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Abstract
Magnetic Resonance Microscopy (MRM) has created new approaches for high-throughput
morphological phenotyping of mouse models of diseases. Transgenic and knockout mice serve as a
test bed for validating hypotheses that link genotype to the phenotype of diseases, as well as
developing and tracking treatments. We describe here a Markov Random Fields based segmentation
of the actively-stained mouse brain, as a prerequisite for morphological phenotyping. Active staining
achieves higher signal to noise ratio (SNR) thereby enabling higher resolution imaging per unit time
than obtained in previous formalin-fixed mouse brain studies. The segmentation algorithm was
trained on isotropic 43-micron T1- and T2-weighted MRM images. The mouse brain was segmented
into 33 structures, including the hippocampus, amygdala, hypothalamus, thalamus, as well as fiber
tracts and ventricles. Probabilistic information used in the segmentation consisted of a) intensity
distributions in the T1- and T2-weighted data, b) location, and c) contextual priors for incorporating
spatial information. Validation using standard morphometric indices showed excellent consistency
between automatically- and manually-segmented data. The algorithm has been tested on the widely
used C57BL/6J strain, as well as on a selection of six recombinant inbred BXD strains, chosen
especially for their largely-variant hippocampus.
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Introduction
Magnetic Resonance Microscopy (MRM) has become a routine imaging modality for a
spectrum of mouse models of human neurological conditions. By studying the morpholgy of
the brain in transgenic and knockout models of mice (Deng and Siddique 2000); (Price, Wong
et al. 2000; Wong, Cai et al. 2002; Hashimoto, Rockenstein et al. 2003), one can obtain insight
into the role of genetics and environment in the brain and its response to disease. MRM, with
spatial resolution at 10–100 microns, provides a unique non-destructive, three-dimensional
(3D) representation of anatomical structures. Numerous studies have demonstrated the value
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of 3D MR morphometry in mouse models (McDaniel, Sheng et al. 2001; Redwine, Kosofsky
et al. 2003; Wilson, Petrik et al. 2004; Cyr, Caron et al. 2005; Bock, Kovacevic et al. 2006).

Most of the previous morphometric studies on the mouse brain have relied on manual and semi-
automated methods to identify and delineate structures. Manual segmentations are tedious,
error-prone, and are not scalable to larger studies. Automated segmentation in the mouse brain
has received attention in the context of 3D probabilistic MR atlases. Several groups have
addressed segmentation in the mouse brain as a registration problem (Kovacevic, Henderson
et al. 2005); (Iosifescu, Shenton et al. 1997; Ma, Hof et al. 2005; Bock, Kovacevic et al.
2006). The approach has been to manually trace structures on a reference brain volume, non-
linearly register the reference brain to the test brain, and then transfer the labels using the warp
resulting from the grayscale registration. The standard reference brain consists of a single
representative brain that has been selected from a group of brains, which are artifact-free and
intact (Ma, Hof et al. 2005), or an averaged result from a group of brains (Kovacevic, Henderson
et al. 2005). Segmentation of new brains was accomplished in the latter case, following iterative
steps of non-linear registration between a continuously updated reference brain and the target
brains. Labels were then transferred from the atlas to new brains. In the work by Ma et al.
(Ma, Hof et al. 2005), a T2*-weighted brain scan was used as the reference brain. This single
brain was labeled into 20 structures. The reference brain and its labels were then non-linearly
registered into the target brains. This provided an initial ‘pilot’ segmentation of the brains, after
which the labels were manually corrected for more accurate labeling.

These approaches have potential drawbacks. Registration errors can cause structure
mismatches and unevenness of boundaries, for which a post-registration correction is usually
required. Using a single reference brain can bias the registration towards the individual anatomy
that has been used as the reference. On the other hand, averaging multiple brains retains only
that information which is common to the majority of the specimens. In this case, the generation
of the average brain obscures some of the underlying variability in the structures, a factor that
might be important for assessing morphometric differences within and between groups.
Kovacevic and colleagues (Kovacevic, Henderson et al. 2005) pointed out that in the average
MR atlas, the definition of larger structures was enhanced, but smaller structures were
penalized due to a local blurring effect and their inherent variability.

