocaine (Markou and
Koob, 1991), heroin (Leri et al., 2003) and nicotine (Benwell et al., 1995). For nicotine, such
regimens lead to expression, in the days following exposure, of a nicotine withdrawal syndrome
characterized by somatic signs of withdrawal and elevated thresholds for intracranial self-
stimulation (ICSS) that is proposed to motivate increased intake of the drug (Epping-Jordan
et al., 1998). The mechanisms underlying these effects remain unknown but appear to involve
alterations in both peripheral (somatic signs: Watkins et al., 2000) and central glutamate and
ACh systems (ICSS thresholds and somatic signs: Watkins et al., 2000; Kenny et al., 2003).
Increasing the dose and duration of exposure to nicotine increases the duration and magnitude
of the withdrawal syndrome observed (Skjei and Markou, 2003; O’Dell et al., 2007).
Conversely, ICSS thresholds are lowered (Kokkinidis and McCarter, 1990; Lin et al., 2000),
locomotor (Leri et al., 2003) and NAcc DA (Benwell et al., 1995; Schoffelmeer et al., 2002)
responses become elevated, and drug seeking increases (Sorge and Stewart, 2005) when
sufficient time elapses between exposure to the drug and testing.

Taken together, these results suggest that tolerance to the appetitive effects of a drug occurs
during and immediately following periods of intense exposure whereas sensitization requires
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time to develop, and that the expression of either is dependent on the drug dose and exposure
regimen. This is consistent with the view that sensitization of dopaminergic reactivity can exert
long-lasting effects that promote the pursuit and self-administration of nicotine and other drugs
(Stewart, 2003, 2004; Vezina, 2004; cf, Di Chiara, 2000; Laviolette and van der Kooy,
2004). It remains, however, that while many nicotine dose and exposure regimens have been
tested for their effect on a number of measures, there has not yet been a systematic assessment
of their impact on the induction and expression of behavioral and dopaminergic sensitization
by nicotine at early and late withdrawal times.

5. nAChRs, mesoaccumbens DA and sensitization of nicotine-induced
behavior

The neuronal nAChR is a pentameric ion channel that is permeable to Na+, K+ and Ca2+

(McGehee and Role, 1995). The nine nAChR subunit genes that are expressed in the
mammalian nervous system include α2-α7 and β2-β4 (Le Novere and Changeux, 1995; Dani
and Bertrand, 2007). In the CNS, high-affinity heteromeric receptors have been proposed to
contain 3 α subunits and 2 non-α subunits (Anand et al., 1991), whereas low-affinity homomeric
receptors contain α7 subunits and exhibit high Ca2+ permeability (Seguela et al., 1993). Current
evidence indicates that mesoaccumbens DA neurons express both high-affinity α3, 4, 5, 6 and
β2 and 3 subunit containing nAChRs, as well as low-affinity nAChRs consisting of the α7
subunit and that these receptors are expressed somatodendritically and on axon terminals
(Marks and Collins, 1982; Clarke, 1993; Pidoplichko et al., 1997; Klink et al., 2001;
Champtiaux et al., 2003; Cui et al., 2003). Both low- and high-affinity nAChRs are also
expressed on afferent inputs to the VTA as well as by non-DA interneurons in this site
(Dominguez et al., 1994; Schilstrom et al., 1998a,b; Mansvelder and McGehee, 2000;
Mansvelder et al., 2002). It has been proposed that nicotine acts preferentially in the VTA to
increase NAcc DA release, enhance locomotor behavior and promote self-administration by
directly or indirectly activating mesoaccumbens DA neurons (Pidoplichko et al., 1997; see also
Sorenson et al., 1998; Schilstrom et al., 1998a,b; Mansvelder et al., 2002). Indirect mechanisms
of activation of VTA DA neurons include modulation of glutamatergic and GABAergic inputs
to these cells to favor excitation (Mansvelder and McGehee, 2000; Mansvelder et al., 2002).
Clearly, nAChRs in the VTA and perhaps other sites are well positioned to regulate the activity
of mesoaccumbens DA neurons and to initiate long-term changes in their reactivity.

