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Introduction
Proper chromosome segregation is required to maintain genetic 

materials and prevent aneuploidy, which leads to genetic dis-

eases and cancers (Cimini and Degrassi, 2005). Chromosome seg-

regation is exerted by a bipolar spindle that is created by the 

attachment of each sister chromatid to microtubules (i.e., kineto-

chore microtubules) derived from the opposite spindle poles. 

After the nuclear envelope breaks down, the microtubules probe 

3D space and eventually encounter their target, a kinetochore. 

Initially, one of the sister kinetochores is captured by the lateral 

surface of a microtubule, causing the chromatid to move rapidly 

toward the microtubule’s pole of origin. Once end-on attach-

ment of the microtubule to the kinetochore occurs, microtubules 

emanating from the opposite spindle pole soon achieve inter-

actions with the remaining unattached sister kinetochore, resulting 

in correct attachment between the spindle and the chromosome 

(amphitelic attachment; Pinsky and Biggins, 2005). Thereafter, the 

microtubules at the opposite poles gradually move the chromo-

some into position at the mitotic plate.

The correct attachment of kinetochore microtubules to 

chromatids is achieved by stochastic events termed search and 

capture, which are based on the dynamic instability of micro-

tubule plus ends, which switch between growing and shrinking 

phases (Mitchison and Kirschner, 1984). Therefore, attachment 

errors such as monotelic, syntelic, and merotelic attachment occur 

frequently, even in normal cells, but are corrected until ana-

phase onset (Pinsky and Biggins, 2005). Monotelic attach-

ments, in which only one of the sister kinetochores is attached 

to spindle microtubules, are frequent in the early stages of 

mitosis. Syntelic attachments are those in which both sister 

kinetochores are attached to microtubules from the same spin-

dle pole. Finally, merotelic attachments occur when a single 

kinetochore becomes attached to microtubules from both spindle 

poles rather than just one.

The spindle checkpoint, a cell cycle protection mechanism, 

prevents the metaphase to anaphase transition until all of the chromo-

somes attach properly with microtubules (Lew and Burke, 2003). 
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 F
or proper chromosome segregation, the sister kineto-

chores must attach to microtubules extending from 

the opposite spindle poles. Any errors in micro-

tubule attachment can induce aneuploidy. In this study, 

we identify a novel conserved Caenorhabditis elegans 

micro tubule-associated protein, regulator of microtubule 

dynamics 1 (RMD-1), that localizes to spindle microtubules 

and spindle poles. Depletion of RMD-1 induces severe 

defects in chromosome segregation, probably through 

merotelic attachments between microtubules and chromo-

somes. Although rmd-1 embryos also have a mild defect 

in microtubule growth, we fi nd that mutants of the micro-

tubule growth regulator XMAP215/ZYG-9 show much 

weaker segregation defects. This suggests that the micro-

tubule growth defect in rmd-1 embryos does not cause ab-

normal chromosome segregation. We also see that RMD-1 

interacts with aurora B in vitro. Our results suggest that 

RMD-1 functions in chromosome segregation in C. elegans 

embryos, possibly through the aurora B–mediated pathway. 

Human homologues of RMD-1 could also bind micro-

tubules, which would suggest a function for these proteins 

in chromosome segregation during mitosis in other organ-

isms as well.
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The spindle checkpoint is thought to sense kinetochore attach-

ments and tension at kinetochores generated by kinetochore 

microtubules (Pinsky and Biggins, 2005). In monotelic attach-

ments, unattached kinetochores are sensed by the spindle check-

point and generate a signal to delay anaphase onset until the 

remaining unattached sister kinetochore is properly attached 

(Musacchio and Hardwick, 2002). In syntelic attachments, weak 

or absent tension at the kinetochores is thought to activate the 

spindle checkpoint, leading to the destabilization of microtubule 

attachments through aurora B kinase (Tanaka et al., 2002). In con-

trast, merotelic attachments put enough tension on kineto chores 

without activating the spindle checkpoint. Nonetheless, mero-

telic attachments must usually be corrected before anaphase 

because they are frequently observed in the early prometaphase 

of normal cells, but the resultant lagging chromosomes are rarely 

seen in cells entering anaphase (Cimini et al., 2003). Recent 

studies have shown that depletion of a micro tubule destabiliza-

tion factor, KinI/mitotic centromere-associated kinesin [MCAK]/

XKCM1, from the centromere induces merotelic attachments 

(Kline-Smith et al., 2004). It has been proposed that phosphoryl-

ation of MCAK by aurora B kinase is involved in the correc-

tion mechanisms of incorrect attachments (Ohi et al., 2003). 

However, it is not clear how MCAK–aurora B recognizes in-

correct attachments.

In addition to the microtubule destabilization factor, some 

microtubule-associated proteins (MAPs) that promote the out-

growth of kinetochore microtubules localize to the kinetochore. 

A Drosophila melanogaster CLASP (cytoplasmic linker protein–

associated protein) homologue, Orbit/Mast, is required for chro-

mosome alignment, kinetochore–microtubule attachment, and 

maintenance of spindle bipolarity (Inoue et al., 2000; Lemos 

et al., 2000; Maiato et al., 2002). In budding and fi ssion yeast, 

another set of MAPs, the XMAP215 homologues, are present 

at the kinetochore and contribute to chromosome segregation 

(Ohkura et al., 2001). In Caenorhabditis elegans, a CLASP homo-

logue, CLS-2, localizes to the kinetochores and is required for 

chromosome alignment (Cheeseman et al., 2005). An XMAP215 

homologue, ZYG-9, regulates the growth of astral microtubules 

(Matthews et al., 1998); however, the role of ZYG-9 in chromo-

some segregation has not been investigated.

We identifi ed a C. elegans gene, regulator of microtubule 

dynamics 1 (rmd-1), which is a member of a novel conserved 

MAP family. Depletion of RMD-1 caused strong defects in 

chromosome segregation, which were probably caused by mero-

telic attachments. RMD-1 interacted with AIR-2/aurora B kinase 

in vitro, suggesting that RMD-1 functions with AIR-2 in chromo-

some segregation. In addition to the defects in chromosome 

segregation, rmd-1(RNAi) embryos showed weak but signifi cant 

defects in microtubule outgrowth. However, the loss of ZYG-9/

XMAP215, a main regulator of microtubule outgrowth, caused 

much less severe defects in chromosome segregation than that 

of RMD-1. These results suggest that in addition to regulating 

microtubule outgrowth, RMD-1 has specifi c functions in the 

execution of proper chromosome segregation, probably by pre-

venting abnormal attachments.

