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Abstract
Since the discovery of interferon 50 years ago a great deal of progress has been made in understanding
how interferons work and how and why they are induced. Key factors in interferon induction are the
interferon regulatory factors (IRF). In this review of IRF we aim to show you not only the historical
side of the IRF but also the integral, anti-viral and hematopoetic roles of these transcription factors,
as well as the sometimes surprising and even forgotten roles that these proteins play, not only in
interferon signaling but throughout the immune system and the body as a whole. Further research
will no doubt expand the repertoire of these multifunctional proteins even more.

Introduction
It has been 50 years since the antiviral protein interferon (IFN) was first recognized. The
molecular mechanism of the virus-mediated induction of Type I IFN has been under intensive
investigation for the last 30 years. Remarkable progress has been made in recent years in the
identification of cellular receptors detecting the invading pathogens as well as in understanding
the signaling pathways leading to the induction of Type I IFN genes. This chapter will focus
on the transcription factors of the IRF family, which play a critical role in the antiviral response.
We would like this review to be both a historical and a future perspective.

The expression of the Type I IFN genes is strongly regulated and the IFN synthesis, induced
by viral infection is generally transient. Deregulated production of IFN is associated with some
of the autoimmune diseases. The expression of the IFNA and B genes is regulated both on the
transcriptional and posttranscriptional levels. In a context of this chapter we will discuss only
the transcriptional regulation. Initially the virus-mediated activation of IFN-B gene
transcription served as a model for the study of inducible transcription. The sequence domain
in the 5′ region of the IFN genes, termed the virus responsive elements (VRE), contains multiple
GAAANN repeats which are highly conserved in both IFN-A and IFN-B gene promoters [1–
4]. The stimulation of IFN-B gene transcription by viral infection or dsRNA is mediated by a
ternary complex-enhanceosome consisting of NFκB, interferon regulatory factors (IRF),
activated protein 1 (AP-1), JUN and the high mobility protein HMG-1, which are recruited to
the VRE of the IFN-B promoter [5,6] This enhanceosome further recruits histone acetyl
transferases (HAT) and the CREB binding protein (CREB).
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The expression of the IFN-A gene subtypes is also regulated at the transcriptional level [7],
however the VRE of IFN-A promoters do not contain an NFκB site, but have multiple
AANNGAAA repeats which can bind members of IRF family [8–11]. IRF-1, IRF-3 and IRF-7
together with histone transacetylases are part of the transcriptionally active IFN-A
enhanceosome [12]. The differential expression of individual IFN-A subtypes was shown to
be due to distinct nucleotide substitutions in these domains [12–15] as well as the presence of
negative regulatory sequences (DNRE) located in the upstream promoter regions of some IFN-
A subtypes [16]. Thus while the activation of IFN-B gene transcription is regulated by both
NFκB and IRF-3, activation of the IFN-A genes depends mostly on IRF.

The IRF-family
The IRF are transcription mediators of virus-, bacteria- and IFN-induced signaling pathways
and as such play a critical role in antiviral defense, immune response, cell growth regulation
and apoptosis. To date, nine human cellular IRF genes (IRF-1, IRF-2, IRF-3, IRF-4/Pip/ICSAT,
IRF-5, IRF-6, IRF-7, ICSBP/IRF-8 and ISGF3γ/p48/IRF-9) as well as virus-encoded analogues
of cellular IRF have been identified [17,18]. These factors all share significant homology in
the N-terminal 115 amino acids, which contains the DNA-binding domain and is characterized
by five tryptophan repeats. Three of these repeats contact DNA with specific recognition of
the GAAA and AANNNGAA sequences [19]. However, the unique function of a particular
IRF is accounted for by a combination of cell type-specific expression, its intrinsic
transactivation potential, and an ability to interact with other members of the IRF family or
other transcription factors and co-factors [20]. All IRF but IRF-1 and IRF-2 contain the IRF
associated domain (IAD) which mediates these interactions, in the, 3′ terminal part of the
protein. The availability of genetically modified mice, which have distinct IRF deleted revealed
that the function of IRF is not limited to the induction of Type I IFN genes (Table 1).