A number of phenomena have been associated with nAChRs including short-term activation
and desensitization. Results from early radioligand binding studies both in vitro and in vivo
suggested that nicotine exposure also increases the levels of [3H]-acetylcholine and [3H]-
nicotine binding in several brain areas. This phenomenon, referred to as nAChR upregulation,
was initially hypothesized to underlie both tolerance to this drug’s locomotor depressant effect
(Marks and Collins, 1985) as well as sensitization to its locomotor activating effect (Ksir et
al., 1985, 1987). Subsequent studies showed, however, that a correlation does not always exist
between increased binding and these behaviors. Rats, for example, have been shown to
maintain tolerance to the locomotor depressant effect of nicotine for periods far exceeding
those during which increases in binding are observed (Clarke and Kumar, 1983a; Collins et
al., 1988, 1990; Stolerman et al., 1973). In addition, increased binding has been observed in
the absence of enhanced locomotor responding to nicotine (Ksir et al., 1987).

5.a. Transient upregulation of nAChRs, LTP and the induction of sensitization
The lack of correlation between sensitized behaviors and nAChR upregulation excludes this
phenomenon as the primary cause but it is possible that the transient upregulation of nAChRs
observed following nicotine exposure represents an early step in a sequence of neuronal events
that lead ultimately to sensitized responding. Chronic exposure to nicotine in vitro was recently
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shown to produce an upregulation of ACh-evoked currents in rat and human α4β2 nAChRs
expressed in human kidney epithelial cells (Buisson et al., 2000; Buisson and Bertrand,
2001; Vallejo et al., 2005) or cultured rat midbrain neurons (Nashmi et al., 2003). Similarly,
exposing rat pups to nicotine in vivo was found to enhance ACh-evoked currents in α4β2- and
α4β3-like nAChRs in hippocampal slices (Alkondon and Albuquerque, 2005). The importance
of transient receptor desensitization in the upregulation of nAChRs remains to be determined
(Pidoplichko et al., 1997). Within the VTA, receptor desensitization is important in the acute
nicotine-induced decrease in GABAergic drive to DA neurons (Mansvelder et al., 2002). How
this phenomenon is altered by chronic nicotine exposure and whether it is impacted by nAChR
upregulation are questions that remain to be answered. It follows that upregulating nAChR
responses on VTA DA neurons would be expected to increase the excitability of these cells
directly and would favor the induction of drug-induced LTP of the excitatory inputs they
receive. These processes could contribute to the induction of NMDA-dependent sensitization.
DA neuron activation increases somatodendritic DA release creating a positive feedback on
local glutamate release (Kalivas and Duffy, 1995; Wolf and Xue, 1998). The potentiation of
excitatory inputs onto VTA DA neurons by drugs like cocaine and nicotine has been proposed
as a possible component of sensitization (Ungless et al., 2001; Saal et al., 2003). Both are
prevented by NMDA receptor blockade during drug exposure (Shoaib and Stolerman, 1992;
Shoaib et al., 1994; Vezina and Queen, 2000; Ungless et al., 2001; Saal et al., 2003). However,
drug-induced LTP persists for less than 10 days following drug exposure, independent of the
number of exposure injections (Ungless et al., 2001; Borgland et al., 2004). In combination
with the observation that sensitized DA release is seen in NAcc slices that contain DA neuron
terminals but not their cell bodies (Schoffelmeer et al., 2002; for references, see Vezina,
1996), these findings indicate that LTP of excitatory inputs to VTA DA neurons may be
important for the induction rather than the expression of sensitization.

5.b. Localization of relevant nAChRs necessary for the induction of sensitization
Activation of nAChRs is necessary for the induction of locomotor and dopaminergic
sensitization not only by nicotine but also by other drugs such as amphetamine and cocaine
(Schoffelmeer et al., 2002). These findings indicate a central role for nAChRs in drug
sensitization. Upregulation of nAChRs is observed in a number of brain regions following
exposure to nicotine (see Table 1) and appears to occur in receptors containing the α3, 4, 6 and
β2 subunits (Ryan and Loiacono, 2001; Mugnaini et al., 2002; Parker et al., 2004). Results
from some groups suggest that upregulation of the high-affinity nAChRs occurs through
modifications in receptor assembly and trafficking, leading to a greater number of cell surface
receptors (Peng et al., 1994; Harkness and Millar, 2002; Nashmi et al., 2003; Sallette et al.,
2005). Alternatively, nAChR upregulation may involve a conformational change that
hypersensitizes the receptor by increasing both its response and sensitivity to agonist (Vallejo
et al., 2005; see also Buisson et al., 2000; Buisson and Bertrand, 2001; Alkondon and
Albuquerque, 2005). Notably, either model would lead to increased reactivity in the cells
expressing upregulated receptors.

