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stable lamellipodia necessary for directional locomotion. 

The contribution of FAK to macrophage function in vitro 

was substantiated in vivo by the fi nding that recruitment of 

monocytes to sites of infl ammation was impaired in the 

absence of FAK. Decreased Pyk2 expression in primary 

macrophages also resulted in a diminution of invasive 

 capacity. However, the combined loss of FAK and Pyk2 had 

no greater effect than the loss of either molecule alone, 

indicating that both kinases function within the same path-

way to promote invasion.

Introduction
The ability of macrophages to quickly respond to diverse extra-

cellular cues allows these cells to function as important media-

tors of innate and adaptive immunity. In response to migratory 

stimuli, macrophages polarize and extend broad lamellipodia 

and spikelike fi lopodia in the direction of the chemotactic gradi-

ent (Calle et al., 2006). Formation of these protrusive structures 

is controlled by dynamic reorganization of the actin cytoskele-

ton and tubulin-based microtubules (Jones, 2000; Worthylake 

and Burridge, 2001). These structures are subsequently stabi-

lized by integrin-mediated adhesions with the ECM. Members 

of the FAK family, which includes FAK and Pyk2, are criti-

cal integrators of these and other processes involved in cell 

motility. Through its function as a kinase and signaling scaffold, 

FAK has been shown to regulate focal adhesion turnover and 

migration in fi broblasts (Hanks et al., 2003; Parsons, 2003; 
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Schlaepfer et al., 2004), whereas Pyk2 is a known regulator of 

macrophage motility (Okigaki et al., 2003). However, the bio-

logical function of FAK and the molecular interplay between 

FAK and Pyk2 in highly motile cell types such as macrophages 

has been largely unexplored. FAK was initially considered to 

be absent or expressed at low levels in monocyte/macrophages 

(Lin et al., 1994; De Nichilo and Yamada, 1996). It is now clear 

that FAK is indeed present in this cell lineage (Kume et al., 1997; 

Okigaki et al., 2003; Rovida et al., 2005), allowing for inves tigation 

into its role during macrophage migration and the im mune re-

sponse to infl ammation.

During migration, FAK coordinates lamellipodial for-

mation and the turnover/disassembly of focal adhesions (Webb 

et al., 2004; Tilghman et al., 2005). Focal adhesions are highly 

dynamic structures that form at sites of membrane contact with 

the ECM and are associated with a dense network of bundled 

actin stress fi bers (Zaidel-Bar et al., 2004; Vicente-Manzanares 

et al., 2005). A critical role for FAK during cell migration is 

highlighted by the fact that fi broblasts derived from FAK-null 

mice migrate poorly in response to chemotactic and haptotactic 

factors and contain exceptionally large and stable focal adhe-

sions (Ilic et al., 1995). In contrast to fi broblasts, macrophages 
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form small focal complexes rather than large focal adhesions 

and produce fi ne actin cables rather than the stress fi bers ob-

served in cells of mesenchymal derivation (Pixley et al., 2005; 

for review see Pixley and Stanley, 2004). Macrophage-substrate 

contact also gives rise to podosomes, which are believed to play 

a role in adhesion, motility, matrix remodeling, and invasion 

(Calle et al., 2006). The formation of focal contacts and/or po-

dosomes as well as the lack of actin stress fi bers is consistent 

with the rapid motile response required of these cells.

In macrophages, integrin-dependent signaling can be en-

hanced by the presence of cytokines and growth factors (Schneller 

et al., 1997; Kiosses et al., 2001; Faccio et al., 2003). Colony-

stimulating factor-1 (CSF-1) is a pleiotrophic myeloid lineage-

specifi c growth factor that stimulates cell survival, proliferation, 

and monocyte–macrophage differentiation (for reviews see 

Stanley et al., 1997; Pixley and Stanley, 2004). It also functions 

as a potent macrophage chemoattractant (Boocock et al., 1989). 

Macrophages undergo signifi cant morphological changes in 

response to CSF-1, including lamellipodia formation, dorsal ruf-

fl ing, polarization, and CSF-1–directed chemotaxis (Boocock 

et al., 1989; Webb et al., 1996; Allen et al., 1997). CSF-1 recep-

tor activation results in activation of the small GTPases Rac1 

and Cdc42, which contribute to membrane ruffl ing and cell 

polarization (Cox et al., 1997; Kraynov et al., 2000). Recent 

data suggest that FAK is also important in establishing a proper 

leading edge and maintaining the polarity of moving cells 

(Tilghman et al., 2005).

To examine the role of FAK in primary macrophages, we 

have generated myeloid-specifi c conditional FAK knockout mice. 

We show that macrophages derived from these mice display 

 signifi cant motility defects coincident with elevated protrusive 

activity at the cell periphery, reduced adhesion turnover, and a 

Figure 1. Generation of myeloid lineage-specifi c conditional 
FAK knockout mice. (A) Schematic diagram of the fl oxed-FAK 
locus and the structure of the FAK locus after LysM-driven Cre-
mediated recombination. The second kinase domain exon of 
FAK (black box) is fl anked by loxP sites (black triangles). Prim-
ers (short arrows) and PCR products (lines) are shown above 
each allele. (B) PCR of DNA isolated from BMMs using the 
primers LoxP and GenoRV to distinguish the FAK-fl ox allele 
(1.6 kB; lane 1) and the recombined locus (327 bp; lane 2). 
(C) Immunoblot analysis of total FAK (top) and Pyk2 (bottom) 
expression in BMMs isolated from LysMwt/wt-FAKfl /fl  and 
LysMwt/cre-FAKfl /fl  mice (lane 1 and lane 2, respectively).

marked inability to form the stable lamellipodia necessary for 

directional locomotion. Although the reduced expression of 

Pyk2 also resulted in motility defects, the combined loss of both 

FAK and Pyk2 had no additional consequence above what was 

observed in the absence of either molecule alone. The effects of 

FAK deletion on macrophage functions in vitro corresponded 

with decreased infi ltration of FAK-null infl ammatory monocytes 

into sites of infl ammation in vivo. For the fi rst time, these data 

provide genetic evidence that FAK is critically involved in the 

regulation of macrophage motility. These fi ndings have pro-

found implications for considering the physiological importance 

of macrophages for the control of infection and the maintenance 

of tissue homeostasis.

Results
Generation of myeloid-specifi c conditional 
FAK knockout mice
Mice harboring a fl oxed-FAK allele (Beggs et al., 2003) were 

crossed with mice expressing Cre recombinase under the con-

trol of the myeloid-specifi c lysozyme M (LysM) promoter 

(Clausen et al., 1999). Recombination catalyzed by Cre recom-

binase results in excision of the fl oxed target exon (Fig. 1 A). 

FAK sequences from bone marrow macrophages (BMMs) isolated 

from LysMwt/cre-FAKfl/fl mice were effi ciently deleted during 

recombination (Fig. 1 B), and FAK protein expression levels were 

signifi cantly reduced compared with FAK levels observed in BMMs 

isolated from LysMwt/wt-FAKfl/fl littermates (Fig. 1 C, top). 