The first IRF: IRF-1 and IRF-2
The first IRF, IRF-1 and IRF-2 were identified through their ability to bind to the positive
regulatory domain 1 (PRDI) in the VRE of the IFN-B gene and were assumed to function as
an activator and repressor of the IFN-B gene, respectively [22]. However, homozygous deletion
of IRF-1 in mice did not impair activation of IFN-A or IFN-B genes in infected MEFs, while
dsRNA-mediated induction of TypeI IFN was down-regulated [23,24]. Subsequent studies
have revealed that IRF-1 is involved in a broad spectrum of the antiviral defense mediated by
IFN-γ. The induction of nitric-oxide synthetase (iNOS ), guanylate binding protein and 2′,5′-
OAS was impaired in IFN-γ-treated IRF-1 deficient MEFs [25,26]. Induction of iNOS and
IL-12p35 was also inhibited in IRF-1 null myeloid DC. It was than shown that IRF-1 is
effectively induced by IFN-γ and IFN-γstimulated expression of NO synthetase genes is
mediated by IRF-1 [27,28]. While IRF-1 doesn’t have a critical role in the virus stimulation of
Type I IFN genes, the presence of IRF-1 was detected in the IFN-B enhanceosome binding to
the IFN-B promoter region [29] as well as in the IFN-A enhanceosome [12]. Furthermore,
analysis of the repertoire of lymphoid cells from IRF-1 null mice has shown defects in the
maturation of CD8+ T cells as well as a defective Th1 response, impaired production of IL-12
in macrophages and defective NK cell development [30]. These data indicate that IRF-1 has
essential functions in the development and activation of various immune cells. In addition,
IRF-1 also plays a critical role in the inducible expression of MHC class I and apoptosis; cells
from IRF-1 deficient mice are resistant to UV- and drug-induced apoptosis [24].

While both IRF-1 and IRF-2 bind to the PRDI domain in the VRE of the IFN-B gene, this
region also binds a protein named Blimp-1 which has an important role in the late stages of
the B cells differentiation [31]. It was later shown that Blimp-1 recognizes the same DNA
binding domain as IRF-1 and IRF-2, but not that of IRF-4 or IRF-8 [32]. It would therefore be
interesting to examine whether IRF-1 or IRF-2 have any role in final stages of B cell
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differentiation. In humans, polymorphisms in IRF-1 were shown to be associated with a
predisposition to asthma in the pediatric population [33], and deletion of IRF-1 has been
observed in myelodisplastic syndrome and leukemia [34].

IRF-2 was identified as a factor binding to the same recognition site as IRF-1, which suppresses
its transcriptional activity. Over-expression of IRF-2 in NIH/3T3 cells resulted in oncogenic
transformation of these cells. This effect has been attributed to the IRF-2 mediated inhibition
of the proapototic and growth regulatory function of IRF-1. However IRF-2 was also shown
to activate transcription of the histone 4 gene [35] and inhibit N-Ras. In primary hematopoetic
cells and myeloid cells, N-Ras functions as a growth inhibitor and over-expression of IRF-2
in a myeloid cell line reversed N-Ras-induced growth suppression [36]. The role of IRF-2 in
the innate antiviral defense has not be yet clearly established, however IRF-2 null mice exhibit
NK cell deficiency and IRF-2 deficient NK cells show an immature phenotype and
compromised receptor expression, indicating that IRF-2 deficiency results in a defect in the
late stages of NK cells maturation [37]. IRF-2 was also found to have a role in the development
of myeloid DC [38]. A possible role for IRF-2 in adaptive immunity is indicated by the
observation that IRF-2, together with STAT1, stimulates expression of the transporter of
antigenic peptides to MHC class I (TAP1) by directly binding to the cytokine responsive region
of TAP1 promoter [39].