As outlined above, there are several reasons to suspect that nAChRs in the VTA play a critical
role in the induction of sensitization by nicotine. These receptors have been implicated in the
ability of nicotine to increase locomotion and NAcc DA overflow as well as to support self-
administration. They have also been implicated in cocaine place preference (Zachariou et al.,
2001), the self-administration of methamphetamine and morphine (Glick et al., 2002) and, to
some extent, in brain stimulation reward (Yeomans and Baptista, 1997). Nicotine is also known
to upregulate these receptors and to enhance the synaptic strength and produce LTP of
excitatory synapses onto VTA DA neurons (Mansvelder and McGehee, 2000; Saal et al.,
2003). Consistent with these findings, it was recently shown that blocking nAChRs in the VTA,
but not in the NAcc, during exposure to a moderate intermittent nicotine injection regimen
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blocks the induction of long-term locomotor sensitization observed three weeks later.
Importantly, the same nicotine exposure regimen also produced a transient upregulation of
nAChRs in the VTA observed 3 hours but not 3 days or 3 weeks following exposure. No
upregulation of nAChRs was observed in the NAcc at any time tested (Baker et al., 2005).
These findings indicate that nAChRs in the VTA, but not the NAcc (in a manner reminiscent
of the effects of amphetamine; Vanderschuren and Kalivas, 2000; Vezina, 2004), are necessary
for the induction of sensitization by nicotine and that transient upregulation of nAChRs
specifically in sites important for nicotine sensitization may be associated with this effect.

It should be noted that, unlike more intense exposure regimens that produce nAChR
upregulation in several brain regions (see Table 1), the sensitizing regimen of nicotine
injections used by Baker et al., (2005) above was relatively moderate and may be particularly
well suited for characterizing the selective regulation of nAChRs in different brain areas and
their participation in the induction of behavioral sensitization by nicotine. That said, the
significance of nAChR upregulation observed in other sites must be assessed. For example,
upregulation of nAChRs in the NAcc may enhance the ability of nicotine to amplify phasic
relative to tonic firing induced DA release in this site (Rice and Cragg, 2004;Zhang and Sulzer,
2004). Both the PFC and amygdala are involved in the induction of sensitization by
amphetamine (Wolf et al., 1995;Cador et al., 1999), although their contribution to nicotine
sensitization remains unknown. Other sites include the pedunculopontine (PPT) and
laterodorsal (LDT) tegmental nuclei. Upregulation of nAChRs following exposure to nicotine
does not appear to have been assessed in either nucleus. However, both sites have been heavily
implicated in the effects of nicotine. For example, pharmacological inhibition, selective
cholinergic lesions of the PPT or blockade of nAChRs in this site reduce nicotine self-
administration (Lanca et al., 2000a;Corrigall et al., 2001,2002), whereas non-selective lesions
of the PPT block VTA nicotine induced conditioned place preference (Laviolette et al.,
2002). Although most efferents from the PPT project to the substantia nigra (SN), this nucleus
also sends some ACh, GABA and glutamate efferents to the VTA that could contribute to these
effects (Oakman et al., 1995;Charara et al., 1996). The LDT on the other hand, sends major
ACh projections to the VTA (Charara et al., 1996;Omelchenko and Sesack, 2005) that, together
with glutamate inputs, modulate NAcc DA release (Blaha et al., 1996;Forster and Blaha,
2000;Forster et al., 2001). Nicotine and ICSS increase Fos immunoreactivity in both sites
mostly in non-cholinergic cells (Lanca et al., 2000b;Nakahara et al., 2001). The latter has also
been shown to increase ACh efflux in the VTA, an effect that may depend on inter-connectivity
between the LDT and PPT (Semba and Fibiger, 1992;Forster et al., 2002;Miller et al., 2002).

The findings obtained thus far for nicotine sensitization are consistent with and extend current
circuit models of sensitization proposed for other psychostimulants (e.g., Vanderschuren and
Kalivas, 2000). In these models, descending glutamatergic projections from the infralimbic
prefrontal cortex to the VTA are argued to play a critical role in the induction of sensitization
by drugs such as amphetamine and cocaine. However, the fact that these projections do not
form synapses with mesoaccumbens cells in the VTA (Carr and Sesack, 2000) has made it
difficult to propose a direct role for these cortical afferents in the sensitization process. On the
other hand, both the PPT and LDT receive afferents from the prefrontal cortex (Cornwall et
al., 1990; Semba and Fibiger, 1992) and in turn send ACh, GABA and glutamate projections
to the VTA (Charara et al., 1996; Forster and Blaha, 2000; Omelchenko and Sesack, 2005),
positioning them well to play an important role in the induction of sensitization by nicotine.
The circuit diagram in Figure 1 illustrates the interconnectivity between these and other nuclei
that may be important for sensitization by nicotine.
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6. Nicotine exposure and sensitization of nicotine-induced behaviors
Taken together, the findings reviewed above are consistent with the model of the impact of
nicotine exposure proposed and outlined in the flowchart below. In this model, nicotine
exposure first produces transient upregulation of nAChR function, leading to enhanced
excitation of midbrain DA neurons and the induction of LTP. These successive events lead
ultimately to long-lasting sensitization of midbrain DA neuron reactivity and to behavioral
manifestations of sensitized responding to the drug.