Results
rmd-1 encodes a novel protein with multiple 
coiled-coil domains that is conserved in 
human, mouse, Xenopus laevis, and zebrafi sh
rmd-1(os21) was identifi ed in a screen for mutants that lacked 

phasmid socket cells in the tail (phasmid socket absent [Psa] pheno-

type; Sawa et al., 2000). rmd-1(os21) animals showed the Egl 

(egg laying defective) and Psa (25% [n = 44] or 33.2% [n = 334] 

with or without maternal contributions, respectively) phenotypes 

at 25°C. In addition, rmd-1(os21) displayed temperature-sensitive 

maternal effect lethality (100% [n = 138]) at 25°C.

The rmd-1 gene was mapped to a region between ced-7 

and unc-69 on chromosome III. Single-nucleotide polymor-

phisms (SNPs) were then used to place the gene in an interval 

covered by several cosmids. We next performed rescue experi-

ments by injecting candidate cosmids and found that T05G5 

rescued the Psa phenotype of rmd-1(os21). A mutant named 

tm1457 (isolated by the National Bioresource Project), which 

has a deletion affecting both T05G5.7 and T05G5.9, also showed 

the Psa phenotype and failed to complement rmd-1(os21) for both 

the Psa and maternal effect lethality phenotypes. The T05G5.7 

gene is located in an intron of the T05G5.9 gene in the inverted 

orientation (Fig. 1).

Figure 1. Positional cloning of rmd-1. Plasmids containing the indicated genomic fragments were tested for rescue of the Psa phenotype of rmd-1(os21). The 
results are shown at the right. The numbers at the top indicate positions in the T05G5 cosmid. The asterisk represents the position of a mutation in os21 mutants.
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We investigated the DNA sequences in the predicted open 

reading frame of T05G5.7 and T05G5.9 in rmd-1(os21) and 

found a single missense mutation that changed leucine 36 to 

tryptophan in T05G5.7 (Fig. 2 B, asterisk). Furthermore, the Psa 

phenotype of rmd-1(os21) was rescued by a plasmid containing 

the entire T05G5.7 gene and part of the T05G5.9 gene but not by 

a plasmid containing a longer portion of T05G5.9 and only part 

of T05G5.7 (Fig. 1). In addition, an RNAi of T05G5.7 but not 

T05G5.9 causes embryonic lethality (Sonnichsen et al., 2005). 

Thus, we conclude that T05G5.7 is the rmd-1 gene.

The rmd-1 gene encodes a novel protein of 293 amino 

acids that contains multiple coiled-coil domains (Fig. 2 A). 

The coiled-coil domains were predicted by a program (http://www

.ch.embnet.org/software/COILS_form.html). Database searches 

revealed fi ve proteins of unknown function related to RMD-1 in 

C. elegans (Fig. 2 A). The amino acid identity between these 

Figure 2. Structure of the RMD proteins. 
(A) Schematic presentation of RMD proteins. 
Black boxes indicate coiled-coil domains. The 
total length of each protein is indicated at the 
right. hRMD-1/cgi-90 was identifi ed by com-
parative proteomics (Lai et al., 2000). hRMD-2/
BLOCK18 was identifi ed by a compu tational 
screen for secreted proteins (Clark et al., 
2003). hRMD-3/cerebral protein-10 (GenBank/
EMBL/DDBJ accession no. AB000782) and 
hRMD-4 (GenBank/EMBL/DDBJ accession no. 
AK095462) were identifi ed from a study of 
human transcriptome and functional geno-
mics (Ota et al., 2004). Mouse homologues 
mRMD-1 (GenBank/EMBL/DDBJ accession no. 
AK010421), mRMD-2 (GenBank/EMBL/DDBJ 
accession no. BC024059), and mRMD-3 (Gen-
Bank/EMBL/DDBJ accession no. BC055754; 
Strausberg et al., 2002); Xenopus homologues 
xRMD-1 (GenBank/EMBL/DDBJ accession no. 
BC054253) and xRMD-2 (GenBank/EMBL/
DDBJ accession no. BC090235); and zebra-
fi sh homologue zRMD-1 (GenBank/EMBL/
DDBJ accession no. BX936455) are presented. 
(B) Com parison of C. elegans, human, mouse, 
Xenopus, and zebrafi sh RMD-1 proteins. Iden-
tical amino acids among RMD-1 homologues 
are shaded with black. Similar amino acids 
are shaded with gray. The asterisk shows the 
position of the mutation in rmd-1(os21). The re-
gions marked with lines were used as antigens 
to prepare an anti–RMD-1 antibody. (C) Results 
of cosedimentation assay. Affi nity-purifi ed GST-
fused RMD-1, -2, and -3, hRMD-1, -2, and -3, 
and GST as indicated at the top of the panels 
were incubated in the presence (+) or absence 
(−) of taxol-stabilized microtubules (MTs) and 
subjected to centrifugation. The pellets (P) and 
supernatants (S) were immunoblotted.
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proteins and RMD-1 was 34% for RMD-2 (C27H6.4), 26% for 

RMD-3 (B0491.3), 24% for RMD-4 (F36H12.11), 20% for 

RMD-5 (T23B3.3), and 26% for RMD-6 (R13H9.1). BLAST 

searches for proteins similar to RMD-1 in other species revealed 

putative homologues in human, mouse, Xenopus, and zebrafi sh 

but not in Drosophila or yeast (Fig. 2, A and B). Therefore, we 

conclude that RMD-1 is a member of a novel protein family 

(hereafter called the RMD proteins) that is evolutionally con-

served in other organisms.

We explored the expression pattern of RMD-1 in embryos 

using an antibody that was raised against it. The specifi city of 

the antibody was examined by Western blotting using extracts of 

wild-type and rmd-1(RNAi) embryos (Fig. 3 B) and by immuno-

staining (Fig. 3 A). We found that RMD-1 colocalized with 

tubulin throughout the first cell cycle. Specifically, RMD-1 

accumulated at the spindle poles and interzonal microtubule 

bundles during metaphase and anaphase but seemed not to lo-

calize to the central spindle at anaphase (Fig. 3 A, g and j) nor 

to the kinetochore and chromosomes. Therefore, we further an-

alyzed the direct interactions of GST-fused RMD-1, -2, and -3 

with microtubules using taxol-stabilized microtubules. When 

each RMD protein was incubated with taxol-stabilized micro-

t ubules and cosedimented by centrifugation, RMD-1, -2, and -3 

but not control GST proteins were precipitated with the micro-

tubules (Fig. 2 C). The human RMD (hRMD) proteins (hRMD-1, 

-2, and -3) localized to the spindle microtubules and spindle 

poles (Fig. 3 C and Fig. S1, available at http://www.jcb.org/cgi/

content/full/jcb.200705108/DC1) during cell division as the 

RMD-1 protein did in C. elegans. In interphase, hRMD proteins 

were observed as dots in cytoplasm, and some of the dots co-

localized to microtubule lattice (Fig. S1). Besides, hRMD-2 was 

observed as larger dots in the perinuclear region (Fig. S1). 