The antiviral IRF: IRF-3 and IRF-7
While ectopic over-expression of IRF-1 in undifferentiated embyrionic stem (ES) cells
stimulated the expression of Type I IFN genes, IRF-1 failed to bind the VRE of IFN-A. However
mutations that disrupted the IRF binding site in the IFN-A promoter abolished its inducibility
[40,41]. The search for a new IRF which could activate the promoters of IFN-A and -B genes
led to identification of IRF-3 and IRF-7. The identification of these two IRF and their role in
the transcriptional activation of Type IFN genes had a major impact on the understanding of
the molecular mechanism of the pathogen induced innate antiviral response [8,42–44]. It
became quite obvious that although pathogen recognition may be mediated by distinct cellular
receptors and signaling pathways, they all lead to the activation of IRF-3 or IRF-7 which are
critical for the transcriptional activation of Type I IFN genes [45,46].

The ubiquitously expressed IRF-3 [8,42] is activated in infected cells upon recognition of
dsRNA, which has been considered the common signature of virus infected cells. Toll like
receptor 3 (TLR3) or the cytoplasmic RNA helicases RIG-I and MDA-5, which are
characterized by the presence of caspase recruitment domains (CARD) are important for the
recognition of most RNA virus infections [47](rev in [45,48]. The TLR-3 and RIG-I/MDA5
signaling pathways lead to the phosphorylation of IRF-3 at the C’ terminal region, where serine
386 is critical for activation by the two noncanonic IκB kinases; TBK-1 and IKKε [49–51].
Crystal structure analysis shows that, phosphorylation results in the structural changes which
allow IRF-3 activation [52,53]. The activated IRF-3 then homo- or heterodimerizes with IRF-7
and translocates to the nucleus, where it associates with the CREB binding proteins CBP/p300.
[54–56] and stimulates transcription of IFN-B, as well as of some interferon stimulated genes
(ISG), such as RANTES and ISG54 [57–59,60,]. While expression of IRF-3 alone is sufficient
to activate the promoter of the IFN-B gene [60,61], the IFN-B enhanceosome contains not only
IRF-3 but also IRF-7 [62,63]. The phosphorylated IRF-3 is under negative regulation by
ubiquitin-mediated degradation [54] and it was shown that the propyl isomerase Pin1 targets
activated IRF-3 for ubiquitin mediated degradation [64]. In contrast the IFN-induced ubiquitin-
like protein ISG15 subverted the ubiquitin mediated degradation of IRF-3, stabilized IRF-3 in
infected cells and increased its nuclear retention thus contributing to the enhancement of the
host antiviral response [65]
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Mice with a homozygous deletion of IRF-3 show impairment in the encephalomyocarditis
virus (EMCV)-mediated induction of Type I IFN, while the antiviral response of IRF-3 null
MEF against VSV was normal. However the expression levels of Type I IFN in NDV-infected
MEF were substantially decreased, though IFN expression could be rescued by ectopic IRF-7
[63]. In contrast, in a recent study, the virus-mediated induction of Type I IFN was not
significantly decreased either in IRF-3 null MEFs or pDC [66]. Despite these conflicting data,
there is little doubt that IRF-3 plays a critical role in the antiviral response. Firstly its ubiquitous
expression allows stimulation of the antiviral response and synthesis of IFNβ in all variety of
infected cells [67] and secondly, even low levels of autocrine or paracrine IFNβ stimulates
expression of IRF-7 and IRF-5 and triggers the amplification of the antiviral response [44,
68].. Finally the observation that many viruses prevent the induction of Type I IFN by targeting
the function of IRF-3, and consequently the induction of Type I IFN genes, underlines the
importance of IRF-3 in the induction of the antiviral response [69,70].