We have approached the segmentation task by a sequential execution of registration, followed
by voxel classification based on the MR intensities and the spatial priors. In previous work,
we outlined a multi-spectral MR acquisition protocol and algorithm for automated
segmentation of formalin-fixed mouse brains into 21 different structures (Ali, Dale et al.
2005). The approach was based on previous work in human brain MRI that uses spatial and
intensity priors for brain tissue classification (Kapur, Grimson et al. 1998; Cocosco, Zijdenbos
et al. 2003) and structure labeling (Zavaljevski, Dhawan et al. 2000); (Fischl, Salat et al.
2002; Fischl, van der Kouwe et al. 2004). Unfortunately, this work was not readily scalable to
larger number of animals because the time to execute a complete imaging protocol was
excessive (18 hours). With the use of active staining techniques for the mouse brain (Johnson,
Cofer et al. 2002), both the T1 contrast and resolution are significantly increased over that of
the formalin-fixed brains, while the acquisition time is considerably reduced (2 hours). In recent
work (Ali Sharief and Johnson 2006),(Ali Sharief and Johnson 2006) we provided a strategy
to highlight an additional independent contrast mechanism (T2) in actively-stained tissues by
using a 3D Carr-Purcell-Meiboum-Gill (CPMG) acquisition in combination with multi-echo
Fourier encoding.

In the current work, we extend our previous segmentation methods to actively- stained
specimens imaged with a multi-spectral acquisition protocol using both T1-weighted and T2-
weighted sequences. The algorithm starts with an initial affine registration to remove
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differences in the brains based on position, orientation, and size. The brains are affine-
registered to a common space; however, their variability is maintained within the atlas. A
probabilistic atlas was constructed from previously-labeled brains, which stored MR intensity
and spatial information for each structure on a location-specific basis. A Bayesian segmentation
algorithm classifies each brain voxel based on the T1-weighted and T2-weighted intensity
distribution, and the spatial information stored in the probabilistic atlas.

To test the segmentation algorithm we segmented a total of 12 brains-6 C57BL/6J brains and
brains from 6 BXD strains. These latter strains were selected on the basis of a large and known
variation in their hippocampal size (Lu, et al., 2001) (Peirce, Chesler et al. 2003). The BXD
recombinant inbred strains (RI) are derived from progenitor strains of C57BL/6J and DBA/2J
and are well characterized genetically. Neuro-anatomical phenotypes in these RI strains were
correlated with genetic loci in a series of studies (Belknap, Phillips et al. 1992) (Martin, Dong
et al. 2006). Segmentation for all brains uses the spatial and intensity priors generated by the
C57BL/6J atlas.

Materials and Methods
Animals

All animal studies were approved by the Duke University Institutional Animal Care and Use
Committee. Six C57BL6/J and six BXD (BXD 1, BXD 6, BXD 24, BXD 28, BXD 29, BXD
40) male mice approximately 9 weeks in age were used in this study. First, the animals were
anesthetized with Nembutal. The fixation-perfusion was done using a transcardial approach,
with an initial flush of saline (10:9, v:v) and gadoteridol (ProHance®, Bracco Diagnostics,
Inc., Princeton, NJ) in concentration (10:1, v:v or 50 mM), then followed by a mixture of 10%
buffered formalin and ProHance (10:1, v:v or 50 mM). The mouse head was stored in the
mixture overnight, and scanned within 24 hours. The brains were scanned in the cranium to
limit any geometric distortion.

MR image acquisition
The fixed specimens were imaged on a 9.4 T (400 MHz) vertical bore Oxford magnet with a
GE (GE Healthcare, Milwaukee, WI) EXCITE console (Epic 11.0). A 14-mm diameter
solenoid RF coil was used for the ex vivo, in situ mouse brains. The shielded gradients on the
system were capable of peak strength of 850 mT/m with a rise time of 100 microseconds.

The image acquisition consisted of isotropic 3D T1-weighted and T2-weighted scans. Both
acquisitions were done with the readout gradient applied along the long (anterior-posterior)
axis of the brain. For the T1-weighted image contrast, we used a 3D spin warp sequence with
parameters: TE/TR of 5.2/50 ms, a field of view (FOV) of 22 × 11 × 11 mm, and a matrix size
of 1024 × 512 × 512 resulting in isotropic 21.5-micron resolution. T2-weighted images were
acquired with a 3D CPMG sequence, described previously (Ali Sharief and Johnson 2006).
The phase and slice-encoding gradients, rewinders, and crusher gradients were balanced by
encoding opposite halves of k-space in the odd and even echo readouts. The protocol produced
8 echo volumes, each with a matrix size of 512 × 256× 256 over a field of view of 22 × 11 ×
11 mm with isotropic 43-micron resolution. Table 1 provides the scan parameters for both, T1-
and T2-weighted protocols. The total acquisition time was reduced to 6 hours by limiting the
acquisition to 75% of the full Nyquist sample along each of the two phase-encoding axes.