Unlike FAK-null mouse embryo fi broblasts, which exhibit up-

regulated levels of Pyk2 (Ilic et al., 1995), both wild-type (WT) 

and FAK-defi cient (FAK−/−) BMMs expressed equivalent levels 

of Pyk2 (Fig. 1 C, bottom).
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The loss of FAK promotes elevated 
protrusive activity at the cell periphery and 
altered adhesion dynamics
Adherent BMMs represent a highly heterogeneous population 

of cells that can vary signifi cantly in their shape and size. 

Despite this variability, the mean adhesive area exhibited by 

FAK−/− macrophages plated onto fi bronectin (FN)-coated cover-

slips was consistently reduced regardless of whether cells were 

Figure 2. FAK−/− macrophages exhibit elevated protrusive behavior in response to CSF-1. (A) WT (black bars) and FAK−/− (gray bars) macrophages were 
fi xed and stained for fi lamentous actin, and the total area of adhesion was measured with ImageJ. Results shown are the mean ± SEM (error bars) and 
represent �150 cells from each population over fi ve separate experiments. Asterisks indicate a statistically signifi cant difference from the mean at ≥95% 
confi dence level relative to CSF-1–starved WT cells. (B) The periphery of representative WT and FAK−/− macrophages taken from time-lapse video micros-
copy were outlined at time points before and after CSF-1 stimulation. Arrows indicate protrusions. (C) Sample kymographs from WT and FAK−/− cells are 
shown. The boxed area highlights protrusions extending from the cell periphery, which are enlarged in the inset. P, protrusion; R, retraction. (D) Protrusion 
persistence (∆x), distance (∆y), protrusion rate (∆y/∆x), and retraction rate (−∆y/∆x) were determined for each cell examined. The data represent the 
mean ± SEM of 10 cells (four parameters of membrane activity per cell) from each population over three separate videos. Asterisks indicate values that 
are signifi cantly different from WT cells. *, P <0.05; **, P < 0.001.

cultured in the absence of CSF-1 overnight (Fig. 2 A), stimu-

lated with CSF-1 for 20 min, or grown in the continual presence 

of CSF-1 (Fig. 2 A, second and third datasets, respectively). 

To specifi cally examine how the loss of FAK in macrophages 

affects cell spreading, WT and FAK−/−cells were examined by 

time-lapse video microscopy (Videos 1 and 2, available at http://

www.jcb.org/cgi/content/full/jcb.200708093/DC1). Macrophages 

were starved of CSF-1 overnight. The following day, time-lapse 



JCB • VOLUME 179 • NUMBER 6 • 2007 1278

microscopy commenced 5 min before the addition of exogenous 

CSF-1 and continued for an additional 10 min after stimulation. 

Before the addition of CSF-1, FAK−/− macrophages were ob-

served to extend and retract numerous short-lived protrusions, 

resulting in a highly irregular peripheral edge. These structures 

were evident upon examination of individual FAK−/− BMMs 

taken at 1-min intervals (Fig. 2 B). Immediately after CSF-1 

stimulation, both WT and FAK−/−cells exhibited circumferen-

tial spreading and fewer discrete protrusions. However, by 4 min 

after the addition of CSF-1, increased protrusive activity was again 

evident in FAK-defi cient macrophages.

To compare the protrusive activity of WT and FAK−/− 

BMMs, these time-lapse videos were analyzed by kymography, 

a technique that allows for the quantitation of protrusion persis-

tence (∆x), protrusion distance (∆y), protrusion rate (∆x/∆y), and 

retraction rate (−∆x/∆y; Fig. 2 C). Protrusions formed by FAK−/− 

BMMs were shorter lived, lasting �1 min before retraction com-

pared with the 1.7-min lifespan of WT protrusions (Fig. 2 D). 

FAK−/− protrusions also extended further than those produced 

by WT cells (4 ± 0.37 μm vs. 3 ± 0.71 μm, respectively). Thus, 

the protrusion and retraction rates calculated for FAK−/− macro-

phages (7.2 ± 1.2 μm/min and 3.7 ± 0.7 μm/min, respectively) 

were signifi cantly faster than those observed for WT cells (2.7 ± 

0.27 μm/min and 1.6 ± 0.18 μm/min, respectively). Collectively, 

these data show that macrophages defi cient for FAK expression 

Figure 3. FAK regulates adhesion assembly and disassembly in macrophages. (A) TIRF-based video microscopy was used to examine adhesion formation 
and turnover in macrophages. WT and FAK−/− BMMs were starved of CSF-1 overnight and restimulated with 120 ng/ml CSF-1 just before fi lming. 
GFP-vinculin localizes in adhesion structures observed in both WT and FAK−/− macrophages. Bars, 10 μm. (B) Quantitative analysis of adhesion 
turnover. Adhesions from �8–10 cells were examined (three to fi ve adhesions per cell). Asterisks indicate values that are signifi cantly different from WT 
cells (*, P < 0.05). Error bars represent SEM.

exhibit high levels of activity at the cell periphery that are char-

acterized by the rapid formation and retraction of small protru-

sions. These data suggest that although FAK−/− BMMs are 

capable of forming lamellipodia, they may not be able to establish 

functional adhesions to stabilize the protrusions.

To determine whether FAK is involved in the regulation of 

adhesion formation and/or disassembly in macrophages, WT and 

FAK−/− BMMs were transfected with GFP-vinculin and exam-

ined by total internal refl ective fl uorescence (TIRF)–based video 

microscopy (Fig. 3 A and Videos 3 and 4, available at http://www

.jcb.org/cgi/content/full/jcb.200708093/DC1). GFP-vinculin 

localized to prominent peripheral adhesion structures in both WT 

and FAK−/− cells. FAK was also observed to localize to these 

vinculin-containing structures (Fig. S1). Although adhesions in 

FAK−/− BMMs appear larger than those observed in WT cells, 

adhesion size did not differ signifi cantly between the cell types. 

To quantify adhesion turnover, the kinetics of adhesion formation 

and disassembly was determined for vinculin by integrating the 

fl uorescent intensity in individual adhesions over time. The rate 

of adhesion formation was reduced twofold in the absence of 

FAK (1.9 ± 0.17 min−1 and 0.91 ± 0.19 min−1 for WT and 

FAK−/− cells, respectively; Fig. 3 B). Similarly, adhesion dis-

assembly in FAK−/− BMMs (0.85 ± 0.11 min−1) was also impaired 

compared with WT cells (1.48 ± 0.21 min−1). These results 

are consistent with the role of FAK as a mediator of adhesion 
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turnover and provide support for the hypothesis that altered adhe-

sion dynamics negatively impacts the ability of cells to establish 

stable protrusions.

FAK−/− BMMs exhibit a generalized defect in 
cell migration and invasion
Because FAK-defi cient BMMs displayed poor lamellipodial 

stabilization in combination with altered adhesion dynamics, 

live cell imaging was used to examine chemokinesis, or random 

migration, in the presence of CSF-1 (Videos 5 and 6, available 

at http://www.jcb.org/cgi/content/full/jcb.200708093/DC1). 