IRF-7, was initially identified as a factor binding to the Oq promoter of the Epstein Barr virus
(EBV) and a splice variant of IRF-7 was recognized as a factor that plays a critical role in the
induction of IFN-A genes [43,71]. IRF-7 is localized on human chromosome 11p15.5 in a
region that is CpG rich. These clusters are methylated in some cancers and silencing of the
IRF-7 promoter by methylation was observed in cancer cells [72]. IRF-7 expression can be
induced not only by Type I IFN but also by TNFα [73], however IRF-7 is also constructively
expressed in some lymphoid cells and especially in pDC, which are high producers of IFNα
in response to TLR7/8 and TLR9 activation [74].

Reconstitution of IRF-7 expression in infected human fibroblasts, which expressed only
IFNβ conferred, expression of several IFN-A genes [11]. Mice with a homozygous deletion of
IRF-7 were unable to express Type I IFN genes upon viral infection or activation of TLR9 by
CpG-rich DNA, indicating that IRF-7 is a master regulator of Type I IFN expression [66]. Like
IRF-3, IRF-7 is phosphorylated by the TLR3-, TLR7/8- and TLR9-mediated signaling
pathways where serines 477 and 479 appear to be critical targets for activation by TBK-1
[75]. In contrast, TLR7-and TLR9-stimulated phosphorylation of IRF-7 is dependant not on
TBK-1 but rather on MyD88 and, IκB [76] and involves formation of ternary complex
containing MyD88, IRAK-4, IRAK-1 and TRAF6 [77]. Virus-induced expression of distinct
IFN-A subtypes is determined by the organization of the IRF-3 and IRF-7 recognizing domains
in the VRE of the IFN-A promoters. Distortion in the GAAA core sequence of these binding
domains affects the cooperativity of IRF-3 and IRF-7 binding and their synergistic activation.
The differential expression of the individual IFN-A subtypes has been shown to be due to a
distinct nucleotide substitution in these domains [12,13,15,78] and by the presence of negative
regulatory sequences (DNRE) located in the upstream regulatory region of some IFN-A
subtypes [16]. IRF-3 and IRF-7, together with histone transacetylases, have been shown to be
part of the transcriptionally active human IFNA1 enhanceosome [12], whereas the murine
IFNA11 promoter, which is not activated by IRF-3, binds only IRF-7 homodimers [15]. These
data indicate that the relative levels of IRF-3 and IRF-7 in cells determine the levels of
expression of individual IFN-A subtypes. IRF-7 was shown to have a short half life which may
play a role in the regulating the transient expression of IFN-A genes [63]. IRF-7 expression
also has a role in differentiation of monocytes to macrophages [79] and ectopic expression of
a constitutively active IRF-7 in macrophages increased tumoricidal activity of these
macrophages [80]

The hematopoetic IRF: IRF-4 and IRF-8
IRF-4 and IRF-8 show a high degree of homology. They are expressed primarily in
lymphocytes, macrophages, B cells and DC [81,82]. These two proteins demonstrate only a
weak DNA binding affinity, which can be increased by association with other transcription
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factors[83,84]. IRF-4 binding is stabilized upon heterodimerization with the transcription
factor PU.1, and this heterodimer was shown to bind to the IgG enhancer and activate
expression of the immunoglobulin (Ig) light-chain in B cells [81]. IRF-4 has also been shown
to be a natural antagonist of both IRF-1 and IRF-5 transactivation. The dominant negative
action of IRF-4 was observed on IRF-1-mediated transactivation of the TRAIL promoter, while
the inhibition of IRF-5 activation was due to the competition for binding to MyD88 [85].