For the T2-weighted acquisition, a complex Fourier transform was computed at each voxel
along the echo dimension to generate the T2-weighted image set with the multi-echo frequency
domain image contrast (MEFIC) (Ali Sharief and Johnson 2006). This produced a T2-weighted
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image set with exceptionally high signal-to-noise ratio (SNR) and contrast-to-noise ratio
(CNR).

Image post-processing
The T1- and T2-weignted scans are registered acquisitions with the brain in the same position,
since the specimen is not moved between scans. For computational ease, the T1-weighted
dataset was downsampled to match the resolution of the T2-weighted data. The whole brain
was segmented applying a sequence of morphological operations in ImageJ (Rasband 2004).
The processing started with an initial smoothing, successive steps of erosion, which were
followed by connected component labeling, and dilation. This process removed most of the
tissue and bone surrounding the brains and the remaining skull areas were removed manually,
if required.

The T1-weighted and T2-weighted datasets were intensity normalized, after discarding the
upper 2% of the values in the image histogram. This was performed in order to compensate
for variations in image intensity that take place in similar brain regions in different brains,
primarily due to receiver gain changes. This was done using the following equation (Fisher,
Perkins et al. 1994):

Inorm = Imin + ( (IMAX − IMIN )

(Imax − Imin) × (Iinput − Imin)) (1)

The lower-case subscript refers to the image being normalized and the upper-case subscripts
refer to the values selected for the normalization.

Structure classes identified in the actively-stained mouse brain
On each C57BL/6J brain, 33 structures comprising large gray matter structures, smaller nuclei,
white matter bundles, and the ventricular system were outlined manually. The traces were done
on the T2-weighted dataset. However, both the T1- and T2-weighted images were used for
making decisions regarding boundaries. Each slice was viewed in the horizontal plane and
traced in the same plane proceeding from dorsal-to-ventral. Tracings were done using the
ImageJ plugin, Voxstation (MRPath, Durham, NC). To ensure correct labeling of structures in
all planes, the traces were loaded into the visualization software SHIVA (MacKenzie-Graham,
Jones et al. 2003) and viewed in all three planes simultaneously. Several iterations of the label
correction process were required to ensure anatomically-correct labeling.

The naming conventions and structure definitions are in accordance with the (Paxinos and
Franklin 2001) atlas of the mouse brain. The segmented structures include: septum (SEPT);
nucleus accumbens (ACB); amygdala (AMYG); hypothalamus (HYP); superior colliculus
(SUPCOL); the fimbria (FIMB); cochlear nucleus (COCHNU); lateral lemniscus (LLM); the
anterior pretectal nucleus-dorsal and ventral part (APT) and mesencephalic nuclei with the red
nucleus (MRN) of the midbrain; and groups of thalamic nuclei, including the laterodorsal
thalamic nucleus-dorsomedial and ventrolateral parts (LDDM), ventral thalamic nucleus (VT),
and the geniculate nucleus (GN). The VT consists of the ventral anterior nucleus (VA), the
ventral lateral nucleus (VL), and the ventral posterior nucleus (VP). The geniculate nucleus
consists of the lateral and medial geniculate nucleus. Table 2 provides the all structure labels
and the abbreviations adopted in this study.

Construction of the probabilistic atlas and segmentation
We used the same methods to generate the probabilistic atlas and the subsequent segmentation
as that described in detail by Ali and colleagues (Ali, Dale et al. 2005). We include here the
most important features. For the registration, a representative brain from the MRM datasets
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was used as the reference. Each brain was registered to the reference brain using an affine
registration algorithm (Rueckert, Frangi et al. 2003) with 12 degrees of freedom, and b) a
nonlinear registration algorithm (courtesy of Anders Dale) (Fischl, Salat et al. 2002). The atlas
was created by registering each of the C57BL/6J brains into a common space using one brain
as the reference. The transformation parameters used for the intensity registration were also
applied to the manually-traced labels of the C57BL/6J brains to bring them into a common
reference space. The probabilistic atlas was then created by extracting intensity and spatial
priors from each of the non-linearly aligned MR data and the corresponding labeled data.