exposure tonicotine → nAChRupregulation → LTP → DAsensitization → behavioral sensitization

As reviewed earlier, two factors interact to influence responding to nicotine after exposure to
the drug: the intensity of the drug exposure regimen (as determined by the number of injections
and the drug dose) and the time of testing following exposure to the drug. As illustrated in
Figure 2, increases in the intensity of the drug exposure regimen would be expected to lead to
temporally different outcomes in subsequent responding to nicotine. Moderate exposure
regimens (Figure 2B) are known to lead to a progressive long-lasting increase in nicotine’s
locomotor effects and later enhancement of its DA activating effects (Clarke and Kumar,
1983a;Ksir et al., 1985,1987;Schoffelmeer et al., 2002;Baker et al., 2005), whereas intense
exposure regimens (Figure 2C) are not associated with enhanced locomotor or DA responding
(Ksir et al., 1987;Benwell et al., 1995) but rather with expression of somatic signs of withdrawal
and elevated ICSS thresholds in the period soon after exposure (Epping-Jordan et al., 1998).
Long-lasting increases in locomotor and DA responding to nicotine are likely to emerge later
after the negative withdrawal effects have dissipated.

A critical element of this model is the role played by nAChR upregulation and LTP in the
initiation of the long-lasting neuroadaptations underlying sensitization. Both moderate and
intense nicotine exposure regimens are associated with transient upregulation of nicotine
binding sites (see Table 1). Although less is known about functional nAChR upregulation and
LTP following different nicotine exposure regimens, based on reports with cocaine (Borgland
et al., 2004), it is likely that these effects are also transient. Thus, exposure regimens that
produce nAChR upregulation and LTP would be expected to sensitize responding to and for
nicotine (Vezina, 2004). With more intense drug exposure regimens, such as continuous
exposure to high concentrations with an osmotic minipump, the sensitized phenotype would
likely be established via the same mechanisms, but the expression of DA and behavioral
sensitization would only be measurable after recovery from the drug withdrawal effects.

Findings obtained with psychomotor stimulants such as amphetamine support an important
link between the long-lasting sensitization of midbrain DA neuron reactivity and the enhanced
self-administration of these drugs (Vezina, 2004). To the extent that nicotine acutely increases
locomotion and NAcc DA release, and that repeated exposure to the drug leads to sensitization
of both effects, it is likely in light of these findings, that exposure to nicotine can also have
long lasting effects on subsequent drug taking. This possibility has not yet been directly
assessed. Interestingly, rats characterized as showing enhanced nAChR function in the VTA
(High vs Low Responders to novelty; Fagen et al., in revision), also show enhanced drug-
induced NAcc DA responses (Bradberry et al., 1991; Hooks et al., 1991) and enhanced nicotine
self-administration (Suto et al., 2001). The potentiated excitatory input onto VTA DA neurons
observed in High Responder rats does not, in and of itself, provide a good model for the long-
lasting expression of sensitization as it is observed for only a short period after drug exposure
in sensitization experiments (e.g., 5 days; Ungless et al., 2001). Nonetheless, conditions that
enhance excitation of VTA DA neurons are conducive to the induction of sensitization (Vezina,
2004) and High Responder rats are more susceptible to develop sensitization (Pierre and
Vezina, 1997). Thus, together, the above findings are consistent with the hypothesis that drug
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exposure regimens that lead to nAChR upregulation and potentiation of excitatory synapses
onto VTA DA neurons (or the presence of these conditions in High Responder rats) could lead
to long lasting locomotor and dopaminergic sensitization that promotes self-administration of
the drug. For a number of cultural and political reasons, along with the limited number of
neurobiological investigations, nicotine addiction has been somewhat underestimated. Despite
this history, it is clear that nicotine has profound long-term effects on behavior and it is likely
that this drug induces lasting changes in neurochemistry analogous to those reported for cocaine
and amphetamine.