IRF-4 null mice have a deficiency in mature T and B cells indicating that IRF-4 has a critical
role in the maturation of B and T cells [86] and possibly also in the development of CD4+DC,
which are absent in these mice.[87]. IRF-4 null mice have a developmental block at several
steps of T cells and B cells differentiation, indicating that IRF-4 is critical for both function
and homeostasis as B cells do not form germinal centers in the spleen and lymph nodes [88].
IRF-4 is also required for differentiation of B lymphocytes into plasma cells, which is induced
by antigen and T cells. This differentiation requires antibody class switching recombination
and the processing of the membrane-expressed antibodies to secrete the antibodies. IRF-4 is
required for the induction of the cytidine deaminase (AID), which together with Pax5, induces
class switch recombination, and somatic hypermutation in antigen-activated B cells [89]. IRF-4
is also required for development of antibody producing plasma cells that are controlled by
Blimp-1, as Blimp-1 is unable to induce differentiation to plasma cells in the absence of IRF-4
[90]. The function of IRF-4 can be also abrogated by an inability to associate with PU.1, such
as observed in the primary effusion lymphoma (PEL), characteristic by arrests in B cell
differentiation [91]. These data indicate that any defect in IRF-4 expression or function will
lead to immune deficiency and an inability to produce antibodies. Interestingly, in multiple
myeloma cells, IRF-4 was found to be translocated near the immunoglobulin heavy chain locus
and consequently over-expressed, suggesting the deregulated expression of IRF-4 may
contribute to the phenotype of multiple myeloma [92].

IRF-8 shares a number of properties with IRF-4; it binds DNA after interaction with the
transcription factors of the IRF family, including IRF-1 and IRF-2 as well as PU.1 and E47
[82]. While the IRF-8/IRF1 complex generally functions as a suppressor of transcription, the
IRF-8/IRF-4 heterodimer activates transcription of ISG15 [93]. The IRF-8/IRF-1 complex also
induces numerous genes that are important for macrophage differentiation and macrophage-
induced inflammation [94,96] and IRF-8 null mice develop chronic immunodeficiency and a
myelogenous-like syndrome [97]. IRF-8 null mice also show major defects in CD8+DC and
pDC and the Flt3L-induced differentiation of mouse bone cells to pDC-like cells is dependant
on IRF-8 [98,99]. IRF-8 is also critical for the expression of PML in Myeloid cells [21]. IRF-8
null mice also displayed increased susceptibility to infection, which was shown to be due to a
defect in Th1 immune response and inability to express IL-12 and IRF-8 was consequently
shown to stimulate the transcription of IL-12p40 [100]. The fact that IRF-8 affects
differentiation of the high IFN producing pDC indicates its importance in the innate antiviral
response as well as in TLR- MyD88 antiviral signaling pathway.

The surprising IRF: IRF-5 and IRF-6
IRF-5 and IRF-6 are another pair of IRF that show a completely different functions. While
IRF-5 seems to have a role in apoptosis and the immune response to pathogens, IRF-6 is a key
regulator of the switch from keratinocyte proliferation to differentiation [101]. IRF-6 null mice
are embryonic lethal and the embryos showed abnormal external morphology; with abnormal
skin, short forelimbs and a lack of ears, hind limbs and tails. These mice have also had abnormal
craniofacial morphogenesis and skeletal defects. The major histological change detected in
these mice was the absence of a normal stratified epidermis as in IRF-6 null epidermis the
keratrinocytes did not stop proliferating and failed to differentiate [102]. In humans the IRF-6
gene is localized in the critical region of the Van der Woulde syndrome locus. This disorder
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is associated with an autosomal dominant form of cleft lip and palate and a nonsense mutation
in IRF-6. [103]. IRF-6 mutations are also associated with Popliteal Pterygium Syndrome (PPS)
which is characterized by a similar orofacial phenotype skin lesions and genital abnormalities.
[104]. The known functions of the other IRF seem to be associated with the immune response,
and apoptosis or growth regulation, generally in lymphoid cells. These unexpected properties
of IRF-6 indicate that IRF may also have a basic role unrelated to the immune response and
that IRF functions may be not limited to the cells of the immune system. Furthermore, the fact
that none of the other IRF null mice are embryonic lethal indicates that there is a redundancy
of some of the IRF functions.