The intensity distribution of every anatomical structure was modeled as a multivariate Gaussian
characterized by a mean and a covariance matrix. Spatial prior information was incorporated
in two forms in the probabilistic atlas—a location prior and a contextual prior. The location
prior is simply the prior probability of the occurrence of a label at a voxel location. This is a
measure of the number of times a particular class occurs at a voxel location. The contextual
priors were estimated by computing pairwise probabilities for every combination of structure
pairs between the voxel under consideration and the six neighboring voxels taken one at a time
in the first order neighborhood:

P(v)kik j
=

# vox{L (v) = ki ∣ L (Nv) = k j}

# vox{L (v) = ki}
(2)

where P(v)kikj is the probability of observing the class ki at location ν, when class kj occurs at
a voxel in Nv in the neighborhood. A histogram function computes the number of times the
particular label configuration has occurred; probabilities are then stored in a K × K matrix for
every atlas location v for all 6 directions around the voxel of interest. K is 34 for 33 structure
classes and one miscellaneous class (undecided or background). Currently the information is
extracted at a scale of 43 microns and then averaged in a 3 × 3 grid around each voxel. Both
the intensity and spatial priors were stored on a location-per-location basis. In the classification,
intensity values at each voxel were evaluated only against means and covariance values that
describe the MR intensity distribution data of structures occurring at that location in the atlas.

The segmentation algorithm was applied in the atlas space and the labels that were generated
were then retransformed back to the original space. For the C57BL6/J brains, the segmentation
of each brain utilizes the atlas priors created by keeping that particular brain out of the atlas
construction, the jack-knife approach (Quenouille, 1956). The remaining five brains were
registered into a common space, overlaid, and their intensity and anatomical information stored
for every location. All other brains were segmented using priors based on the 6 C57BL6/J
brains.

Bayesian decision theory was employed in the structure segmentation using the image intensity
distribution and the priors computed from the atlas. For classification, the likelihood measure
of class k having generated an image intensity vector Y was computed using the multivariate
Gaussian distribution function. The maximum likelihood estimates of mean μk(v) and
covariance matrix ∑

k
(v) for each class was derived from the training data as follows:

p( Y ∣ L (v) = k) = 1

( 2π)d ∣ ∑k (v) ∣
× exp ( − 1

2 (( Y (v) − μk(v))T∑
k

(v)−1( Y (v) − μk(v)))) (3)

where p([Y]|L(v) = k) is the probability of observing image intensity vector Y if the label at v
belonged to class k. d is the dimensionality of the feature space, which is 2 in this case. The
exponential term is the Mahalanobis distance measure.
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After incorporating the location priors and the contextual priors using Markov Random Fields,
the complete expression for the segmentation using the Bayesian framework is:

argmax p(L (v) = k ∣ L (vi), Y (v), vi) = p( Y (v) ∣ L (v) = k)p(L (v) = k)∏
i=1

k
p(L (vi) ∣ L (v) = k, vi) (4)

where p([Y](v)|L(v) = k) is the conditional probability of observing an intensity vector Y for a
particular class k. p(L(v) = k) is the prior probability of the voxel at v being labeled as belonging

to structure k. ∏
i=1

k
p(L (vi) ∣ L (v) = k, vi) is the joint conditional probability given the current

estimate of labels at location v and vi where vi ∈ Nv. The above equation was evaluated until
no more voxels changed labels. This was followed by a post-processing step of connected
component labeling. Isolated groups of voxels were relabeled according to the majority of
labels in their neighborhood. Fig. 1 illustrates the pipeline used for the segmentation algorithm.

Validation
The algorithm was cross-validated on each of the C57BL/6J and the BXD mouse brain
volumes. Each brain was segmented automatically and then compared with results from its
manual tracings. The C57BL/6J brains were completely segmented manually and
automatically. For the BXD brains, we manually traced only the hippocampus to check the
validity of the segmentation. The segmentation was statistically validated using the percent
voxel overlap and percent volume difference between the automatically-generated labels and
the manually-generated labels. This first metric is known also as the κ index or the Dice
coefficient (Rijsbergen 1979). Letting LM and LA indicate the voxel labeling of a structure from
the manual tracing and automated segmentation, respectively, the percent voxel overlap can
be computed as:

O(L A, L M ) =
V (L A ∩ L M)

(V (L A) + V (L M )) / 2 × 100 (5)

where V denotes volumes, given by the number of voxels. The intersection term in the
numerator makes this metric sensitive to differences in spatial location to a greater extent than
differences in size. Higher values of this metric indicate greater conformity between the
automated and manual segmentation.

