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The prevalent opinion among embryologists in regard to the origin 
of muscular tissue is that of self-differentiation. This is due largely 
to the work of Wilson (1904) on Dentalium, and Conklin (1896-97, 
1905) on Cynthia (Styda) partita and Crepidula in regard to the organ- 
forming elements of the cytoplasm, and to the experimental work of 
Harrison and Lewis (I904, 1905). Harrison ablated the spinal cord of 
the tadpole prior to the growth of the peripheral nerves into the limb 
buds. This operation eliminated any peculiar formation stimulus 
emanating from the nervous system. Still the differentiation of the 
contractile substance took place in the normal manner, as did the 
grouping of fibers into the individual muscles. Lewis (1910) draws 
the following conclusion based on Harrison's experiments, in regard 
to the genesis of cross-striated muscle: 

"Thus it is seen that  all the const~:uctive processes involved in the production 
of the specific structure and arrangement of the muscle-fibres take place independ- 
ently of stimuli from the nervous system and of the functional activity of the 
muscles themselves. Cross-striated muscle tissue and the individual muscles are 
thus self-differentiating." 

The fact that there is considerable muscular differentiation before 
nerves establish a connection with their corresponding muscles has 
been shown byBardeen (1900, 1906-07), Harrison, and Carey (1918) in 
the pig embryo. There is also considerable smooth muscle differentia- 
tion in the descending colon of the pig before either the myenteric or 
Auerbach's plexus is detected. 
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Lewis (1910) endeavored to solve the problem at how early a period 
in the development of the ovum this power of self-differentiation of 
muscle tissue begins. He found by transplanting tissue from the lips 
of the blastopore in the early gastrula stage of the frog that this tissue 
later on showed muscular differentiation. The conclusion is drawn 
" that  muscle tissue is already predetermined in the early gastrula." 

The idea conveyed by the last statement is that muscular tissue is 
formed, sui generis, by some inherent predetermination and not by 
the agency of its surroundings nor due to its position in the whole. 
Lewis' view-point is in accord with Conklin's (1905) as seen in the 
following statement of the latter observer: "The potencies or pro- 
spective values of any blastomere are not primarily a function of its 
position, but rather of its material substances." 

There are three theories regarding cellular differentiation; first, the 
"mosaic theory" of Roux (1881), later modified by Wilson (1904), 
Conklin (1905), Zeleny (1904), and Boveri; second, the "organization 
theory" of Whitman and more recently elaborated by Child (1915) 
in his studies on metabolic gradients and individuality; third, " the 
homogeneity theory" of Driesch (1894, 1899). Driesch considers the 
peculiar organizing quality of protoplasm as due to the expression of 
a mysterious force wholly different from any in the inorganic world. 

His, Roux (1881, 1892, 1893), Wilson (1892, 1893, 1897, 1904), and 
Conklin (1905) lay emphasis upon the cell as the key to all ultimate 
biological problems. Whitman, on the other hand, points out the 
inadequacy of the cell theory to development. "That  organization 
precedes cell formation and regulates it, rather than the reverse, is 
a conclusion that forces itself upon us from many sides," is a sum- 
mary of his studies. Morgan (1895, 1898) had deduced the idea 
from his studies on regeneration that the multicellular individual is a 
whole in the same sense that the unicellular form is a whole. Child 
(1899, 1915) also lays emphasis on the fact that it is the "organism-- 
the individual, which is the unit and not the cell." Differentiation of a 
single cell, consequently, according to Child and Whitman, is a func- 
tion of its position in the whole. This view is also upheld by Driesch 
(1894). Wilson and Conklin, on the other hand, conclude that po- 
tencies are functions of the material substance of the cell. 
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The influence of the organism as a whole in subjugating its de- 
pendent parts is convincingly shown by Loeb (1916) in his regenera- 
tion experiments on Bryophyllum calycinum and in his experiments 
on Amblystoma larva (1897). This influence is exerted through the 
blood stream by means of "hormones." The sound mechanistic 
attitude of Loeb toward development may be seen in the following 
statement: "As soon as we can show that a life phenomenon obeys 
a simple physical law there is no longer any need for assuming the 
action of non-physical agencies" (1916). 

The object of this paper is not, however, to discuss historically the 
views of these various authors, but to emphasize certain facts in the 
development of muscle tissue hitherto overlooked. It is a well known 
fact that the embryo presents differential rates of growth. I t  is 
desired, therefore, to emphasize the fact that in embryological devel- 
opment there are zones of unequal or differential growth, and that the 
effects of these zones of growth are factors in histogenesis. The active 
and less active zones are defined with reference to the rate of cell 
division per ram. of cross-section. This principle was deduced from a 
series of studies on osteogenesis and myogenesis begun in 1914. Pre- 
vious reports of a part of this work have been presented to the As- 
sociation of American Anatomists (Carey, 1917, 1918, 1919). 