Cosedimentation assay showed that hRMD proteins interacted 

with microtubules (Fig. 2 C). These data indicate that RMD 

proteins represent an evolutionally conserved MAP family.

Chromosome segregation is abnormal in 
rmd-1 embryos
To elucidate the functions of rmd-1 during embryogenesis, we 

observed the phenotypes of rmd-1 embryos. Because rmd-1
(os21) embryos showed only minor defects in early embryonic 

development compared with rmd-1(RNAi) embryos (see below 

for spindle orientation defects), we mostly analyzed rmd-1
(RNAi) embryos. We fi rst found that rmd-1(RNAi) and tm1457 

but not os21 embryos swelled, completely fi lling the space that 

normally lies between the egg shell and the embryo, suggesting that 

they are osmotically sensitive (Osm; Fig. S2 A, low salts; avail-

able at http://www.jcb.org/cgi/content/full/jcb.200705108/DC1). 

This phenotype was reported in a full-genome profi le of C. elegans 

RNAi phenotypes (Sonnichsen et al., 2005). In addition to the 

Osm phenotype, rmd-1(RNAi) embryos showed defects in pro-

nuclear meeting, pseudocleavage, cytokinesis, spindle orien-

tation, and chromosome segregation (see Fig. S2 B and the 

next paragraph).

To analyze the functions of rmd-1 in more detail, in all 

subsequent experiments, including controls, we used a high salt 

medium (see Materials and methods) in which the osmosensitivity 

of rmd-1(RNAi) embryos was rescued (Fig. S2 A, high salts; 

middle). Under this condition, the defects in pronuclear meeting, 

pseudocleavage, and cytokinesis were partially rescued, but 

those in spindle orientation, extrusion of polar bodies, and chromo-

some segregation (see the next paragraph) were not (Fig. S2 B), 

indicating that the latter defects are unlikely to be caused by the 

osmosensitivity. Nonetheless, it remained possible that these 

abnormalities in rmd-1 embryos were caused by an egg shell 

defect that made the embryos sensitive to mechanical pressure 

from the coverslip. However, the mechanical causes for the 

abnormal spindle orientation, extrusion of polar body, and 

chromosome segregation are unlikely because these defects were 

not rescued by leaving a space between the embryos and coverslip 

to prevent pressure (Fig. S2 B, high salts with a space; and 

Fig. S3 C, available at http://www.jcb.org/cgi/content/full/jcb

.200705108/DC1).

We further analyzed chromosome segregation using GFP-

histone during mitosis and found that it was abnormal in the 

rmd-1(RNAi) embryos. During metaphase, the chromosomes 

did not align properly (100%; n = 19; Fig. 4 A, 1 min). At ana-

phase, the movement (elongation) of chromosomes along the 

spindle (Fig. 4 A, 4 min) was delayed compared with that 

in wild type (Fig. 4 A, 2 min 30 s). Chromosomes did not 

segregate but stretched laterally without separating into two 

masses until they were bisected by the cleavage furrow (Fig. 4 A, 

4–9 min), indicating that chromosome segregation is defective 

in rmd-1 embryos.

We next examined which abnormalities (meiosis, centro-

mere resolution, sister chromatid separation, or microtubule at-

tachments to kinetochores) caused the chromosome segregation 

defects in rmd-1 embryos. First, we tested whether abnormal 

meiosis caused the chromosome segregation defect during mi-

tosis. Although rmd-1(RNAi) embryos often showed defective 

extrusion of polar bodies, we did not observe defects in chromo-

some separation during meiosis in these embryos (Fig. S2 C). 

Consistent with this, immunostaining showed a normal meiotic 

spindle (Fig. S2 C, MTs). In addition, in rmd-1 embryos with 

fewer (zero or one) polar bodies than wild-type embryos (two), 

we always observed multiple maternal pronuclei: two pronuclei 

in embryos with one polar body and three in those with no 

polar body (Fig. S2 D). Therefore, rmd-1 embryos are specifi cally 

defective in the extrusion of polar bodies but not in nuclear 

divisions during meiosis.

To exclude the possibility that unextruded maternal DNA 

interfered with spindle formation in mitosis, we observed mito-

sis in zen-4(RNAi) embryos, in which the extrusion of polar 

bodies is defective (Raich et al., 1998), and did not fi nd any lag-

ging chromosomes (0%; n = 5; Fig. S2 D). These results indi-

cate that unextruded maternal DNA does not interfere with the 

chromosome segregation in rmd-1 embryos. Therefore, we con-

clude that mitotic chromosome segregation is specifi cally de-

fective in rmd-1(RNAi) embryos.

Abnormal attachments of microtubules 
to kinetochores in rmd-1 embryos
For proper chromosome segregation, sister centromeres must 

resolve from one another and take positions on the opposite 
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 surfaces of chromosomes in early prophase, before micro-

tubule capture (He and Brinkley, 1996). To investigate whether 

this process (centromere resolution) was defective in rmd-1
(RNAi) embryos, we observed the localization of a centromere 

protein, HCP-1/CENP-F, using HCP-1–GFP in live embryos 

(Fig. 5 A; Cheeseman et al., 2005). In rmd-1(RNAi) embryos, 

the HCP-1–GFP fluorescence appeared as two lines, as in 

wild-type embryos, during prometaphase (Fig. 5 A). Staining 

for the kinetochore protein KLP-7/MCAK also formed two 

lines along the chromosomes during prometaphase (Fig. 5 B). 

Figure 3. RMD-1 and hRMD-1 localize to 
spindle microtubules and spindle poles during 
mitosis. (A) Wild-type embryos were fi xed and 
stained for RMD-1 and microtubules (MTs) dur-
ing pronuclear migration (a–c), at the pro-
nuclear meeting (d–f), metaphase (g–i), anaphase 
(j–l), telophase (m–o), and at the two-cell stage 
(p–r). Images of rmd-1(RNAi) embryos at the 
prometaphase stained for RMD-1 and micro-
tubules (s–u). In the merged images, DNA is 
blue, RMD-1 is red, and microtubules are 
green. (B) Western blotting with anti–RMD-1. 
The lysates from wild-type embryos (N2) and 
rmd-1(RNAi) embryos were subjected to West-
ern blotting using an anti–RMD-1 antibody. 
The numbers on the left show the positions of 
molecular weight markers. (C) HeLa cells ex-
pressing HA–hRMD-1 were fi xed and stained 
for HA and microtubules during metaphase. 
In the merged image, hRMD-1 is red, and micro-
tubules are green. Bars, 5 μm.