WT macrophages stimulated with CSF-1 were observed to spread, 

extend lamellipodia, and move in a directed fashion throughout 

the course of the 2.5-h video analysis (Fig. 4 A). In contrast, 

FAK−/− BMMs rarely migrated >15 μm from their point of origin 

compared with 45 μm for WT cells (Fig. 4 B). To investigate 

whether FAK is required for directed cell migration in addition 

to random motility, WT and FAK-defi cient macrophages were 

analyzed for their ability to migrate toward CSF-1 in a Boyden 

chamber assay. The loss of FAK inhibited CSF-1–induced motility 

by 53% (Fig. 4 C). The CSF-1–induced motility of BMMs ex-

tracted from LysMwt/wt-FAKwt/wt and LysMwt/cre-FAKwt/wt mice 

was identical to that observed for LysMwt/wt-FAKfl /fl  BMMs (un-

published data), demonstrating that the presence of fl ox sites in 

the absence of Cre or the expression of Cre in the absence of a 

fl oxed allele had no effect on migration.

To determine whether the migration defect toward CSF-1 

was specifi c for this cytokine, we next examined the ability of 

WT and FAK−/− BMMs to migrate toward stromal cell–derived 

factor-1α (SDF-1α) and macrophage chemoattractant protein-1 

(MCP-1). These factors signal through chemokine receptors, 

which are structurally and mechanistically distinct from the 

receptor tyrosine kinase CSF-1 receptor. Migration of FAK−/− 

BMMs toward SDF-1α and MCP-1 was reduced 42% and 46%, 

respectively, compared with WT BMMs (Fig. 4 C), indicating 

that the defect in chemotaxis exhibited by FAK−/− macrophages 

is not restricted to CSF-1.

Invasion through 3D ECMs may require alternative signal-

ing pathways to those regulating migration over 2D substrates 

(Wells et al., 2004). To determine the requirement for FAK during 

this process, WT and FAK−/− BMMs were seeded onto matrigel-

coated Boyden chambers and allowed to invade toward CSF-1 for 

24 h. The invasive capacity of FAK−/− BMMs was decreased by 

60% compared with WT macrophages (Fig. 5 A). One possible 

explanation for the reduced levels of invasion exhibited by 

FAK−/− BMMs is that these cells may be less effi cient in degrad-

ing matrix. To test this hypothesis, WT and FAK−/− BMMs were 

plated onto coverslips containing a layer of fl uorescein-labeled FN. 

The pattern of fl uorescein degradation was similar for both WT 

and FAK−/− cells (Fig. 5 B, b and e; arrowheads). These areas of 

matrix degradation colocalized with actin rosette structures char-

acteristic of macrophage invadopodia (Fig. 5 B, c and f; arrow-

heads; Yamaguchi et al., 2006). Quantitative analysis revealed no 

difference in the area of proteolysis for either cell type (Fig. 5 C). 

Collectively, these data indicate that the absence of FAK in macro-

phages results in a generalized motility defect affecting chemo-

taxis, random migration, and invasion through a 3D matrix.

Figure 4. FAK−/− BMMs exhibit impaired CSF-1–dependent motility. 
(A) Time-lapse video microscopy was used to examine cell movement in 
response to CSF-1. WT and FAK−/− BMMs were starved of CSF-1 overnight 
before restimulation with 120 ng/ml CSF-1 for 2.5 h (Videos 5 and 6, 
available at http://www.jcb.org/cgi/content/full/jcb.200708093/DC1). 
Migration tracks overlay the fi nal still image taken upon completion of the 
video. Bars, 10 μm. (B) The total distance traveled for WT (black bar) and 
FAK−/− (gray bar) BMMs was determined as described in Materials and 
methods. The data represent the mean ± SEM (error bars) of �30 cells 
from each population over three separate videos. Asterisks indicate values 
that are signifi cantly different from WT cells (*, P < 0.05). (C) WT (black 
bars) and FAK−/− cells (gray bars) were starved of CSF-1 overnight before 
seeding onto Boyden chambers. Cells were then allowed to migrate toward 
120 ng/ml CSF-1, 100 nM SDF-1α, or 100 nM MCP-1 for 4 h at 37°C. 
The number of migrated cells was determined and expressed relative to the 
migration of WT cells toward media alone. The data represent the mean ± 
SEM for four to six separate experiments. Asterisks indicate values 
that are signifi cantly different from the migration of WT cells toward media 
(*, P < 0.05).
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FAK−/− macrophages exhibit high basal 
levels of activated Rac1
We next examined whether the loss of FAK affected the 

 activity of molecules involved in CSF-1–induced signaling. 

Specifically, the small GTPase Rac1 has been shown to regulate 

actin polymerization during lamellipodia formation in macro-

phages (Allen et al., 1997; Wells et al., 2004). Rac1 activity 

was measured in WT and FAK−/− BMMs that were starved of 

cytokine overnight and stimulated with CSF-1 for 0–30 min. 

Although the kinetics of activation were similar between the 

cell types, with peak Rac activity at �1 min of CSF-1 treatment, 

basal Rac1-GTP levels were ninefold higher in FAK-defi cient 

macrophages than in WT cells (Fig. 6 A, top; compare lane 1 

with lane 6). The overall CSF-1–dependent increase in Rac1 

activity was not as great in FAK−/− BMMs as in WT BMMs 

(2.2-fold compared with 13.9-fold), largely as a result of the 

abnormally high basal activity in these cells. In contrast, ac-

tivation of ERK1/2 occurred with nearly identical amplitude and 

kinetics in both cell types, peaking after 5 min of CSF-1 stimu-

lation (Fig. 6 B).

To determine whether the elevated basal Rac1 activity 

 exhibited by FAK−/− BMMs contributed to the increased pro-

trusive activity and/or decreased overall migratory potential 

of these cells, dominant-negative Rac1 (GFP-N17Rac1) or 

GFP alone was expressed in FAK−/− BMMs. No difference 

in  invasion was detected between FAK−/− BMMs expressing 

GFP-N17Rac1 compared with FAK−/− BMMs expressing GFP 

alone (unpublished data). However, the expression of GFP-

N17Rac1 in FAK-defi cient macrophages resulted in a signifi -

cant reduction in membrane protrusiveness (unpublished data), 

indicating that Rac1 activity contributes to membrane dynamics 

in these cells.