In contrast to IRF-6, IRF-5 has been implicated in the innate inflammatory response, although
its role in the antiviral response has been recently challenged [105]. Human IRF-5 cDNA (AY
504946), cloned from DC, shows some properties that are distinct from IRF-3 and IRF-7. The
IRF-5 polypeptide contains two nuclear localization signals, whereas IRF-3 or IRF-7 have only
one, and consequently nuclear IRF-5 could be detected in uninfected cells [17,106]. The
activation and phosphorylation of IRF-5 by viral infection could be detected in cells infected
with NDV or VSV but not in cells infected with Sendai virus or treated with polyI:C, indicating
that the activation may be virus specific [17]. While both Type I IFN and viral infection
stimulate expression of IRF-5 gene [107], IRF-5 can be also induced by the tumor suppressor
p53 [108] suggesting a connection between IRF-5 and p53 induced pro-apoptotic pathways
[108]. Like p53, IRF5 stimulates the cyclin-dependent kinase inhibitor p21 while repressing
Cyclin B1; stimulates the expression of the proapoptotic genes Bak1, Bax, caspase 8 and DAP
kinase 2, [109] and promotes cell cycle arrest and apoptosis independently of p53. [110]

In vitro experiments have shown that in infected cells IRF-5, like IRF-7, binds to the VRE of
IFN-A genes and activates expression of these genes, however the subtypes of IFN-A induced
by IRF-5 and IRF-7 were distinct. While IFN-A1 was the major subtype induced by NDV in
IRF-7-expressing cells, IRF-5-expressing cells expressed IFN-A8 as the major subtype, further
suggesting that not all IFN-A genes are induced by IRF-7 [17]. Furthermore, the transcriptional
signatures of IRF-5 and IRF-7 in NDV-infected B cells was both overlapping and distinct
[111]. Gene array analysis revealed a significant increase in the transcription of a number of
ISG in NDV-infected B cells over-expressing IRF-5 which were not expressed in IRF-7
expressing cells. Interestingly, IRF-5 over-expression specifically up-regulated several of the
early inflammatory genes including RANTES, MIP-1β, I-309, MCP-1 and IL-8, indicating
that IRF-5 has an important role in the transcriptional regulation of the early inflammatory
cytokines and chemokines [109,111]. These results indicated that IRF-5 and IRF-7 have both
overlapping and non-redundant functions in infected cells. Distinction also exists between the
activation of IRF-3 and IRF-5; the TLR-3 mediated TRIF pathway that activates both IRF-3
and IRF-7 does not activate IRF-5, while however the MyD88-dependent pathway activates
IRF-5 but not IRF-3. In vitro experiments also indicated that MyD88 activation of huIRF-5 is
dependant on IRAK1 and TRAF6 (Schoenemeyer, 2005 #112}.

Human IRF-5 is expressed in multiple spliced variants, some of which are transcriptionally
inactive or may function as dominant negative mutants [107]. The activation and nuclear
transport of individual variants of IRF-5 also seems to be distinct, which may help to explain
the variation in results from different laboratories [112,113]. Mutations in the huIRF-5 gene
confers a predisposition to autoimmune disease; systemic lupus erythromatosis (SLE) is
characterized by constitutive IFNα production and polymorphisms in the tyrosine kinase 2 and
IRF-5 genes, with elevated expression of multiple spliced variants of IRF-5. This observation
indicates a connection between IRF-5 expression, IFNα production and autoimmunity [114].