It  will be illuminating to search for the cellular forces outside of 
the immediate differentiating zone under observation: This search 
necessitates lower magnifications in order to enlarge our field of view. 
Heretofore, cytological differentiation has been studied per se, with 
magnifications of 1,000 to 2,000 diameters which considerably re- 
duce our range of view. The higher magnifications are profitable in 
revealing cytological detail but the interpretation of the process is 
lost unless, in conjunction with the higher, intermediate magnifica- 
tions are used. The employment of all magnifications of the micro- 
scope in connection with naked eye studies will reveal the interaction 
of related developing parts. 

Early Development of the Descending Colon of the Pig. 

The attention of the writer was directed to the fact, after plotting 
hundreds of intestinal epithelial mitotic figures, that these figures were 
usually confined to some definite region of the circumference of a single 
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FIGS. 1 to 9. Sections of the epithelial tube representing one complete turn in 
a dexiotropic rotation in a spiral manner of the mitotic division. The primary 
type is the left-handed helix. Spiral path is directed upward toward the ileo- 
cecal valve. Section 62 represents the head or apical end of the mitotic path. 
Sections 55 and 54 represent the tail or basal end of the mitotic spiral path. mit, 
mitosis; bin, basement membrane of the epithelial tube. Drawings are made with 
the aid of a Spencer Camera lucida. Sections 54 to 62 are from Pig Embryo 19, 
24 ram. in length (Creighton Embryological Collection). 
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section (Figs. 1 to 9). This region was found to change at different 
levels of the serial sections. By graphic reconstruction this plot was 
found to form the path of a definite spiral. The predominant type was 
the left-handed helix. In one of the embryos of the twenty that were 
plotted this spiral was arranged as a right-handed helix (Figs. 1 
to 9). The spiral itself presented a head or apical region in which 
mitotic figures were found to be numerous, and a tail or basal end in 
which there were fewer and fewer figures. The apical end of the 
spiral path is always directed towards the ileocecal valve and the basal 
end towards the rectum. Growth is, therefore, from below upwards 
in a spiral course. One spiral growth is quickly foUowed by a second 
which rifles a path slightly lateral to its predecessor. This in turn is 
followed by a third in a path still more lateral, and so on around the 
circumference. This intermittent rhythm of explosive spiral growth 
may be compared to that of the successive fire bails emitted by a 
roman candle in fireworks. The paths formed by this explosive 
spiral growth may be compared to those within the barrel of a Win- 
chester rifle. 

The most rapidly growing part of the intestine, therefore, is the 
epithelial tube. In embryos 10 to 25 ram. in length the descending 
colon grows relatively more rapidly in diameter than in length (Tables 
I and II). The increase in diameter is due primarily to the rapid 
growth of the entodermal epithelial tube and only partially to its 
surrounding mesenchymal cloak. The latter is relatively passive in 
growth with respect to the former (Fig. 10). I t  is during this early 
increase in diameter that the inner smooth muscle coat is in proc- 
ess of formation. The mesenchymal cells are drawn out gradually 
in a definite series of concentric rings. These rings appear not unlike 
those of the planet Saturn and the annular nebula in Lyra. 

A definite centripetal force is active in the rapid spiral growth of the 
intestinal epithelial tube. The surrounding mesenchymal cells are 
thrown into an obvious series of concentric rings, according to their 
various densities. Those possessing the greatest density will join the 
outer ring in the tangential path of the force, whereas the inner ring 
will be composed of bodies forming a gradient of decreasing densities. 
The cells forming the outer ring will be most elongated. 
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TABLE I, 

Measurements of Differential Growth of Descending Colon. 

Thickness of mesen- Diameter of Diameter of Epithelial tubular 
Length of embryo, chymal wall.* epithelial tube. descending colon, indices, t 

mm. 

10 
12 
13 
14 
16 
19 
2O 
22 
23 
24 
25 
27 
30 
32 
35 
37 
39 
4O 
42 
45 

ft~m. 

0.085 
0.099 
0.115 
0.128 
0.126 
0.124 
0.123 
0.122 
0. I21 
0.120 
0.115 
0.109 
0.104 
O. 099 
O. 098 
0.096 
0.093 
0.092 
O. 090 
0.083 

~ m ,  

0.048 
0.069 
0.075 
0.081 
0.089 
O.O95 
0.099 
0.119 
0.138 
0.152 
0.164 
0.188 
0.208 
0.220 
0.246 
0.260 
0.279 
0.289 
0.312 
0.321 

m m .  