Volumetric differences between labeling obtained by the automated and manual methods,
independent of the spatial position, were also evaluated using the percent volume difference:

D(L A, L M ) =
∣ V (L A) − V (L M ) ∣

(V (L A) + V (L M )) / 2 × 100 (6)

A higher value of D leads to a reduced statistical power to detect subtle volumetric changes in
the structures.

To assess the effect of one of the essential components in the segmentation procedure—namely
the registration of test brains to the atlas—we compared the segmentation accuracy for the case
of affine registration versus a higher order, deformable registration
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Results
Qualitative imaging aspects

Six C57BL/6J mouse brains were scanned conforming to the acquisition protocol outlined in
Table 1, using two contrasts: T1-weighting and T2-weighting at an isotropic resolution of 21.5
μm and 43 μm, respectively. Fig. 2 presents an example of slices from registered T1 and T2
acquisitions and illustrates the complementary nature of these two contrasts in the
discrimination of structures. In Fig. 2b, the T2-weighted image shows superior contrast
between regions of inferior colliculus (1), PAG (2), and superior colliculus (3), aiding in their
discrimination. On the contrary, the stained layer of granule cells in the dentate gyrus (4)
appears easier to discriminate in the T1-weighted image (Fig. 2a). Both the T1-weighted and
T2-weighted images show the layering of the cortex (5), though it is more pronounced in the
T2-weighted data. A layered pattern is also seen in the cerebellum (6), consisting of the
innermost fiber tracts, the middle granular cell layer, and the outermost molecular layer. The
T1-weighted image shows with great contrast the layers of the hippocampus. They appear as
hypo-intense—primarily in the region of granule cells in the dentate gyrus, but also, to a lesser
degree, in the pyramidal cell areas in the cornu ammonis (CA1 to CA3). The same areas appear
diffuse in the T2-weighted image, partly due to the lower resolution of the acquisition, but also
because of a different contrast. Similarly, Fig. 3 presents horizontal sections through registered
T1- and T2-weighted datasets at a level through the brain where lateral lemniscus (1-LLM),
lateral and medial geniculate bodies (2-GN), mesencephalic nucleus (3-MRN) ventral thalamic
nucleus (4-VT), and laterodorsal thalamic nucleus (5-LDDM) can be identified in the T2-
weighted image. The optic tract (6-OT) is seen distinctly in the T2-weighted image only. Its
definition in the T1-weighted data is not evident, but the T1-weighted image distinctly shows
the boundary between the septum (7-SEPT) and the fimbria (8-FIMB).

Segmentation evaluation
The combination of two imaging protocols, the enhanced contrast provided by active staining
and MEFIC processing, together with the high resolution of these images allowed the
discrimination of 33 structures, including groups of nuclei, white matter tracts, and the
ventricular system, as listed in Table 1. .

Fig. 4 shows registered coronal slices from a T1-weighted (a) and MEFIC-T2-weighted (b)
data of the brain overlaid transparently with corresponding manual labels (c) and automated
segmentation results (d). We evaluated the correspondence between the labels boundaries and
the image boundaries, as apparent in the two datasets, as well as the similarity of the labels
shapes and their smoothness. A qualitative examination of the segmentations was indicative
of the agreement between the two sets of labels, however a quantitative evaluation represents
a more accurate assessment of the automated segmentation method.