JCB • VOLUME 179 • NUMBER 6 • 2007 1154

Figure 4. Defects of rmd-1(RNAi) embryos in chromosome segregation. (A) Time-lapse analyses of wild-type and rmd-1(RNAi) embryos expressing GFP-
histone. In this rmd-1(RNAi) embryo, two maternal pronuclei (arrows), which failed to be extruded as polar bodies during meiosis, were detected, but they 
did not participate in the zygotic mitosis. In the rmd-1(RNAi) embryos, the chromosomes were not aligned on the metaphase plate in metaphase, and, in 
anaphase, the chromosomes were stretched along the axis of the spindle and failed to segregate. The position of the cleavage furrow in rmd-1(RNAi) em-
bryos is indicated by arrowheads. The numbers on the left indicate the amount of time after NEBD. (B) Time-lapse images of zyg-9(b244) embryos express-
ing GFP-histone upshifted from 15 to 25°C at the stages indicated at the top of each column. Control embryos were observed at 16°C. The numbers on the 
left indicate the elapsed time after the start of observation (within 10 s after the upshift). The loss of ZYG-9 activity before metaphase caused lagging chromo-
somes, which are indicated by the arrows. (C) Percentages of embryos showing lagging chromosomes or a stretched mass of chromosomes in rmd-1(RNAi) 
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These results suggest that the centromere resolution is normal 

in rmd-1 embryos.

Next, we analyzed sister chromatid separation by FISH 

analysis using a probe specifi c for the 5S ribosomal DNA (rDNA) 

repeats. In rmd-1 embryos as in wild type, four individual FISH 

signals were always observed at anaphase (n = 9 for rmd-1 and 

n = 5 for wild type; Fig. 5 C), indicating that sister chromatid 

cohesion resolves normally in rmd-1(RNAi) embryos.

The severe segregation defects in rmd-1 embryos might be 

caused by abnormal attachments of microtubules to the kineto-

chores, such as merotelic attachments. To examine the micro-

tubules’ attachments to the kinetochores, we double stained the 

embryos for microtubules and the kinetochore protein KLP-7/

MCAK. In wild-type embryos in prometaphase and anaphase, 

each chromosome interacted with kinetochore microtubules 

derived from only one of the spindle poles, and KLP-7/MCAK 

localized to the side of each chromosome that faced the pole 

(Fig. 5 D, wild type). If merotelic attachments were indeed pre-

sent in the rmd-1(RNAi) embryos, we would expect to see chro-

mosomes and kinetochores pulled from both spindle poles. 

As shown in Fig. 5 D, in rmd-1(RNAi) embryos at prometaphase, 

some chromosomes were located laterally (asterisks), and some 

microtubules (yellow arrows in prometaphase and dashed yellow 

lines in the magnifi ed images) were crossed over chromosomes 

and kinetochores. In anaphase, the chromosomal DNA and 

KLP-7/MCAK (Fig. 5 D, yellow and light blue arrowheads) were 

located between two chromosome masses along abnormally 

extended microtubules (Fig. 5 D, yellow and light blue arrows) 

and appeared to be torn away from the masses of chromosomes. 

Furthermore, some microtubules (Fig. 5 D, anaphase; white arrows) 

extended toward the more distant chromosomes and kineto-

chores (Fig. 5 D, anaphase; white arrowheads). Similar defects 

in anaphase are observed in embryos with an hcp-6 mutation, 

which causes merotelic attachments (Stear and Roth, 2002). 

These results suggest that the depletion of rmd-1 causes merotelic 

attachments of microtubules to chromosomes (see the next section 

for more evidence).

RMD-1 interacts with aurora B kinase
It has been proposed that in other organisms, aurora B kinase 

functions to destabilize incorrectly attached microtubules 

(Maiato et al., 2004). Indeed, inactivation of aurora B induces 

multiple chromosome segregation defects in mammalian cells, 

including unsegregated chromosomes and lagging chromo-

somes (Kallio et al., 2002). Consistent with these fi ndings, in 

C. elegans, embryos mutant for the aurora B homologue air-2 

show a laterally stretched mass of chromosomes, as we observed 

in rmd-1 embryos (Kaitna et al., 2002). Therefore, it seemed pos-

sible that RMD-1 was involved in the AIR-2/aurora B–mediated 

correction mechanism. RMD-1 protein does not have any con-

sensus sequences for aurora B phosphorylation, and we did not 

detect the phosphorylation of RMD-1 by aurora B in vitro 

(unpublished data). We then examined the interaction between 

RMD-1 and AIR-2 by pull-down assay. We found that FLAG-

tagged AIR-2 protein produced in COS-7 cells coprecipitated 

with GST-fused RMD-1 but not with the GST protein alone 

(Fig. 6). Therefore, RMD-1 might function in chromosome seg-

regation through an interaction with aurora B.

Abnormal kinetochore attachments 
cause a delay in spindle pole separation 
in rmd-1 embryos
Because RMD-1 is a MAP, we also analyzed the spindle orga-

nization in live rmd-1(RNAi) embryos using GFP–β-tubulin 

(Fig. 7 A) and by immunostaining (Fig. 7 B). After the pro-

nuclear meeting, the spindle poles moved to the center in wild-

type embryos, and the posterior spindle pole then migrated in 

the posterior direction. During this process, long astral micro-

tubules were detected in wild-type embryos (Figs. 4 B and 7 A, 

−30 min). In rmd-1(RNAi) embryos, the spindle failed to move 

completely to the center, and the astral microtubules were 

shorter and fewer (Fig. 7, A [−30 min] and B). During prometa-

phase and metaphase, in the rmd-1(RNAi) embryos, interzonal 

microtubules (including kinetochore microtubules) were ob-

served, but the distances between the spindle poles were shorter, 

and the timing of the spindle pole separation was delayed com-

pared with that in wild-type embryos (Fig. 7, A and C). At the 

two-cell stage, in wild-type embryos, the spindle in the AB cell 

was oriented transversely, and the one in the P1 cell was ori-

ented in the anterior-posterior direction (Fig. S3). In rmd-1
(RNAi) embryos, the spindles in both the AB and P1 cells were 

oriented in an abnormal (nearly random) direction (Figs. S2 B 

and S3). Similar defects in spindle orientation were observed in 

rmd-1(os21) mutant embryos, in which the P1 cell showed in-

complete spindle rotation, resulting in division along the trans-

verse axis (10%; n = 20; Fig. S3 A). These phenotypes suggest 

that RMD-1 is required for correct spindle organization and 

positioning during mitosis.