0.218 
0.267 
0.305 
0.337 
0.341 
0.343 
0.345 
0.363 
0.383 
0.392 
0.394 
0.406 
0.416 
0.418 
0.442 
0.452 
O. 465 
0.473 
0.482 
O. 486 

6 
8 
8.5 

10 
14 
18 
20 
25 
30 
38 
40 
44 
46 
47 
48 
50 
52 
54 
57 
61 

* The mesenchymal wall begins to diminish in thickness after it reaches a 
width of 0.128 ram. in the 14 ram. stage of the pig embryo. This diminution is 
due to the tension caused by the more rapid epithelial tubular growth in diameter. 
Measurements made with B. and L. filar micrometer, calibrated. 

t The ratio of the square of the mean diameter of the epithelial tube to that of 
the surrounding mesenchyme is referred to as the epithelial tubular index. It  has 
been calculated from the following formula. 

f × lOO 1 
(X + Y)~ - (x + y)2[ 

Z 

x and y are the long and short diameters of the epithelial tube respectively. X 
and Y are the long and short diameters of the surrounding mesenchymal tube. 
Z is the ratio of the epithelial tube to the mesenchymal tube. 
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As this concentric initial smooth  muscle layer  becomes differenti- 
a ted  it  tends to restrict  the diametr ical  growth of the epithelial tube.  
T h e  epithelial mi to t ic  figures under  this restriction shift  their  planes 

of division f rom a right angle to a parallel posit ion with the smooth  
muscle cells. This  shifting results in an  elongation of the intestine. 

TABLE II. 

Ratio of Diameter to Length of Entire Colon. 

Length of embryo. Diameter of descending Length of entire colon. Ratio of diameter to 
colon, length of entire colon. 

m m .  

10 
12 
13 
14 
16 
19 
20 
22 
23 
24 
25 
27 
30 
32 
35 
37 
39 
4O 
42 
45 

Adult. 

m m .  

0.218 
0.267 
0.305 
0.337 
0.341 
0. 343 
0. 345 
0.363 
0.383 

1.95 
2.00 
2.02 
2.05 
2.10 
2.20 
2.30 
2.75 
3.00 

m m .  

1:9.9 
1:7.5 
1:6.6 
1 : 6 . 0  

1:6.1 
1:6.4 
1:6.7 
1:7.5 
1:7.8 

0.392 
0.394 
0.406 
0.416 
0.418 
0.442 
0.452 
0.465 
0.473 
0.482 
0.486 

50.000 

3.50 
3.95 
6.00 
8.00 

11.00 
16.95 
18.00 
21.00 
23.00 
27.00 
29.00 

7,000.00 

1:8.9 
1:10.0 
1:14.0 
1:19.0 
1:26.0 
1:36.0 
1:39.0 
1:45.0 
1:48.0 
1:56.0 
1:59.0 
1:140.0 

I n  embryos  25 to 40 ram. (Tables  I and  I I )  in length, the elongation 
of the descending colon is more  rapid in growth t han  t h a t  of the 
diameter .  I t  is during this period tha t  the outer  longitudinal  muscu-  

lar coat  is in the process of formation.  The  rapid  growth of the epi- 

thelial tube  in length tends to elongate the per ipheral  undifferent iated 
mesenchymal  cells which were not  direct ly involved in the format ion  
of the inner smooth  muscular  coat  (Fig. 11). 
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FIG. 10. Curves of differential growth of descending colon. The active growth 
of epithelial tube is contrasted with the passivity of the mesenchymal wall. An 
absolute decrease in thickness of the mesenchymal wall is seen after the stage of 
the 14 ram. pig embryo. 
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The differentiation of the outer longitudinal muscle coat therefore 
coincides, in time, with the rapid growth in length of the intestinal 
epithelium. The inner smooth muscle coat, on the other hand, is 
formed during the period of the rapid growth of the intestinal epi- 
thelial tube in diameter. Once the formation of the inner circular 
muscular rings is fairly established a resistance to growth in width is 
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FIG. 11. Curve representing the ratio of the diameter to the length of the de- 
scending colon in embryos 10 to 45 ram. in length. Particular attention is di- 
rected to the fact that in embryos 10 to 25 ram. in length the intestine grows rela- 
tively more rapidly in diameter than in length. In embryos from 25 to 45 ram. in 
length the intestine grows more rapidly in length than in diameter. The inner 
circular smooth muscle is formed during the period of rapid growth of the intes- 
tine in diameter. During the period of the rapid growth of the intestine in length 
the histogenesis of the outer longitudinal smooth muscle coat is taking place. 

encountered by the cells surrounding the rapidly dilating lumen. 
These cells then grow primarily along the path of least resistance in a 
longitudinal manner. At this stage the longitudinal muscle cell, 
spherical in shape (Fig. 12), is elongated to a spindle-shaped structure 
(Fig. 13). 