Pyk2 and FAK coordinately regulate 
macrophage invasion
The data presented thus far support a role for FAK in the regula-

tion of macrophage motility. However, it was important to con-

fi rm that the defects exhibited by FAK−/− BMMs were directly 

caused by the loss of FAK. As an alternative to the genetic dele-

tion of FAK, BMMs isolated from control mice were treated 

Figure 5. FAK−/− BMMs are impaired in their ability to invade through 3D matrices. (A) WT and FAK−/− BMMs were starved of CSF-1 overnight before 
seeding onto matrigel-coated Boyden chambers. Cells were allowed to invade toward 120 ng/ml CSF-1 for 24 h at 37°C. Upon completion of the assay, 
the total number of cells that successfully invaded was determined. The data represent the mean ± SEM (error bars) for three separate experiments. Asterisks 
indicate values that are signifi cantly different from WT cells (*, P < 0.05). (B) WT and FAK−/− BMMs were starved of CSF-1 overnight before plating onto 
collagen-coated coverslips containing an underlying layer of fl uorescein-labeled FN (prepared as described in Materials and methods) in media containing 
120 ng/ml CSF-1. After 4 h, cells were fi xed and stained for fi lamentous actin (a and d). Degradation of ECM results in a cleared area of fl uorescein 
(b and e; arrowheads). Overlayed images appear in panels c and f. (C) Areas of ECM degradation were measured in 10 randomly selected fi elds using 
ImageJ. The data represent the mean ± SEM for three separate experiments. Bar, 16 μm.
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with siRNA duplexes targeting FAK. This resulted in a 90% 

reduction in FAK expression (Fig. 7 A, lane 8). Control and 

siRNA-treated BMMs were seeded onto matrigel-coated Boyden 

chambers and allowed to invade toward CSF-1 overnight. BMMs 

treated with siRNAs targeting FAK exhibited signifi cantly re-

duced invasion relative to WT BMMs treated with vehicle or 

control siRNAs (Fig. 7 B, black bars). These data lend further 

support for an essential role of FAK in CSF-1–induced macro-

phage motility.

Although the loss of FAK from primary BMMs via both 

genetic deletion and RNAi resulted in a signifi cant reduction in 

invasion, residual invasion was still evident under both condi-

tions (Figs. 4 C and 7 B). This would suggest that a second, 

FAK-independent pathway is also involved in the regulation of 

macrophage motility. Macrophages derived from Pyk2−/− mice 

exhibit altered cell polarization and diminished contractility 

associated with reduced chemokine-induced motility (Okigaki 

et al., 2003). To more defi nitively assess the relationship be-

tween FAK and Pyk2 during macrophage invasion, siRNA oligo-

nucleotides were used to reduce Pyk2 expression by �85–95% 

in both WT and FAK−/− BMMs (Fig. 7 A, middle; lanes 5 and 6). 

This treatment had no effect on FAK expression in WT cells 

(Fig. 7 A, top; lane 5). As before, the invasive capacity of 

FAK−/− BMMs treated with vehicle or siControl was reduced 

by 55% compared with WT macrophages (Fig. 7 B, gray bars). 

Invasion was similarly decreased by 55% in siPyk2-treated WT 

cells (Fig. 7 B, third dataset; black bar). Importantly, reduced 

expression of Pyk2 in FAK−/− BMMs did not cause an addi-

tional reduction in invasion over the effect of FAK deletion 

alone (Fig. 7 B, third dataset; gray bar). Combined knockdown 

of both FAK and Pyk2 from WT cells by siRNA also decreased 

invasion by a similar level. These data indicate that both FAK 

and Pyk2 contribute to the regulation of macrophage invasion 

in response to CSF-1 and that they appear to function within 

the same pathway.

FAK regulates the recruitment of 
monocyte/macrophages to sites of 
infl ammation in vivo
To assess the role of FAK during leukocyte recruitment to sites 

of infl ammation in vivo, mice were injected intraperitoneally 

with 4% thioglycollate (TG) to induce an infl ammatory response. 

The peritoneal cavities of LysMwt/wt-FAKfl /fl  (phenotypically WT) 

mice and myeloid lineage-specifi c conditional FAK knockout 

mice were lavaged 8, 16, and 72 h after injection, and the exu-

dates were analyzed by fl ow cytometry using markers to dis-

tinguish between resident macrophages, infi ltrating monocytes, 

and neutrophils (Melnicoff et al., 1989; Chan et al., 1998). 

Resident macrophages are characterized by high CD11b and 

F4/80 expression and low expression of GR-1 and Ly6G. In con-

trast, GR-1 is up-regulated in infi ltrating infl ammatory mono-

cytes, whereas F4/80 expression is reduced in this model of 

infl ammation (Fig. S2, available at http://www.jcb.org/cgi/content/

full/jcb.200708093/DC1). Neutrophils were characterized by 

the high expression of GR-1 and Ly6G. In the resting perito-

neum, equivalent numbers of resident macrophages were ex-

tracted from both mouse genotypes (Fig. 8 A). After 16 h, twice 

as many infi ltrating CD11b-positive cells were recovered from 

the peritoneum of WT mice compared with conditional knock-

out mice. By 72 h after TG treatment, CD11b-positive cells 

continued to infi ltrate the peritoneum of WT mice, whereas the 

accumulation of these cells was delayed in the knockout animals. 

This impaired recruitment was not true of all leukocyte popula-

tions, however, as both WT and conditional knockout animals 

exhibited similar recruitment of GR-1–positive cells in response 

to TG (Fig. 8 B).

To confi rm that FAK was genetically deleted from the 

CD11b-positive population of cells isolated from the perito-

neum of TG-stimulated conditional FAK knockout mice, cells 

harvested from these mice were positively selected for CD11b sur-

face expression, and the extent of Cre-mediated recombination 

Figure 6. FAK−/− BMMs exhibit high basal levels of Rac1-GTP. Cells were plated onto tissue culture plastic and starved of CSF-1 overnight before stimula-
tion with 120 ng/ml CSF-1 for 0–30 min. (A) GTP-bound Rac1 was isolated from lysates by incubation with Pak-1–binding domain agarose. Bound proteins 
(top) and total Rac1 (bottom) were detected by immunoblotting with Rac1 antibodies. (B) Cellular proteins immunoblotted with antibodies recognizing 
phospho-ERK1/2 (top) and total ERK1/2 (bottom). (A and B) Relative band intensities are displayed in graph form to the right. WT, squares; FAK−/−, triangles. 
Each immunoblot represents multiple independent experiments.
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was examined by PCR. CD11b-positive cells lavaged from FAK-

defi cient mice exhibited high levels of Cre-mediated recombi-

nation compared with cells obtained from TG-stimulated WT mice 

(Fig. 8 C, compare lane 5 with lane 6) or cultured WT BMMs 

(Fig. 8 C, lane 1). Resident cells harvested from unstimulated 

conditional FAK knockout animals also exhibited Cre-mediated 

recombination compared with cells taken from WT littermates 

(Fig. 8 C, compare lane 3 with lane 4). The high levels of re-

combination seen in FAK knockout mice corresponded to a 

concomitant loss of FAK expression from elicited and resident 

cells (Fig. 8 D, top; lane 6 and lane 4, respectively).

The infi ltration kinetics of GR-1–positive neutrophils was 

similar between the two mouse genotypes (Fig. 8 B). This was 

somewhat surprising because LysM-Cre–mediated recombina-

tion is reported to occur with �99% effi ciency in neutrophils 

(Clausen et al., 1999). To determine whether FAK was similarly 

deleted in GR-1–expressing cells, GR-1–positive cells were har-

vested from TG-stimulated WT and conditional FAK knockout 

animals and examined for Cre-mediated recombination by PCR. 