In the C. elegans embryo, the majority of central spindle 

microtubules are attached to kinetochores, and these micro-

tubule attachments restrain the spindle pole separation caused 

by astral pulling forces until sister chromatid cohesion is lost at 

anaphase onset (Grill and Hyman, 2005). As a result, the elimi-

nation of microtubule attachments to kinetochores by the deple-

tion of knl-1 causes premature pole separation (Fig. 7 C;  Desai 

et al., 2003). Merotelic (but not syntelic) microtubule attachments 

would be predicted to restrain spindle pole separation even after 

anaphase onset. Indeed, the depletion of rmd-1 caused a delay 

and slow spindle pole separation (Fig. 7 C). To test whether this 

slow pole separation was caused by merotelic microtubule attach-

ment as opposed to weakened astral pulling forces, we asked 

whether the elimination of kinetochore–microtubule attachments 

(n = 19) and zyg-9(b244) embryos. Chromosomes that were uniformly stretched along the spindle were defi ned as a stretched mass of chromosomes. 
Chromosomes that were separated into two masses interconnected by chromatin bridges were scored as lagging chromosomes. The zyg-9(b244) embryos 
were upshifted from 15 to 25°C at the pronuclear meeting (n = 7), before chromosome alignment (n = 14), or during late metaphase (n = 28). 
Bars, 5 μm.
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Figure 5. Abnormal attachments of microtubules to kinetochores in rmd-1(RNAi) embryos. (A) HCP-1–GFP was distributed in two lines in both wild-type 
and rmd-1(RNAi) embryos during prometaphase before NEBD. The number at the left in each panel is the elapsed time after NEBD. (B) In prometaphase 
before NEBD, KLP-7/MCAK was observed as two lines on the condensed chromosome in both wild-type and rmd-1(RNAi) embryos. In the merged images, 
MCAK is red, and DNA is blue. (C) Embryos in anaphase were fi xed and processed for FISH using a 5S rDNA probe. In both wild-type and rmd-1 embryos 
at anaphase, four discrete FISH signals were observed, indicating that sister chromatid cohesion was resolved. (D) Attachment of microtubules to kineto-
chores in wild-type and rmd-1(RNAi) embryos. Embryos were fi xed and stained to label microtubules (MTs), MCAK, and DNA (with DAPI). In the merged 
images, microtubules are green, MCAK is red, DNA is blue, and microtubules that overlap with chromosomes are represented in light blue. In wild-type em-
bryos at prometaphase after NEBD, chromosomes interacted with microtubules derived only from the closest spindle poles, but, in rmd-1(RNAi) embryos, 
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by the depletion of knl-1 would suppress the pole separation 

defect in rmd-1(RNAi) embryos. As expected, in embryos de-

pleted of both KNL-1 and RMD-1, the distance between the 

spindle poles and the delay in spindle pole separation became 

normal (Fig. 7 C). Together with the aforementioned results of 

immuno staining, our results suggest that the depletion of rmd-1 

causes the defects in spindle pole separation and chromosome 

segregation as a result of merotelic attachments of microtubules 

to chromosomes.

Abnormal chromosome segregation in rmd-1 
embryos is not caused by a defect in 
microtubule dynamics
The short astral microtubules in rmd-1(RNAi) embryos sug-

gested that RMD-1 might regulate microtubule dynamics. 

Therefore, we examined the growth rate of the astral micro-

tubules during mitosis by tracking the movement of the C. elegans 

EB1 homologue EBP-2–GFP, which refl ects microtubule growth 

(Srayko et al., 2005). We recorded images at 200-ms intervals 

using a spinning disk confocal microscope and randomly se-

lected EBP-2–GFP dots that remained in the focal plane for at 

least 3 s (Fig. 8 A). We found that the growth rate of microtubules 

during mitosis was reduced in rmd-1(RNAi) embryos compared 

with wild-type embryos at all stages of the cell cycle examined 

(Fig. 8 B and Videos 1 and 2, available at http://www.jcb.org/

cgi/content/full/jcb.200705108/DC1). These results indicate 

that RMD-1 is required for the effi cient growth of astral micro-

tubules during mitosis.

In C. elegans, ZYG-9, a homologue of XMAP215, regu-

lates the growth of microtubules (Matthews et al., 1998; Srayko 

et al., 2005). We examined the relationship between ZYG-9 and 

RMD-1 on the growth rate of microtubules using EBP-2–GFP. 

After nuclear envelope breakdown (NEBD), zyg-9(RNAi) em-

bryos showed a much more severe defect in microtubule growth 

than that in rmd-1(RNAi) embryos (Fig. 8 B). In rmd-1(RNAi) + 

zyg-9(RNAi) embryos, the growth rate of astral microtubules 

was similar to that in zyg-9(RNAi) embryos (Fig. 8 B). However, 

because RMD-1’s effect on microtubule growth was weak, it was 

difficult to determine the relationship between RMD-1 and 

ZYG-9 in this process.

The defects in the growth of astral microtubules raised the 

possibility that the abnormal kinetochore attachments in rmd-1 

embryos were also caused by this defect. If this was the case, 

zyg-9 embryos, which show stronger defects in microtubule growth, 

should show chromosome segregation defects as in rmd-1 

embryos. To examine the roles of zyg-9 specifi cally in chromo-

some segregation, we performed rapid temperature shift experi-

ments using a temperature-sensitive mutant, zyg-9(b244), which 

has severe defects in microtubule growth, similar to those seen 

in zyg-9(RNAi) embryos (Srayko et al., 2005). A temperature 

upshift of zyg-9(b244) embryos at the time of pronuclear meeting 

immediately (within 2 min) induced short astral microtubules 

like those observed in the zyg-9(RNAi) embryos (Fig. S2 E), in-

dicating that ZYG-9 activity responds quickly to the tempera-

ture shift. At the permissive temperature (16°C), zyg-9(b244) 
did not display any defects in chromosome segregation (n = 5; 

Fig. 4 B). An upshift in temperature at the time of pronuclear 

meeting or before alignment of all of the chromosomes on the 

metaphase plate induced lagging chromosomes, although the 

chromosomes were separated into two masses in most zyg-9
(b244) embryos (Fig. 4, B and C). In contrast, most embryos 

exposed to the higher temperature at late metaphase, when all of 

the chromosomes were aligned on the metaphase plate, did not 

have lagging chromosomes (Fig. 4, B and C). These results sug-

gest that effi cient microtubule outgrowth regulated by ZYG-9 is 

required for chromosome segregation. Therefore, the abnormal 

segregation in rmd-1 embryos might also be caused by defects 

in microtubule outgrowth, at least in part. However, a mass of 

stretched chromosomes that was frequently observed in the rmd-1 

embryos was rare in zyg-9(b244) embryos (Fig. 4 C). Thus, the 

defects in the rmd-1 embryos are unlikely to be explained sim-

ply by the slow growth of microtubules. Rather, our results sug-

gest that RMD-1 has other important functions, possibly in the 

AIR-2/aurora B–mediated pathway, for the proper segregation 

of chromosomes.