Long-term neuroadaptations produced by previous exposure to nicotine or psychostimulants
could thus exert critical impact on liability to initiate or resume excessive drug use (see also
Koob and Le Moal, 1997). It has been argued, however, that the escalation of drug intake
observed in rats given long (6-hr) rather than short (1-hr) access to cocaine in a self-
administration paradigm (Ahmed and Koob, 1998) reflects tolerance (Ahmed et al., 2002)
rather than sensitization of the appetitive (locomotor and DA activating) properties of the drug.
This view is based in part on the lack of evidence for sensitized responding in tests conducted
during or soon after the escalating phase of the experiments (Ahmed et al., 2003; Ahmed and
Cador, 2006). Importantly, the absence of evidence for sensitization in these experiments is
entirely consistent with the idea that sensitization develops gradually and is observed at later
time points following drug exposure. If sensitization is not expressed in these animals, the
escalation of drug intake observed could very well have been due to the incremental recruitment
of opponent processes (Koob and Le Moal, 1997) or tolerance to the drug’s aversive or
suppressive effects (Robinson and Berridge, 1993, 2004; Zernig et al., 2004). It is argued here
that sensitization may be a consequence of drug exposure in all of these cases, but that the
timing of the behavioral and biochemical assays is critical for its assessment. According to the
current model, sensitization could exert its impact on behavior during self-administration
testing in rats previously exposed to the drug (e.g., Vezina et al., 2002), as well as long after
drug exposure in these sessions. Interestingly, unlike cocaine, escalation of intake does not
occur in rats given long (12-hr) access to nicotine (Kenny and Markou, 2006), which may
reflect differences between the two drugs in the opponent processes or aversive effects each is
associated with. It is important to note, however, that the total daily intake in this study (0.38mg/
kg/1-hr and 1.36mg/kg/12-hr) was within the range previously observed to produce nAChR
upregulation (see Table 1) and thus would be expected, according to the current model, also
to lead to long-lasting sensitization in responding to nicotine.
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Figure 1.
Illustration of interconnectivity between nuclei and neurotransmitters in a thalamo-cortico-
pontine-VTA-NAcc circuit proposed to be important for locomotor sensitization by nicotine.
Data already support a role for part of this circuit (excluding the LDT/PPT) in sensitization by
psychostimulants (Pierce and Kalivas, 1997; Vanderschuren and Kalivas, 2000). To date,
findings indicate that activation of nAChRs in the VTA, but not the NAcc, is necessary for the
induction of sensitization by nicotine. Exposure to a sensitizing regimen of nicotine injections
also produces transient upregulation of nAChRs in the VTA but not the NAcc (Baker et al.
2005; see Section 4b). Dotted lines indicate weaker projections. 1. Semba and Fibiger, 1992.
2. Beckstead et al., 1979. 3. Cornwall and Phillipson, 1988, 4. Inglis et al., 1994. 5. Charara et
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al., 1996. 6. Omelchenko and Sesack, 2005. 7. Forster and Blaha, 2000. 8. Woolf and Butcher,
1989. 9. Krettek and Price, 1977. 10. Sesack and Pickel, 1992. 11. Bubser and Deutch, 1998.
12. Jones and Mogenson, 1980. 13. Cornwall et al., 1990. 14. Swanson, 1982. 15. Zahm et al.,
2001.
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Figure 2.
Proposed model of the effect of increasingly intense exposure regimens on the induction and
long-lasting expression of sensitization by nicotine. Plots show predictions by the model of
effects produced by three examples of exposure regimens ranging from weak to intermediate
to intense. A. Weak. Exposure to an insufficient number of injections or subthreshold doses
of nicotine is without effect on any of the measures. B. Intermediate. Moderate exposure to
nicotine (e.g., 5 injections of 0.4 mg/kg, i.p., one injection every other day) leads to the
progressive enhancement of the drug’s locomotor and later enhancement of the drug’s DA
activating effects. C. Intense. Prolonged and continuous exposure to nicotine (e.g., 15 days of
continuous 3.0/mg/kg/day, s.c., or repeated injections of high doses) does not enhance
responding in the days following termination of drug exposure. Enhanced responding is
predicted to appear at later withdrawal times. Both intermediate and intense exposure regimens
have been associated with transient nAChR upregulation. Transient expression of LTP has
been reported following repeated injections of cocaine and is predicted to occur transiently
following both nicotine exposure regimens. Both effects are proposed to be the initiating

Vezina et al. Page 24

Prog Neuropsychopharmacol Biol Psychiatry. Author manuscript; available in PMC 2007 December 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



neuroadaptations leading to long-lasting sensitization by nicotine. See text for supporting
references.
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