While the critical role of IRF-7 in the induction of Type I IFN genes has been confirmed in
vivo [66], IRF-5 null mice did not show any defect in CpG- or polyI:C-mediated induction of
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Type I IFN, however the response to viral infection in these mice has not yet been analyzed
[105]. In correlation with the in vitro results seen for huIRF-5, the expression of inflammatory
cytokines TNFα, IL-6 and IL-12 was significantly down regulated in IRF-5 null mice [105,
109]. Based on these results it is now generally assumed that IRF-5 participates in the induction
of inflammatory cytokines rather than in Type I IFN [48,105]. However it may be premature
to discard all the results on huIRF-5, before the muIRF-5 and its functions are characterized
and the mouse experiments extended to viral infections. Our preliminary results indicate
several differences in the properties of huIRF-5 and muIRF-5 (NM_012057) isolated from
splenocytes of CB57BL/6J mice. Firstly, unlike huIRF-5 which is expressed in multiple spliced
variants [107], we have detected only one muIRF-5 splice variant which is expressed at very
low levels in the bone marrow of C57BL/6J mice. Furthermore, muIRF-5 is activated by
MyD88 and TBK-1 but not by NDV infection, properties shared with huIRF-5 variant 5, which
is also activated by TBK-1 but not by NDV infection [113]. MyD88-activated muIRF-5
stimulates the promoters of both IFN-A and IL-6/12 genes using a luciferase reporter assay
(unpublished results). Thus the discordant effects of muIRF-5 on the activation of IFN genes
in cells expressing ectopic muIRF-5 and mouse cells lacking IRF-5 expression are unexpected.
This difference indicates that in the presence of high levels of MyD88-activated IRF-7, the
contribution of IRF-5 to the induction of IFN genes is negligible, and its role is limited to the
induction of inflammatory chemokines and cytokines which are not stimulated by IRF-7. The
MyD88-mediated activation of both IRF-5 and IRF-7 involves formation of a tertiary complex
consisting of MyD88, IRAK-4, TRAF6 and IRF-5 and it is likely that this complex
preferentially assembles with IRF-7 than with IRF-5 [105,115]. It was also shown that IRF-4
competes the binding of IRF-5 to MyD88 and therefore in cells expressing IRF-4 such as pDC
or B cells, IRF-5 may be not efficiently activated [116]. Thus the role of IRF-5 in the stimulation
of Type I IFN genes may be limited to those cells which do not express IRF-4 or activated
IRF-7 and may depend on a distinct, concentration-dependent activation of IRF-5 and IRF-7.
Further analyses of the role of IRF-5 in the antiviral and autoimmune induction of Type I IFN
are clearly warranted.

The forgotten IRF; IRF-9
IRF-9 plays a major role in the antiviral effect of Type I IFN. It is a component of the tertiary
complex ISGF3 that is formed in IFN-treated cells and binds to the ISRE elements of ISG,
stimulating their transcription [117–119]. In this complex, which also contains STAT1 and
STAT2, IRF-9 is the major DNA binding component. IRF-9 can also form a DNA binding
complex with the STAT1 homodimer and with STAT2 alone, with these complexes binding
to DNA with the same specificity as ISGF3 [120]. MEFs from IRF-9 null mice are deficient
in both Type I and Type II IFN responses [121,122]. Furthermore the MEFs from these mice
show an impaired induction of IRF-7 expression and inhibition of IFN-A genes transcription.
The IRF-9 mice showed impairment in both Type I and Type II IFN signaling [95]. Hovewer
the phenotype of the IRF-9 mice has not been characterized yet in details.

The viral IRF: KSHV-encoded viral IRF
Kaposi’s sarcoma-associated herpes virus (KSHV) is a member of the γ herpes virus family
and is genetically similar to EBV and monkey Herpes Virus Saimiri (HVS) [123]. Sequence
analysis of the KSHV genome revealed the presence of about 80 open reading frames (ORFs)
and a number of ORFs showing homology to cellular genes that regulate cell growth, immune
functions, inflammation and apoptosis [123,124]. These include a cluster of four ORFs with
homology to the cellular transcription factors of IRF family [125].

Three vIRF have been cloned and characterized. The K9-encoded vIRF-1, expressed in PEL
cells treated with TPA, has been studied most extensively and was shown to inhibit both, the
virus-mediated induction of Type I IFN genes and IFN-induced genes (ISG) and its over-
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expression in NIH/3T3 confers tumorigenicity when injected into nude mice [126–129].
However targeted expression of vIRF-1 in B cells or endothelial cells failed to induce tumor
formation in transgenic mice (Lubyova and Pitha, unpublished results). vIRF-1 binds to CBP/
p300 and inhibits its acetyltransferase activity resulting in the global inhibition of histones H3
and H4 acetylation [130,131]. The anti-apoptotic effect of vIRF-1 has been related to the
binding of vIRF-1 to p53, IRF1 and GRIM19 [126,132,133].