Discussion
The role of RMD-1 in chromosome 
segregation
In this study, we have shown that the depletion of RMD-1 in-

duces defects in mitotic chromosome segregation. Cytological 

analyses suggest that the resolution of centromere and sister 

chromatid cohesion occurs normally in rmd-1 embryos. However, 

chromosomes in rmd-1 embryos failed to congress or segregate 

Figure 6. RMD-1 interacts with aurora B kinase. FLAG-tagged AIR-2 was 
coprecipitated with GST–RMD-1 but not with GST, indicating that RMD-1 
interacts with AIR-2. Input shows 1/25 of cell lysate used in the experi-
ments. Asterisks show degradation products.

microtubules (yellow arrows) crossed over chromosomes and kinetochores (stained with anti-MCAK). Broken lines in the magnifi ed image show micro-
tubules that crossed over chromosomes and kinetochores. At anaphase, kinetochores and chromosomes (light blue and yellow arrowheads) appeared 
to be pulled toward the opposite pole along incorrectly attached microtubules (light blue and yellow arrows). In addition, microtubules (white arrows) that 
interacted with the more distant kinetochores and chromosomes (white arrowheads) were observed. The regions indicated by dashed boxes are magnifi ed. 
The asterisks represent chromosomes that are laterally located. Bars (A–C), 5 μm; (D) 2.5 μm.
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properly, resulting in unsegregated chromosomes. This phe-

nomenon could be caused by the incorrect attachments of micro-

tu bules to kinetochores. Consistent with this interpretation, spindle 

pole separation during anaphase was delayed, and abnormal 

attachments were observed in rmd-1 embryos. These results sug-

gest that RMD-1 has important roles in the achievement of correct 

attachment between microtubules and kinetochores.

rmd-1 embryos showed a laterally stretched mass of chro-

mosomes, suggesting that most chromosomes have incorrect 

attachments. This is surprising because, at least in mammalian 

cells, abnormal attachments are much less frequent, even in early 

mitosis. This chromosomal phenotype may be partly caused by the 

elongated kinetochore structure in C. elegans, which protrudes 

from the chromosome surface (Albertson and Thomson, 1982), 

creating more opportunity for microtubules to access incorrect 

kinetochores. In addition, the holocentric nature of C. elegans 

kinetochores may further increase the chances for abnormal 

attachments. In any case, such strong defects were rare in zyg-9 

Figure 7. Depletion of RMD-1 induces abnormal spindle organization. (A) Time-lapse images of GFP–β-tubulin in wild-type and rmd-1(RNAi) embryos. 
Time after NEBD is indicated at the left. (B) Embryos were fi xed and stained for tubulin using anti–α-tubulin. At the one-cell stage, long asters were observed 
in wild-type embryos. In contrast, short astral microtubules were observed in the rmd-1(RNAi) embryos. (C) The distance between the spindle poles was 
tracked in wild-type (n = 9; white squares), rmd-1(RNAi) (n = 13; black squares), knl-1(RNAi) (n = 11; white circles), and knl-1(RNAi) + rmd-1(RNAi) 
(n = 8; crosses) embryos. The plots show the mean distances between the spindle poles versus time after NEBD. Bars, 5 μm.
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embryos, and, thus, they cannot be explained solely by the slow 

growth of microtubules. Therefore, RMD-1 is likely to have more 

direct roles in the achievement of correct attachment.

Roles for aurora B in the correction of abnormal attach-

ments have been proposed in mammalian cells (Shannon and 

Salmon, 2002; Lampson et al., 2004). In C. elegans, aurora 

B/air-2 mutants show a stretched mass of chromosomes (Kaitna 

et al., 2002), suggesting that AIR-2 functions in the correct attach-

ment between kinetochores and microtubules. The rmd-1(RNAi) 
embryos showed a stretched mass of chromosomes similar to 

that in the aurora B/air-2 mutants. In addition, RMD-1 interacted 

with aurora B/AIR-2 in vitro. Therefore, RMD-1 could function 

to elicit proper chromosome segregation through the aurora 

B/AIR-2–mediated pathway. Further analyses will be necessary 

to elucidate how RMD-1 and AIR-2 cooperate to resolve incor-

rect attachments.

RMD-1 is a member of a novel but 
conserved MAP family
Our results show that RMD-1 is a member of a novel MAP family. 

We found homologues of RMD-1 in human, mouse, Xenopus, and 

zebrafi sh. Furthermore, hRMD proteins bound to and colocalized 

with microtubules, indicating that RMD proteins comprise an 

evolutionally conserved MAP family. The various microtubule-

binding motifs of many MAPs have been identifi ed (Chen et al., 

1992; Cravchik et al., 1994; Leung et al., 1999; Schuyler and 

Pellman, 2001). However, we found no sequence homology of 

RMD proteins with other MAPs. Further analyses of RMD-1 

may reveal novel microtubule-binding domains.

In addition to its regulation of chromosome segregation, 

our data indicate that RMD-1 functions in the growth of astral 

microtubules. Defects in this RMD-1 function might cause short 

astral microtubules and defective spindle orientation at the 

Figure 8. RMD-1 is a novel MAP that regulates the dynamics of microtubules. (A) Examples of tracking EBP-2–GFP dots obtained in live analyses. Each 
arrow indicates the position of a single dot of EBP-2–GFP whose movement was traced. (B) Microtubule growth rates calculated by speed of EBP-2 movement 
before NEBD (n = 48 for wild type and n = 48 for rmd-1(RNAi)), after NEBD (n = 70 for wild type, n = 65 for rmd-1(RNAi), n = 21 for zyg-9(RNAi), 
and n = 21 for zyg-9 rmd-1(RNAi)), and during anaphase (n = 30 for wild type and n = 40 for rmd-1). In rmd-1(RNAi) embryos, the growth rate of astral 
microtubules was signifi cantly lower than in wild type (P < 0.0001 before NEBD, P < 0.0001 after NEBD, and P = 0.00013 during anaphase). In the 
zyg-9(RNAi) embryos, the additional RNAi against rmd-1 had no signifi cant additional effect on the microtubule growth rate after NEBD (P = 0.82). 
P-values were calculated by t test assuming unequal variances. Error bars represent SD. Bars, 5 μm.
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two-cell stage in rmd-1 embryos. How RMD-1 functions in micro-

tubule growth is as yet unresolved. Although both RMD-1 and 

ZYG-9 regulate microtubule growth, we were not able to fully 

elucidate their relationship in this study. If RMD-1 is involved 

in ZYG-9–mediated microtubule growth, RMD-1 may modu-

late ZYG-9 activity to regulate microtubule dynamics. Further 

analyses of RMD-1’s microtubule-binding properties and iden-

tifi cation of its binding proteins will help elucidate the functions 

of RMD proteins in microtubule growth.