GR-1–positive cells from the conditional knockout mice exhib-

ited effi cient cre-mediated recombination (Fig. 8 C, compare 

lane 7 with lane 8). However, we were unable to detect FAK 

protein in GR-1–positive cells obtained from either WT or FAK-

defi cient mice, indicating that FAK is not normally expressed 

in neutrophils (Fig. 8 D, lanes 7 and 8). Thus, neutrophil infi l-

tration was most likely not affected by the genetic deletion of 

FAK because FAK is not expressed in these cells. This suggests 

that the recruitment of neutrophils to sites of infl ammation 

occurs via a FAK-independent mechanism.

Discussion
As critical effectors of the innate immune system, macrophages 

use adhesion signaling to accomplish many essential cellular 

functions, including adhesion to and extravasation from blood 

vessels, chemotaxis, and phagocytosis. In this study, we demon-

strate for the fi rst time that FAK plays a critical role in processes 

involving macrophage adhesion and motility in vitro. We also 

show that disruption of FAK-dependent adhesion pathways in 

macrophages in vivo results in an attenuated immune response 

marked by reduced monocyte/macrophage infi ltration into sites 

of infl ammation. Collectively, these results provide a frame-

work for examining the signaling pathways controlling both 

FAK-dependent and -independent–based motility.

Regulation of macrophage motility by FAK 
family kinases
CSF-1 is a macrophage chemoattractant that interacts with 

its cognate receptor tyrosine kinase (CSF-1 receptor) and is 

produced endogenously by activated endothelial cells and tissue 

fi broblasts. FAK autophosphorylation increases in BMMs (unpub-

lished data) and in the Bac1.2F5 macrophage cell line during 

CSF-1 stimulation, suggesting a functional relationship between 

CSF-1 signaling and FAK (Rovida et al., 2005). In this study, 

we demonstrate that FAK−/− BMMs were signifi cantly impaired 

in their ability to migrate toward CSF-1. The chemotaxis of 

FAK-defi cient macrophages toward SDF-1α and MCP-1, chemo-

kines that signal through different subclasses of heptahelical 

G protein–coupled receptors (CXCR4 and CCR2, respectively), 

Figure 7. Macrophage invasion requires Pyk2 
and FAK expression. (A) WT and FAK−/− BMMs 
were treated with vehicle (H2O), siControl, 
 siPyk2, and/or siFAK. 48 h after siRNA trans-
fection, cells were lysed and immunoblotted for 
total FAK and Pyk2 (top) and ERK1/2 (bottom). 
(B) Vehicle and siRNA-treated cells were starved 
of CSF-1 overnight before seeding onto matrigel-
coated Boyden chambers. WT (black bars) and 
FAK−/− (gray bars) BMMs were then allowed 
to invade toward 120 ng/ml CSF-1 for 24 h at 
37°C. The data represent the mean ± SEM 
(error bars) for four to six separate experiments. 
Asterisks indicate values that are signifi cantly dif-
ferent from vehicle-treated WT cells (*, P < 0.05). 
^ indicates a value that is signifi cantly different 
from WT siControl-treated cells (P < 0.05).
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was similarly reduced. These results suggest that the defi cien-

cies in macrophage chemotaxis observed in FAK−/− macro-

phages may be a consequence of a fundamental breakdown in 

the cell migration machinery rather than an inability to respond 

to specifi c migratory stimuli. This conclusion is supported by 

data showing that macrophages lacking FAK exhibited impaired 

invasion through matrigel despite the fact that they were still 

able to effectively degrade FN. The essential contribution of 

FAK to macrophage function was further confi rmed by the fi nd-

ing that knockdown of FAK expression via siRNA treatment 

inhibited the invasive capacity of macrophages to the same 

extent as did genetic deletion of this molecule.

To delineate the mechanisms underlying the migratory de-

fects observed in FAK-defi cient macrophages, we fi rst compared 

the morphology and actin dynamics of WT and FAK−/− BMMs. 

CSF-1 induces monocyte/macrophage spreading, polarization, 

and extension of lamellipodia (Boocock et al., 1989; Webb et al., 

1996; Jones, 2000). FAK-defi cient macrophages were observed 

to continuously extend and retract numerous short-lived protru-

sive structures. The inability of FAK−/− macrophages to form 

broad lamellipodia is consistent with a role for FAK in regulat-

ing and/or maintaining a leading edge during migration. This is 

in accordance with a previous study showing that FAK plays a 

central role in organizing and propagating signals required for 

directional migration in fi broblasts (Tilghman et al., 2005).

Although FAK−/− BMM migration and invasion were sig-

nifi cantly impaired relative to control cells, the loss of FAK did 

not result in the complete abolishment of migratory activity, 

indicating that FAK-independent mechanisms also regulate 

macrophage motility. The genetic deletion of other signaling 

molecules such as Pyk2 and phosphoinositide 3-kinase–γ from 

macrophages induces a phenotype similar to FAK−/− BMMs, 

which is characterized by the formation of multidirectional la-

mellipodia, reduced polarization, and diminished migration 

(Jones et al., 2003; Okigaki et al., 2003). However, Pyk2 does 

not appear to be responsible for the residual invasive/migratory 

activity exhibited by FAK-defi cient cells because the invasive/

migratory capacity of FAK−/− macrophages was not further 

impaired by a loss of Pyk2. Nonetheless, depletion of Pyk2 

from WT BMMs had an inhibitory effect on invasion/migration 

Figure 8. Recruitment of CD11b-positive cells is impaired in conditional FAK knockout mice during TG challenge. (A and B) WT and FAK−/− animals were 
injected intraperitoneally with 4% TG, and lavage fl uid was collected at the indicated time points. To examine resident populations of cells, lavage fl uid 
was also collected from the peritoneal cavities of unstimulated mice. Total cell numbers were obtained by hemocytometer, and the expression of CD11b 
and GR-1 was determined by fl ow cytometry. Data are expressed as cell numbers based on the percentage of cells designated as resident/infl ammatory 
monocytes (A) or neutrophils (B; Fig. S1 and Table S1, available at http://www.jcb.org/cgi/content/full/jcb.200708093/DC1). WT, squares; FAK−/−, 
triangles. Data are the means ± SEM (error bars) from four mice per time point (two experiments). Asterisks indicate values that are signifi cantly different 
from WT cells (*, P < 0.05). (C) PCR products of DNA isolated from cultured BMMs (lanes 1 and 2), CD11b positively selected cells from unstimulated 
(lanes 3 and 4) or TG-stimulated mice (lanes 5 and 6), and GR-1 positively selected cells from TG-stimulated mice (lanes 7 and 8) to distinguish the FAK-fl ox 
allele (1.6 kB) and the recombined locus (327 bp). (D) Cellular proteins from cultured BMMs, CD11b positively selected cells from unstimulated (lanes 3 
and 4) or TG-stimulated mice (lanes 5 and 6), and GR-1 positively selected cells from TG-stimulated mice (lanes 7 and 8) were immunoblotted with antibodies 
recognizing FAK (top) and total ERK1/2 (bottom).
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similar to that observed in the absence of FAK, suggesting that 

FAK and Pyk2 may regulate macrophage motility through a sin-

gle pathway. We are currently investigating whether phospho-

inositide 3-kinase–γ or other known regulators of cell motility 

contribute to the FAK-independent pathways controlling the 

migration of macrophages. We are also exploring the possibility 

that the method of migration used by macrophages in the ab-

sence of FAK may be intrinsically different from FAK-dependent 

motility. One attractive possibility is that in the absence of FAK, 

the cells may switch from a proteolysis-dependent mesenchymal 

mode of migration to a Rho kinase (ROCK)–dependent amoeboid 

mode of migration similar to that observed during the invasive 

migration of tumor cells (Torka et al., 2006).