The measurement of the agreement between the auto-segmented labels and the manual traces
was done in two ways: based on the percent voxel overlap and percent volume difference. Fig.
5 illustrates the percent volume overlap between the automated labelings of the 33 segmented
structures and their manual tracings, averaged over the brains in the atlas. The graph illustrates
the mean percent overlap, together with the standard errors from the mean. The volume overlap
is greater than 80% for most structures, except for small irregular or elongated structures, such
as the anterior commisure, cerebral peduncles, interpeduncular nucleus, ventricles, and the
internal capsule. Even small structures, such as groups of nuclei of the brainstem and thalamus,
show high segmentation accuracy: 92.1±0.1% for the mesencephalic reticular nuclei, 86.4
±0.1% for the laterodorsal nucleus of thalamus, 84.5±0.1 for ventral thalamic nuclei, 83.8
±0.1% for anterior pretectal nucleus, and 81.51±0.02 for geniculate body. The percentage
volume difference indicate excellent agreement, with values ranging from 0.8±0.1 % for
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caudoputamen, 1.4±0.2% for cortex, 1.8±0.3% for brainstem to 10.3±2.6 for the geniculate
bodies, 12.7±3.9 for pons, and 13.2±3.7% for trigeminal tract.

Fig. 6 compares the percent volume overlap results for the high-resolution, high-contrast
actively-stained data in this study and the formalin-fixed, comparatively lower resolution data
(90 μm) from our previous segmentation efforts (Ali, Dale et al. 2005). The graph indicates
that the segmentation of almost all structures is improved in the present study with combined
application of active staining, increased resolution, and enhanced T2-weighted contrast. This
metric has been computed and compared for structures that were common in the two studies.
A two-sample t test with unequal variances was performed for the volume overlap comparing
the formalin-fixed brains with the actively-stained brains. Results indicated that for the
structures marked with an asterisk in the graph of Fig. 6, the increase in percent volume overlap
was statistically significant (p<0.05). Significant improvement is seen in the olfactory bulbs,
globus pallidus, caudate putamen, optic tract, anterior commisure, corpus callosum, and
ventricles, as well as for brainstem and cortex. Approaching significance (P<0.01) are the
improvements in segmentation accuracy for hippocampus and substantia nigra. A smaller, yet
distinguishable improvement is noted for most other structures included, with the expection
of thalamus and PAG. Improvement in the segmentation of the globus pallidus was directly
due to the enhanced contrast and definition in the T2-weighted image. The ventricles in the
formalin-fixed excised brain suffered from high variability of shape due to perfusion
differences. The actively-stained insitu protocol corrects for this to some extent and could be
the cause of improved accuracy in their segmentation. The thalamus shows slightly reduced
overlap relative to that seen previously. This could be due to the higher definition of structure
now inside the thalamus than in the earlier study where the thalamus was much more
homogeneous. The thalamus was subdivided into thalamic nuclei classes, which have a high
volume overlap. The other structure segmented with a lesser accuracy is the PAG. However,
the difference between the formalin-fixed and actively-stained results was within the standard
error of the formalin-fixed results.

The volumes of the segmented structures have been computed using both the manual and
automated labeling, using voxel counting and multiplying the number of voxels by the voxel
volume. There was no distinguishable bias in the automatically computed volumes (data not
shown).

Fig. 7 compares the segmentation accuracy between the affine registration and the higher order,
deformable registration. In general, the results indicated a closer agreement between the manual
labels and the automated segmentation based on nonlinear registration, but there is no
statistically significant difference compared to the segmentation based on affine registration
in the case of the C57BL/6 brains. However, when sizeable volume and shape differences are
to be expected, such as in the case of segmenting the brain of a different strain or a genetically
modified variant, a nonlinear registration is the method of choice. Therefore, the nonlinear
registration method was used in a feasibility study where the segmentation has been applied
to a set of BXD mouse brains selected based on the high variability of the hippocampal weight
and volumes, as reported by Lu and colleagues (Lu, Airey et al. 2001). A quantitative evaluation
has been done only on the known variable structure, the hippocampus, and the agreement
between the autosegmented labels and the manual labels ranges from 69.2% for a BXD16 male
mouse hippocampus to 82.6% for a BXD 40 male mouse, with an average value of 77.7± 10.8%
(Fig. 8). These variations have been obtained for the voxel overlap, while the volume difference
between the labeled structures (hippocampi) ranged from 17.6 mm3 for BXD28 to 24.53
mm3 for BXD 16 and 28.4mm3 for BXD40; accounting for a variability up to 34% in the
volume of the segmented structures. Fig. 9 illustrates the automatically generated segmentation
labels overlaid on the anatomy of the BXD 40 mouse strain.
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Discussion
We have shown that the use of multiple contrasts in MR imaging allowed a more
comprehensive understanding of the anatomy compared to any single contrast (Ali Sharief and
Johnson 2006). The layered structure of the cortex and cerebellum have been identified based
on the enhanced contrast of the MEFIC processed T2-weighted images. The increased contrast
in this type of images is due to the rapid signal decay of myelin-associated water in cortical
layers, which are characterized by short T2s.