The regulatory factors aurora B kinase, INCENP, and Sur-

vivin, which function to ensure correct attachments in other 

eukaryotes, are conserved in C. elegans (Romano et al., 2003). 

Furthermore, RMD proteins are conserved and localize to spin-

dles in mammalian cells. Therefore, the functions of RMD-1 

may be evolutionally conserved and may be critical to achieve 

correct microtubule attachment during mitosis in other organ-

isms as well.

Materials and methods
Strains
N2 bristol was used as the wild-type strain. The temperature-sensitive mu-
tants rmd-1(os21) and zyg-9(b244) (Wood et al., 1980) were maintained 
as homozygotes at the permissive temperature of 15°C. The deletion mu-
tant tm1457 (a gift of S. Mitani, Tokyo Women’s Medical University, Tokyo, 
Japan) was maintained as tm1457/hT2 at 22.5°C. Strain TH66 (a gift of 
M. Srayko, Max Plank Institute, Dresden, Germany) expressing EBP-2–GFP 
was maintained at 25°C (Srayko et al., 2005). The following integrated 
transgenes were used: ruIs32 (unc-119(+) pie-1- GFP-his-11) for GFP-
histone (Praitis et al., 2001), ruIs48 (unc-119(+) pie-1-GFP-tbb-1) for GFP–
β-tubulin (Strome et al., 2001), and itIs3 (unc-119(+) pie-1-hcp-1-GFP-TEV-STag) 
for HCP-1–GFP (Cheeseman et al., 2005). The animals were maintained 
using standard procedures (Brenner, 1974).

Positional cloning and molecular characterization
rmd-1(os21) was mapped to LGIII. Three-point mapping was performed, 
which placed rmd-1 between ced-7 and unc-69. From heterozygotes of the 
genotype sma-2 ced-7 unc-69/+ + rmd-1+, non-Sma non-Ced Unc recom-
binants were obtained, and 13/19 segregated rmd-1(os21). To map rmd-1
(os21) relative to SNPs, we mated CB4856 males and rmd-1(os21) unc69 
hermaphrodites, selected Unc non-Psa recombinants, plated them separately, 
identifi ed self-progeny homozygotes, and checked for SNPs in these 
strains. rmd-1(os21) was mapped to the region just to the right of T05G5. 
Rescue experiments were performed using plasmids containing fragments 
amplifi ed by PCR from T05G5 cosmids (pKO1, 27,122–35,387 bp; 
pKO2, 27,122–32,282 bp; pKO3, 27,122–31,384 bp; and pKO4, 
29,620–31,940 bp) that were injected into rmd-1(os21) mutant larvae 
to test for rescue of the Psa phenotype. A cDNA clone, yk507f10, corre-
sponding to T05G5.7 had the predicted coding sequence but did not in-
clude the fi rst ATG. We identifi ed the start codon by RT-PCR of RNAs from 
wild-type animals using primers against the trans-spliced SL1 leader and 
an internal region of T05G5.7. The PCR products were subcloned into pBST 
to generate pBSCr1.

RNA-mediated interference
To prepare double-stranded RNA, PCR with T7 and T3 primers was used to 
amplify cDNA fragments from yk507f10 (rmd-1), yk396b3 (zyg-9), 
yk444c6 (knl-1), and yk391b3 (zen-4; all yk cDNA clones are gifts of 
Y. Kohara, National Institute of Genetics, Mishima, Japan). RNA was syn-
thesized using T3 and T7 polymerase (Promega). For all experiments, double-
stranded RNAs were injected into L4 hermaphrodites. All animals injected 
with double- stranded RNA were incubated at 25°C for 20–28 h be-
fore observation.

Live imaging
To observe live embryos, the embryos were dissected from gravid her-
maphrodites in high salt medium (0.5× embryonic growth medium [Edgar, 
1995] supplemented with 1 M KCl). Under this condition, wild-type em-
bryos did not show defects in early embryogenesis (Figs. 3–6, S3, and S4). 

For most observations, embryos were mounted on 5% agar pads under 
a coverslip, except for the experiments shown in Fig. S3 B (high salt with 
a space) and Fig. S4 C, in which embryos were mounted on poly-lysine–
coated coverslips and inverted over 5% agar pads with a space between 
the embryos and a coverslip. Fluorescence images from GFP-histone, GFP–
β-tubulin, HCP-1–GFP, and EBP-2–GFP were collected by a camera (Orca 
ER; Hamamatsu) mounted on a microscope using a 63× 1.4 NA plan-
Apochromat objective (Carl Zeiss, Inc.) and disk head (Yokogawa) using 
IPLab software (BD Biosciences). Images were collected at intervals of 30 
(GFP–β-tubulin and GFP-histone), 10 (HCP-1–GFP), or 0.2 s (GFP–EBP-2; 
1 × 1 binning). EBP-2–GFP dots that remained in the focal plane for at least 
3 s were randomly selected for tracking. Roughly fi ve GFP dots were ana-
lyzed per centrosome in at least three embryos. The distance from each 
EBP-2–GFP dot to the centrosome was measured at each time interval. 
The growth rates of the microtubules were determined by calculating the 
mean velocity of the EBP-2 movements from the position at each time interval 
(Microsoft Excel).

For rapid temperature upshift experiments, embryos grown at 15°C 
were collected and mounted on slides with an agar pad at room tempera-
ture (
25°C) followed by quick observation to fi nd the embryos before 
pronuclear migration (this entire procedure took 141 s on average and 
always <3 min). The slides were then placed on an aluminum block in the 
microscope room, which was kept at 15°C for at least 5 min until the events 
of interest occurred (timing of the temperature shifts is given in Fig. 5 B). 
The microscope room was kept at 25°C for the temperature shift experi-
ments and at 16°C for experiments without a temperature shift.