Regulation of macrophage adhesions and 
membrane protrusions by FAK
In addition to defects in motility, FAK−/− BMMs exhibited low 

rates of adhesion turnover, increased membrane protrusiveness, 

and elevated basal Rac1-GTP levels. The relationship between 

these defects and impaired migration remains to be determined. 

In fi broblasts, FAK signaling promotes adhesion disassembly, 

leading to inhibition of adhesion maturation and promotion of 

adhesion turnover (Webb et al., 2004). Based on the highly stable 

adhesions observed in FAK−/− macrophages, FAK likely per-

forms a similar function in these cells. However, the adhesions 

in BMMs are qualitatively different from those in fi broblasts. 

The large, mature focal adhesions present in fi broblasts are not 

evident in BMMs (for review see Pixley and Stanley, 2004). 

Moreover, the adhesion turnover rates observed in protruding 

regions of WT BMMs are considerably greater than the adhesion 

turnover rates reported for fi broblasts. Finally, BMM adhesion 

dynamics were measured in the presence of CSF-1. These differ-

ences may account for why both adhesion assembly and dis-

assembly rates are decreased in FAK−/− BMMs, whereas only 

adhesion disassembly rates were reduced in FAK−/− fi broblasts.

The abnormally high protrusive activity of the FAK−/− 

BMMs may be related, in part, to defects in adhesion dynamics. 

In FAK−/− fi broblasts, slow adhesion turnover results in a re-

duced ability of cells to form new adhesions that stabilize 

membrane protrusions (Webb et al., 2004). Consistent with this 

fi nding, we were unable to detect adhesions in areas of hyper-

protrusiveness in the FAK−/− BMMs, at least within the time-

scale of our measurements. A failure to form new adhesions 

at the leading edge after lamellipodia formation could also 

account for the decrease in directional motility exhibited by 

FAK−/− BMMs.

The contribution of high basal Rac1 activity to the migra-

tion defect exhibited by FAK−/− BMMs is less clear. High GTP-

Rac1 in fi broblasts has been reported to correlate with an overall 

decrease in motility coincident with the adoption of either a 

rounded, unruffled appearance or a flattened, highly ruffled 

morphology (Pankov et al., 2005). The FAK−/− macrophages 

exhibit a similar ruffl ed and protrusive appearance, which could 

be reversed by the expression of dominant-negative Rac1-N17 

(unpublished data). Thus, the hyperprotrusiveness exhibited in 

the absence of FAK may be the result of elevated Rac1-GTP. 

However, Rac1-N17 expression did not rescue the migration 

defect exhibited by FAK−/− BMMs (unpublished data). This is 

consistent with data from Rac1 knockout mice that show that 

Rac1 is not required for BMM migration (Wells et al., 2004; 

Wheeler et al., 2006).

Regulation of macrophage functions 
associated with the infl ammatory response 
by FAK
Macrophages play a central role in the infl ammatory process, 

releasing cytokines that control key events in the initiation, 

resolution, and repair processes of inflammation (Henderson 

et al., 2003). Neutrophils are rapidly recruited into sites of acute 

infection and are the principal cell type during the initial infl ux of 

infi ltrating leukocytes (Issekutz and Movat, 1980). However, mono-

cytes/macrophages replace neutrophils as the predominant in-

fi ltrating population within 16 h of an infl ammatory reaction 

(Henderson et al., 2003). The induction of an infl ammatory 

response in myeloid-specifi c conditional FAK knockout mice 

resulted in the delayed recruitment of infl ammatory CD11b-

positive monocytes/macrophages relative to control mice, whereas 

the recruitment of GR-1–positive neutrophils occurred with 

identical kinetics in both mouse genotypes. That the fl oxed-FAK 

allele underwent recombination in neutrophils from conditional 

FAK knockout mice is not surprising because effi cient LysM-

driven Cre-mediated excision of fl oxed target genes has been 

reported in this cell type (Clausen et al., 1999). However, because 

FAK protein is not endogenously expressed in this cell lineage, 

the genetic deletion of FAK had no effect on neutrophil recruit-

ment. These fi ndings underscore the importance of FAK during 

the recruitment of macrophages for which FAK-dependent mecha-

nisms of migration are essential and suggest that other FAK-

independent mechanisms of motility are used in cell lineages that 

do not typically express FAK.

Based on these data, we suggest that it may be possible to 

alter the macrophage-specifi c host response to infl ammation by 

targeting FAK in the monocyte/macrophage lineage. This has 

signifi cant consequences when considered within the context of 

diseases in which the accumulation of macrophages contributes 

to disease progression, such as chronic infl ammatory diseases 

and cancer. Adhesion signaling in immune cells has already 

been established as a viable therapeutic target. For example, 

antibodies that block α4-integrin functions on the surface of 

T helper 1 cells or activated macrophages have been shown to 

be beneficial for treating both Crohn’s disease and multiple 

sclerosis (Ghosh et al., 2003; Miller et al., 2003). Similar ap-

proaches might be useful for treating solid tumors, which are 

often found to contain macrophages, because high numbers of 

tumor-associated macrophages correlate with a poor prognosis 

(Pollard, 2004). Recent experiments using small molecular in-

hibitors of FAK, which specifi cally target FAK catalytic activ-

ity, have shown that cell migration and focal adhesion turnover 

are inhibited by the drug (Slack-Davis et al., 2007). Although 

further studies will be required to elucidate the FAK-dependent 

and -independent signaling pathways required for macrophage 

migration, the data presented herein highlight potential thera-

peutic applications involving the inhibition of FAK activity 

in macrophages.
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Materials and methods
Generation of myeloid-specifi c conditional FAK knockout mice
Mice homozygous for cre recombinase under the control of the myeloid-
specifi c LysM promoter were purchased from The Jackson Laboratory (stock 
# 004781) and have been described previously (Clausen et al., 1999). 
To generate myeloid-specifi c conditional FAK knockout mice and their con-
trol littermates, mice homozygous at the FAK locus (FAKfl /fl ; Beggs et al., 
2003) were crossed with mice homozygous for cre at the LysM locus 
(LysMcre/cre). Mice heterozygous at both loci were backcrossed to generate 
LysMwt/wt-FAKfl /fl  (WT control) and LysMwt/cre-FAKfl /fl  (FAK−/−) mice and the 
controls LysMwt/wt -FAKwt/wt and LysMwt/cre -FAKwt/wt.