Several groups of nuclei located in the thalamus (LDDM, VT, GN) and brainstem (APT, MRN,
INFCOL, SUPCOL, PON) have been identified based on the T2-weighted images (see Fig. 2
and Fig. 3). The isolation and volumetric quantification of these nuclei was made possible
using the enhanced T2 contrast, while the high-resolution T1-weighted images allowed a better
discrimination of hippocampal layers (see granular cell layer in the dentate gyrus [4] in Fig.
2) and thin white matter tracts (see optic tract [6] and fimbria [8] in Fig. 3).

Note that the substantia nigra is hypo-intense in the T2-weighted image and hyper-intense in
the T1-weighted image, the internal capsule is clearly demarcated in the T1-weighted image,
but the adjoining globus pallidus is not. The T2-weighted image shows the globus pallidus
(data not shown). The hypo-intensity of basal ganglia structures substantia nigra and globus
pallidus is partly due to deposition of the brain iron ferritin in these regions. This causes
magnetic susceptibility differences decreasing tissue T2s and hence a faster decay of signal.

The use of active staining allowed the identification of brain structures with higher detail, such
as darkly-stained layers in the hippocampus, white matter striations in the caudate, compared
to the formalin-fixed brain. These advantages gained in image contrast also allowed a better
qualitative evaluation of the data before manual segmentation.

Together with active staining, higher resolution, and use of multiple contrasts, including the
MEFIC processing in the T2-weighted acquisition, enabled the labeling of the mouse brain
into a larger number of structure classes and with a higher accuracy than those reported in the
formalin-fixed brain (Ali, Dale et al. 2005). The better definition of structures in the current,
higher resolution, imaging protocols compared to the unstained data, as well as the fact that
the brains were scanned intact in the cranium lead us to believe that the volume estimates in
the actively-stained brains are more accurate that those obtained from brains that were scanned
after extraction from cranium.

The quantization of morphometic parameters like volumes of the segmented structures makes
this method promising for phenotyping the mouse brains. We attempted to segment the brains
of mice from 6 BXD strains, for which the hippocampus shows significant variation, as reported
by Lu et al. (Lu, Airey et al. 2001), ranging from 21.6 mg on one end of the spectrum to 30.8
mg at the other end of spectrum. This variation in hippocampus weight is reflected in volume
differences that can be estimated from MRM segmented images, but also noticeable are
differences in the shape of the hippocampus across strains. A global transformation such as an
affine registration is not enough to compensate for these changes and a local transformation is
required to better match the internal structures of the brain.

A tremendous amount of information regarding the phenome and genome of these BXD mice
is available online (see the Mouse Brain Library at http://www.mbl.org/) and it can be expected
that volumetric morphometry, as made possible by MR histology, will provide a critical data
for connecting specific genetic variations to morphological changes.