vIRF-2 (ORF K11.1) encodes a small nuclear protein (163 aa) that is constitutively expressed
in PEL cells [130]. Unlike the cellular IRF, vIRF-2 binds to an oligodeoxynucleotide
corresponding to the NFκB site and specifically associates with several cellular IRF and with
p300 [130]. In addition, vIRF-2 binds also dsRNA-activated protein kinase (PKR), inhibits its
kinase activity and blocks the phosphorylation of the PKR substrate, eukaryotic translation
initiation factor 2α [134]. Additional transcripts encompassing vIRF-2 spliced to K11ORF
have also been identified. This transcript can be detected only in TPA-treated PEL cells and
the corresponding vIRF-2 protein was shown to inhibit IFN signaling [135,136].

vIRF-3/LANA2, encoded by ORFs K10.5 and K10.6,[137,138] is a multifunctional nuclear
protein constitutively expressed in KSHV-positive PEL and Castleman’s disease tumors, but
not in Kaposi’s sarcoma spindle cells [135,137,138],[139]. The vIRF-3 protein binds to IRF-3,
IRF-7 and CBP/p300 and stimulates IRF-3/IRF-7-mediated transcription of Type I IFN genes
[139]. Furthermore, interaction of vIRF-3 with p53 results in inhibition of p53-mediated
transcriptional activation and p53-induced apoptosis [138]. vIRF-3 also interacts with another
tumor suppressor gene MM-1(Lubyova et al., manuscript submitted for publication). Inhibition
of IKKβ kinase activity and down-modulation of NFκB-dependent transcription by vIRF-3
was also reported[140].

Considerations and future perspectives
The essential role of IRF-3 and IRF-7 in the antiviral response to pathogens has been clearly
established. While the activation of IRF-3 is associated with MyD88-independent or RIG-I
pathways, IRF-7 is activated by both MyD88-dependant and independent pathways, possibly
by two different kinases. Whether these distinct pathways target the phosphorylation of
identical or distinct IRF-7 residues remains to be determined. The role of IRF-1 and IRF-5 in
the antiviral response is yet to be evaluated, but it is necessary to further consider the reasons
for the observed differences between the results using the IRF-5 over-expressing and IRF-5
null cells. It is conceivable that such a differences point to the functional redundancy as well
as the critical importance of a balance between the activated IRF in different signaling pathways
and cell types. Further insight into a functional deregulation of IRF activation in autoimmune
disease, as observed for IRF-5, highlights how changes in IRF activation may result in a
deleterious host immune response. The determination of the cause of the modulation of IRF
functions may eventually lead to therapeutic interventions for these disorders. Future
investigations will also reveal whether IRF have a basic role in embryogenesis or regulation
of cell growth and differentiation that is unrelated to the immune response, as there are already
indications that a block in IRF-6 expression results in a defect in embryonic development.
Research to date serves to highlight the integral and varied role of the IRF in both the
development and function of the immune system and further studies will no doubt uncover
further important roles for these multifunctional proteins.
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Table 1
Phenotypic changes in IRF null mice.

IRF Defects Reference
IRF-1 Apoptosis, iNOS, IL-12 23,24,25,26
IRF-2 NK cells deficiency and inhibition of NK cells maturation; development of myeloid DC 37,38
IRF-3 Down modulation of type I IFN induction; increased susceptibility to infection 63,66,
IRF-4 T, B cells maturation, B cells differentiation Th2 response 87,88
IRF-5 Induction of inflammatory cytokines, IL-6, TNF α and IL12 105
IRF-6 Embryonic lethal, differentiation of keratinocytes 101,102
IRF-7 Block in Type I IFN induction 66
IRF-8 Differentiation to pDC, induction of IL-12, IL-23 97,98,99,100
IRF-9 Type I and II IFN signaling, induction of IRF-7 and IFNα and ISG 95,121
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