Genotyping of mice and analysis of Cre-mediated recombination
Animals were routinely genotyped from tail DNA and subjected to PCR 
analysis. The following primers were used for PCR of the FAK locus: P1 
(5′-G A G A A T C C A G C T T T G G C T G T T G -3′) and GenoRV (5′-G A A T G C T A C A G-
G A A C C A A A T A A C -3′). This primer set generates 290- (WT) and 400-bp 
(FAK-fl ox) fragments. To determine the status of the LysM locus, the follow-
ing primers were used: LysM1 (5′-C T T G G G C T G C C A G A A T T T C T C -3′), 
LysM2 (5′-T T A C A G T C G G C C A G G C T G A C -3′), and Cre8 (5′-C C C A G A A A-
T G C C A G A T T A C G -3′). This primer set generates 350- (WT) and 700-bp 
(Cre) fragments. To check for Cre-mediated recombination in BMMs, DNA 
was isolated from macrophages and subjected to PCR with the primers 
LoxP (5′-G A C C T T C A A C T T C T C A T T T C T C C C -3′) and GenoRV (listed above). 
The amplifi ed PCR products consisted of a WT (1.4 kb), FAK-fl ox (1.6 kb), 
and Cre-mediated recombined fragment (327 bp). All PCR fragments were 
separated on 1.5% agarose gels.

Isolation of BMMs
BMMs were isolated from 6–8-wk-old mice by fl ushing femurs and tibias with 
PBS containing 0.5% BSA and 1% of 0.5 M EDTA. Cells were magnetically 
labeled using anti-CD11b microbeads (Miltenyi Biotec) and were positively 
selected on an MS MACS column (Miltenyi Biotec) according to the manu-
facturer’s instructions. Cells were seeded onto bacterial plates and cultured 
in α-MEM supplemented with 10% heat-inactivated FBS, 10% CMG 14-12 
cell-conditioned medium as a source of CSF-1 (provided by G. Longmore, 
Washington University, St. Louis, MO), 100 U/ml penicillin, and 100 U/ml 
streptomycin (Invitrogen). Media was replaced every 3–4 d until confl uent.

Antibodies and reagents
Polyclonal FAK C-20 was purchased from Santa Cruz Biotechnology, Inc. 
A mAb recognizing phospho-ERK1/2, FN, and collagen I were all obtained 
from Sigma-Aldrich. mAbs recognizing Pyk2 and Rac1 were purchased from 
BD Biosciences. A polyclonal anti-ERK1/2 antibody was purchased from 
Cell Signaling Technology. Phycoerythrin (PE)-Cy5–conjugated rat anti–
mouse Ly6G and 7AAD were purchased from eBioscience. FITC-conjugated 
rat anti–mouse CD45, PE-conjugated rat anti–mouse GR-1, allophycocyanin-
conjugated CD11b, PE-Cy7–conjugated rat anti–mouse CD11b, PE-conjugated 
anti–mouse F4/80, and rat anti–mouse CD16/32 antibodies were purchased 
from Caltag Laboratories. Texas red–conjugated phalloidin was purchased 
from Invitrogen. HRP-conjugated sheep anti–mouse Ig and HRP-conjugated 
donkey anti–rabbit antibodies were purchased from GE Healthcare. 
CSF-1 was purchased from PeproTech. SDF-1α and MCP-1 were purchased 
from R&D Systems.

Transfection procedures
siGenome SmartPool siRNAs targeting murine FAK, Pyk2, and nonspecifi c 
siControl were purchased from Dharmacon. Transfection of 100 nmol of 
siRNA or 1 μg of plasmids encoding GFP-vinculin, GFP-FAK, GFP-N17Rac1, 
monomeric Kusabria orange–vinculin, and siRNAs into BMMs was achieved 
by nucleofection according to the manufacturer’s instructions using the Mouse 
Macrophage Nucleofector kit (Amaxa Corp.).

Time-lapse video microscopy and analysis
To study cell spreading in response to CSF-1, 1 × 105 cells were seeded on 
35-mm bacterial dishes and starved of CSF-1 overnight. The following day, 
cell images were collected for 5 min before the addition of 120 ng/ml 
exogenous CSF-1 using a microscope (Diaphot; Nikon) with a video camera 
(KY-F55B; Victor Company of Japan) every 15 s for a total of 45 min. 
To quantitate protrusive behavior, kymographs of cells from the videos were 
generated using ImageJ (National Institutes of Health) to create time space 
plots. In brief, a minimal intensity projection was performed for each video. 
Four lines of interest were drawn at 90° angles along the perimeter of the 
cell. Kymographs obtained from each region of interest allow for the visual-

ization of individual protrusive and retracting areas. Protrusion distance 
and persistence were measured using the segmented line tool in ImageJ, 
and the data were exported to Excel (Microsoft) for statistical analysis.

To study random cell migration, 105 cells were seeded onto FN-
coated (10 μg/ml) 35-mm Delta T dishes (Bioptechs) designed for live cell 
imaging and were starved of CSF-1 overnight. The following day, the 
media was changed to Leibovitz L-15 media (Invitrogen) containing 10% FBS 
and 120 ng/ml CSF-1. Time-lapse videos were made by capturing images 
every 5 min for 2.5 h using an inverted microscope (TE200; Nikon) with a 
20× differential interference contrast objective and a heated stage (Biop-
techs). Images were captured with a camera (ORCA; Hamamatsu) and 
were compiled using OpenLab software (Improvision). For analysis, each 
cell in the fi rst frame was tracked for the entire time-lapse sequence, and 
the distance traveled was measured in OpenLab.

To study adhesion dynamics by TIRF microscopy, 105 cells expressing 
GFP-vinculin were seeded onto FN-coated (2 μg/ml) 35-mm glass-bottomed 
dishes and starved of CSF-1 overnight. Before fi lming, media was replaced 
with CCM1 medium (Hyclone) supplemented with 120 ng/ml exogenous 
CSF-1. Images were captured using an inverted microscope (1X70; Olympus) 
with a 60× objective. TIRF images were captured with a cooled charged-
coupled device (Retiga Exi; Qimaging).

Quantifi cation of adhesion dynamics
The fl uorescent intensity of individual adhesions from cells expressing GFP-
vinculin was measured over time as follows: images were acquired every 5 s 
using MetaMorph software (MDS Analytical Technologies). Adhesions located 
at the cell periphery and/or protruding edge were selected for analysis. 
ImageJ software was then applied to the entire image stack to subtract the 
background fl uorescent intensity and to correct for overall photobleaching. 
The incorporation of vinculin into adhesions was linear on a  semilogarithmic 
plot of the fl uorescent intensity as a function of time. The apparent rate 
constants for the formation of vinculin-containing adhesions were deter-
mined from the slope of these graphs. Similarly, semilogarithmic graphs 
of the decrease in fl uorescent intensity plotted as a function of time were 
also linear. From these plots, rate constants for the disassembly of vinculin 
from adhesions could be determined from the slope. For each rate constant 
determination, measurements were obtained for three to fi ve individual adhe-
sions on 8–10 cells.