The validation of the segmentation method for these six different BXD strains shows promising
results (Fig. 8) towards the applicability of this segmentation technique in mouse strains other
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than the C57BL/6. In the case of the BXD mouse sets, the known genetic background would
enable correlating the anatomical phenotype with other phenotypic features, as well as
genotype markers. The acquisition and segmentation protocols need to be executed rapidly and
the results need to be acquired with a large confidence interval for MRM to become a routine
tool for quantitative morphometry. The results here suggest that this will be possible.
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Figure 1.
Pipeline for atlas construction and brain segmentation. The black arrows indicate the path
followed for construction of the atlas. The arrows with the dotted lines indicate the path for
segmentation of a new test brain.
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Figure 2.
Horizontal slices from (a) T1-weighted and (b) T2-weighted registered acquisitions illustrate
the different capacities of the two scans to discriminate among structures. Nuclei such as the
inferior (1-INFCOL) and superior colliculus (3-SUPCOL), as well as the periaqueductal gray
(2-PAG) have greater contrast in the T2-weighted scan, while the hippocampus and its dentate
gyrus (4) show superior detail in the T1-weighted scan. Cortical (5) and cerebellar (6) layers
are visible, but with different contrast in both images.
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Figure 3.
Horizontal slices from (a) T1-weighted and (b) T2-weighted registered acquisitions illustrating
different contrast in the two scans for lateral lemniscus (1-LLM), geniculate bodies (2-GN),
mesencephalic reticular nucleus (3-MRN), ventral thalamic nuclei (4-VT), laterodorsal
thalamic nucleus (5-LDDM), optic tract (6-OT), septal nucleus (7-SEPT), fimbria (8-FIMB).
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Figure 4.
Coronal sections through the (a) T1-weighted and (b) T2-weighted datasets, and the manual
(c) and automated (d) segmentation results overlaid transparently on the anatomy of the
C57BL/6 mouse brain. The color-coding identifies the segmented structures present in the
selected coronal slice: corpus calossum (CC), hippocampus (HC), fimbria (FIMB), ventricles
(VEN), caudate-putamen (CPU), internal capsule (ICAP), optic tract (OT), amygdala
(AMYG), laterodorsal nucleus of the thalamus (LDDM), thalamus (THAL), hypothalamus
(HYP), ventral thalamic nulei (VT), globus pallidus (GP).
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Figure 5.
Segmentation validation using the percent voxel overlap (dark gray) and the percent volume
difference (light gray) between the automated segmentation results and the manual labels. See
Table 2 for abbreviations.
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Figure 6.
Validation of segmentation based on percent volume overlap between the automated
segmentation results and the manual gold standard. The results of automated segmentation for
structures segmented in both studies show improvement for the higher resolution, actively-
stained images. See Table 2 for abbreviations.
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Figure 7.
Comparison of segmentation accuracy for the C57BL/6J brains based on percent voxel overlap
of automated generated labels against manual labels, for the case of affine-based registration
and nonlinear registration. The results indicated in general a closer agreement between the
manual labels and the automated segmentation when nonlinear registration was used, but the
results do not differ significantly compared to segmentation using affine registration.
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Figure 8.
Hippocampus segmentation validation for six recombinant inbred BXD strains. The percent
volume overlap averages 78%, while the volume difference averages 11%.
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Figure 9.
Segmentation of a BXD 40 mouse brain showing promising results on the applicability of the
segmentation method to other mouse strains. (a) Horizontal slices through the T1-weighted
(left) and T2 weighted (right) images of the BXD 40 mouse brain. (b) Horizontal slices through
the BXD40 mouse brain after its registration to the atlas space. Subtle deformations are
noticeable in the shapes of the striatum. (c) Automatically generated labels overlaid on the
anatomy of the BXD40 mouse brain in a horizontal (left) and a coronal (right) slice. A
qualitative evaluation shows good agreement with the expected labels locations, confirmed
quantitatively by the Dice coefficient for the hippocampus.
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Table 1
Acquisition parameters for imaging protocols used on the actively stained brain.

T1 Multi-echo T2

Flip angle 90 90
NEX 1 1
BW 62.5 kHz 62.5 kHz
TE 5.2 ms 7 ms–112 ms (8 echoes)
TR 50 ms 400 ms
Matrix size 1024 × 512 × 512 512 × 256 × 256
FOV 22 × 11 × 11 mm 22 × 11 × 11 mm
Scan time 2 hrs 4 hrs
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Table 2
Segmented structure names and abbreviations for the actively stained mouse brain.

Structure Abbreviation Structure Abbreviation

Cerebral Cortex CORTEX Trigeminal tract TRI
Cerebellum CBLM Cerebral peduncle CPED
Olfactory bulb OLFBLB Internal Capsule ICAP
Hippocampus HC Brainstem BST
Caudate Putamen CPU Periaqueductal gray PAG
Globus pallidus GP Anterior Pretectal Nucleus APT
Amygdala AMYG Superior Colliculus SUPCOL
Septum SEPT Inferior colliculus INFCOL
Accumbens ACB Substantia nigra SNR
Hypothalamus HYP Pontine nuclei PON
Ventricular system VEN Interpeduncular nucleus IPED
Fiber tracts Cochlear nucleus COCHNU
Corpus callosum CC Mesencephalic nuclei MRN
Optic tract OT Thalamus THAL
Anterior commisure ACOM Laterodorsal thalamic nucleus LDDM
Fimbria FIMB Geniculate nucleus GN
Lateral lemniscus LLM Ventral thalamic nucleus VT
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