Antibodies and immunofl uorescence
An anti–RMD-1 rabbit antibody was generated against two C-terminal 
peptides of RMD-1 (Fig. 1 B) and was used at a 1:2,000 dilution. The fol-
lowing primary antibodies were also used: anti–α-tubulin antibody DMIA 
(1:500; Sigma-Aldrich), anti-GFP antibody (1:500; MBL International), 
anti-GFP 3E6 (1:500; Invitrogen), anti-GST antibody B-14 (1:10,000; 
Santa Cruz Biotechnology, Inc.), anti-HA antibody 3F6 (1:500; Roche), 
anti-FLAG M2 (1:1,000; Sigma-Aldrich), and anti–KLP-7/MCAK (1:1,000; 
a gift of K. Oegema and A. Desai, University of California, San Diego, 
La Jolla, CA; Oegema et al., 2001). The secondary antibodies were fl uores-
cein-conjugated goat anti–mouse IgG, rhodamine red-X–conjugated goat 
anti–rabbit IgG, rhodamine-conjugated goat anti–mouse IgG, and Alexa-
Fluor555-conjugated goat anti–rat IgG (Invitrogen) diluted 1:500.

Fixed embryos were incubated with primary antibody at room tem-
perature for 2 h before being incubated with the appropriate secondary 
antibody for 2 h at room temperature. Three-color 3D image stacks were 
collected at 0.2-μm steps using a 100× 1.3 NA U-plan Apo objective 
(Olympus) and were computationally deconvolved by an imaging system 
(DeltaVision; Applied Precision).

FISH
The 5S rDNA probe was generated by PCR amplifi cation of a single 1-kb 
repeated unit from the C. elegans genome using primers described previ-
ously (Dernburg et al., 1998). Probe DNA was enzymatically fragmented, 
3′ end labeled using cy3-dUTP (GE Healthcare) and terminal deoxynucleo-
tidyl transferase (Promega), and purifi ed over a column (Sephadex G50). 
The labeled probe DNA was then precipitated from the eluent and re-
suspended in hybridization solution (BD Biosciences). FISH was performed 
as described previously (Kaitna et al., 2002) but replacing the hybridiza-
tion buffer with BD Biosciences hybridization buffer.

Protein purifi cation and cosedimentation assays
To generate a full-length cDNA clone (pBSr1) of rmd-1, a 628-bp XhoI frag-
ment from yk507f10 was inserted into the XhoI site of pBSCr1. The frag-
ment, including the entire rmd-1 sequence, was amplifi ed from pBSCr1. 
The PCR product was inserted into pGEX-4T-1 (GE Healthcare) to yield the 
pGEX-4T-1-RMD-1 plasmid. The fragments containing the full-length rmd-2 
and rmd-3 genes from yk626b6 (rmd-2) and yk306d2 (rmd-3) were ampli-
fi ed by PCR. The resulting fragments from rmd-2 and rmd-3 were subcloned 
into pBST to generate pBSr2 and pBSr3, respectively. The full-length hRMD-1, 
-2, and -3 cDNAs were amplifi ed from a human fetal brain cDNA library 
(Clontech Laboratories, Inc.). Each fragment was inserted into pGEX-4T-1 
and pTB701-HA (Oishi et al., 2001). GST-fused proteins were expressed 
in Escherichia coli, affi nity purifi ed using glutathione–Sepharose 4B (GE 
Healthcare), and dialyzed against BRB80 (80 mM Pipes, 1 mM MgCl2, 
and 1 mM EGTA, pH 6.8, with KOH; Hyman et al., 1992). For cosedimen-
tation assays, taxol-stabilized microtubules were prepared as described 
previously (Desai and Walczak, 2001). In brief, 1 mg/ml tubulin purifi ed 
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from bovine brain (MP Biomedicals) was precooled at 0°C for 5 min 
and spun in a TLA100 rotor (Beckman Coulter) at 90,000 rpm for 2 min 
at 2°C. Taxol was added to the supernatant stepwise to be equimolar with 
the tubulin. Taxol-stabilized microtubules were then mixed with each 
GST fusion protein, which had been precleared by centrifugation in a 
TLA100 rotor at 90,000 rpm for 15 min at 23°C and incubated with the 
taxol-stabilized microtubules at 37°C for 15 min. GST fusion proteins were 
cosedimented with microtubules in a single centrifugation step in a TLA100 
rotor at 90,000 rpm for 5 min at 23°C. The pellets were washed with 
BRB80 containing 1 mM DTT and 10 μM taxol, and both pellets and su-
pernatants were recovered and mixed with an equal volume of SDS-PAGE 
loading buffer.

Pull-down assay
Full-length air-2 cDNA was amplifi ed from expressed sequence tag 
yk665d12 by PCR and inserted into pTB701/FLAG (Oishi et al., 2001). 
COS-7 cells were transfected with pTB701/FLAG/AIR-2 by Lipofectamine 
(Invitrogen). COS-7 cells expressing FLAG-tagged AIR-2 were lysed in lysis 
buffer (0.5× PBS, 20 mM Hepes, pH 7.6, 1% NP-40, 50 mM β-glycero-
phosphate, 1 mM Na3VO4, and 1 mM DTT) supplemented with a cocktail 
of protease inhibitors (Nakalai Tesque). Extracts of cells expressing FLAG-
tagged AIR-2 were incubated with GST-fused RMD-1 or GST and pulled 
down with glutathione–Sepharose 4B. Coprecipitated proteins were de-
tected by Western blotting.

Cell culture and immunofl uorescence
HeLa cells were cultured as described previously (Kitagawa et al., 1998; 
Oishi et al., 2001), seeded onto 13-mm coverslips in a 35-mm culture dish 
(105 cells), and transfected as described previously (Kitagawa et al., 
1998). Fixation and immunostaining were performed as described previ-
ously (Oishi et al., 1999). Fluorescence images were acquired with a fl uor-
escent microscope (IX71; Olympus) using a 100× 1.3 NA U-plan Apo 
objective (Olympus) and computational deconvolution.

Online supplemental material
Fig. S1 shows subcellular distribution of the human homologues of RMD-1. 
Fig. S2 shows that rmd-1 embryos display various defects in microtubule-
based processes. Fig. S3 shows abnormal spindle orientation in rmd-1 em-
bryos. Video 1 shows living wild-type embryos expressing EBP-2–GFP after 
NEBD. Video 2 shows a living rmd-1(RNAi) embryo expressing EBP-2–GFP 
after NEBD. Online supplemental material is available at http://www.jcb
.org/cgi/content/full/jcb.200705108/DC1.
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