Quantifi cation of cell-adhesive area
For analysis of cell-adhesive area, �2 × 105 cells were seeded onto FN-
coated (10 μg/ml) coverslips and incubated for 24 h at 37°C. Cells were 
then starved of CSF-1 overnight or left in complete (CSF-1 containing) media. 
Where indicated, cells were restimulated with 120 ng/ml CSF-1 for 20 min 
and were fi xed and stained for F-actin. Cells were visualized through a 
fl uorescence microscope (TE2000-E Eclipse; Nikon) and photographed 
with an ORCA CCD camera controlled by OpenLab software. To quantify 
cell area, digitized images acquired by immunofl uorescence microscopy 
were analyzed with ImageJ.

Migration and invasion assays
For chemotaxis assays, the lower chamber of a modifi ed Boyden chamber 
(6.5 mm and 8.0-μm Transwell Costar membrane; Corning International) 
was preincubated for 2 h with α-MEM and one of the following chemo-
attractants: 120 ng/ml CSF-1, 100 nM SDF-1α, or 100 nM MCP-1. 5 × 104 
WT and FAK−/− BMMs previously starved of CSF-1 and serum overnight 
were loaded into the top chamber in CSF-1–free media and were allowed 
to migrate toward each chemoattractant for 4 h at 37°C. For invasion, the 
top and bottom of Biocoat invasion chambers (24-well 8.0-μm growth 
factor–reduced matrigel matrix; BD Biosciences) were preincubated in 
CSF-1–free media for 2 h. The media in the bottom chamber was then 
changed to include 120 ng/ml CSF-1, and cells were loaded into the top 
chamber in CSF-1–free media and allowed to invade through the matrigel 
toward CSF-1 for 24 h at 37°C. After migration or invasion, nonmigratory 
cells were removed from the top of the membrane using cotton swabs. 
The underside of each membrane was fi xed, stained using the Diff-Quik 
staining set (Dade Behring), and mounted onto coverslips using Cytoseal 60 
(Richard Allen Scientifi c). For migration assays, the number of cells migrated 
in 10 random fi elds was determined using light microscopy. For invasion 
assays, the total number of cells invading after 24 h was determined.

Matrix degradation assay
Glass coverslips were fi rst coated with 100 μg/ml of type I collagen 
(Sigma-Aldrich) overnight at 4°C. The collagen layer was over-coated 
with N-hydroxysuccinimide–fl uorescein (Thermo Fisher Scientifi c) initially 
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dissolved in 50 μl N,N-dimethyl formamide (Sigma-Aldrich) and was 
brought to a fi nal concentration of 33 μg/ml in sodium carbonate, pH 9, 
for 15 min at room temperature. Coverslips were washed twice with sodium 
carbonate and once with PBS before coating with a fi nal layer of 20 μg/ml 
FN. 2 × 105 BMMs were plated onto the coverslips for 4 h at 37°C. 
Cells were fi xed with 4% PFA in PBS for 20 min and permeabilized for 2–3 min 
with 0.4% Triton X-100 in PBS before staining with Texas red–phalloidin. 
Cells were visualized through a fl uorescence microscope (TE2000-E Eclipse; 
Nikon) and photographed with an ORCA CCD camera controlled by 
OpenLab software (Improvision). To quantify degradation, areas cleared 
of N-hydroxysuccinimide–fl uorescein in 10 randomly selected fi elds were 
measured with ImageJ.

TG-induced peritonitis
8–9-wk-old mice were administered 1 ml of 4% TG broth (Sigma-Aldrich) 
intraperitoneally. At various time points, mice were killed by carbon dioxide 
exposure, and peritoneal cavities were fl ushed with 5 ml PBS containing 
0.5% BSA and 1% of 0.5 M EDTA. Cells recovered from peritoneal lavage 
were suspended in red blood cell lysis buffer (eBioscience) for 3 min on ice, 
counted with a hemocytometer (Bright-Line), and analyzed by fl ow cytometry.

Positive cell selection and fl ow cytometry
Cells fl ushed from the peritoneal cavities of mice were magnetically la-
beled using anti-CD11b or anti–GR-1 microbeads (Miltenyi Biotec) and 
were positively selected on an MS MACS column according to the manu-
facturer’s instructions. After red blood cell lysis, 106 cells were incubated 
for 25 min on ice with fl uorophore-conjugated antibodies recognizing the 
cellular antigens (CD45, GR-1, Ly6G, F4/80, and CD11b) diluted in PBS 
containing 0.5% BSA and 0.05% sodium azide. Cells were also stained 
with the viability dye 7AAD or DAPI. Before staining, Fc receptors were 
blocked with anti-CD16/32 (1 μg per 106 cells) antibodies. After staining, 
cells were washed twice and resuspended in PBS containing 0.5% BSA and 
0.05% sodium azide, and gated cells (based on live cells) were analyzed 
for fl uorescence staining on a FACSCalibur system (Becton Dickinson).

GTP-Rac1 pull-downs and immunoblotting
BMMs were starved of CSF-1 overnight before restimulation the following 
day with 120 ng/ml CSF-1. Cells were rinsed twice with PBS and lysed in 
modifi ed radioimmunoprecipitation assay (50 mM Tris, 150 mM NaCl, 
1% Igepal CA-630, and 0.5% deoxycholate) containing protease and 
phosphate inhibitors (100 μM leupeptin, 1 mM PMSF, 0.15 U/ml apro-
tinin, and 1 mM vanadate) as previously described (Kanner et al., 1989). 
Protein concentrations were determined with the BCA Assay kit (Thermo 
Fisher Scientifi c). Active GTP-bound Rac pull-down assays were performed 
with a Rac activation kit according to the manufacturer’s instructions (Millipore). 
For immunoblotting, 6 μg of total cell lysate was resolved by 10% SDS-PAGE. 
Proteins were transferred to nitrocellulose membranes and immuno blotted 
as previously described (Burnham et al., 2000). Proteins were detected by 
HRP-conjugated anti–mouse or anti–rabbit Ig followed by enhanced chemi-
luminescence (Millipore). To quantify changes in the levels of protein phos-
phorylation, densitometry was performed (Molecular Dynamics). Band 
intensities were quantifi ed by ImageQuant 5.0 (Molecular Dynamics), and 
values for phosphorylated proteins were divided by those for total protein 
and expressed relative to values obtained for unstimulated cells.

Statistical analysis
A two-sample t test assuming unequal variance was used to determine statisti-
cal signifi cance between condition means with a signifi cance level of ≤0.05.

Online supplemental material
Fig. S1 shows that FAK localizes in vinculin-containing adhesions. Fig. S2 
shows the fl ow cytometry analysis of surface markers on resident and infi l-
trating cells isolated from the peritoneal cavity after TG treatment. Table S1 
lists the markers that are expressed on resident and infi ltrating cell subsets. 
Videos 1 and 2 show that FAK−/− BMMs exhibit elevated protrusive behav-
ior in response to CSF-1. Videos 3 and 4 show that BMMs exhibit altered 
adhesion dynamics in the absence of FAK. Videos 5 and 6 show that 
FAK−/− BMMs exhibit impaired random migration compared with cells 
expressing FAK. Online supplemental material is available at http://www
.jcb.org/cgi/content/full/jcb.200708093/DC1.
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