An interesting correlation in the development of the esophagus in 
man may be cited. This correlation was detected in the work of 
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Jackson and in that of Keibel and Elze. The former investigator 
studied the developmental topography of the esophagus, the two lat- 
ter the histogenesis of the esophagus. Jackson states that the de- 
scent of the stomach is accompanied by a great elongation of the eso- 
phagus. In a 9.4 ram. specimen, the esophagus measures 1.8 ram. 
At this proportion it should measure 4.3 ram. in a 22.8 ram. embryo 
but  its actual length is found to be 8 ram. A year previous to this, 
Keibel and Elze reported that the esophagus in 12.5 ram. embryos 
shows a circular but  no longitudinal muscle layer. In 17 ram. em- 
bryos, they find a circular layer with the longitudinal layer faintly 

NLM 

FIG. 12. Fic. 13. 

Fro. 12. Longitudinal section of intestine; s, peritoneal epithelium; ml, mesen- 
chyme; m, circular muscle; e, epithelium. 

FIG. 13. Longitudinal section of intestine schematizing the elongation of the 
intestine represented in Fig. 12. Due to the resistance of the inner smooth muscle 
layer m, the intestinal epithelium grows in the longitudinal path of least resistance. 
This results in the elongation of the outer mesenchymal cells mt (Fig. 12) into 
the elliptical or spindle cells ml (Fig. 13). 

indicated. The histogenesis of the outer longitudinal layer of the 
esophagus as studied by  Keibel and Elze coincides in time with the 
rapid elongation of the esophagus, due to the descent of the stomach, 
as recorded by Jackson. 

Interpretation oJ Results. 

The result of the action of a force on an elastic body is the produc- 
tion of a strain. If mechanical forces are at work on organic matter,  
they tend to produce similar results to these acting upon inert matter.  
Too frequently the term self-differentiation is applied to alteration of 
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form and internal structure of developing cells without searching the 
immediate environment of the specializing cells or syncytium to as- 
certain whether or not these changes are attributable to forces out- 
side of the differentiating zone. This applies particularly to the dif- 
ferentiation of bone and muscle tissue. If a cell changes in form suc- 
cessively through the spherical, ellipsoid, and spindle stages it under- 
goes a strain. A strain is usually due to an external force which elicits 
internal reacting stresses in the body acted upon. Cytological dif- 
ferentiation is frequently a manifestation of these internal reacting 
stresses to forces extrinsic to the differentiating zone. 
• A strain is produced in certain regions of the embryo by the expan- 

sion of a rapidly dividing group of cells against a less active or rela- 
tively passive group of cells. After their differentiation the relatively 
passive group of cells in their turn react upon the former. This ac- 
tion and reaction are objectively evident by a retardation or altera- 
tion of the rate of growth, or by a change produced in the external 
form or internal structure of the cells involved. 

In th{s study, the initial zone of rapid growth is found in the epi- 
thelial tube. The rapid spiral expansion of the entodermal epithelial 
tube reacts against the surrounding splanchnic mesenchyme with the 
result that the less actively growing cells of the peripheral region of 
the intestinal wall are elongated. Later the elongated, differentiated 
mesenchymal cells cause a retardation of the growth in diameter of 
the epithelium. Immediately following this retardation of diametri- 
cal growth the period of rapid growth in length of the intestine takes 
place. In this development, therefore, the influence of unequal 
growth zones is definitely shown as furnishing a tensional stimulus for 
the differentiation of muscle. 

This action is diagrammatically illustrated in Figs. 14 and 15. In 
Fig. 15 the growth in diameter of the intestine is schematized; the 
rapid increase in width is shown as due primarily to the increase in 
the lumen. This growth is due to rapid mitotic activity of the epi- 
thelium (e, Fig. 14, to e', Fig. 15). In the lumen of Fig. 15, the former 
is represented in a spiral manner, sg. In this growth the strain upon 
the surrounding mesenchymal cells m is illustrated. These cells are 
strainedby the external applied forces of the progressively diverging 
radii. The internal reacting stresses are manifested by the changes 
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in shape through spherical m, ellipsoidal m', and spindle m' cellular 
phases in Fig. 15. In addition to the homogeneous strain to which 
the cells m, m', and m" are subjected there is a definite pressure ex- 
erted by the epithelial cells lining the expanding lumen. 

~k I t t 

FIG. 14. "" , "*" "" 

FIG. 15. 

FIG. 14. Transverse section of intestine; e, epithelium; m, mesenchyme (spheri- 
cal nucleus); s, peritoneal epithelium. 

FIG. 15. Transverse section of intestine grown to three times the width repre- 
sented in Fig. 14. Fig. 15 is represented in broken lines within the lumen. The 
spiral growth of the epithelium is represented by the broken lines sg. The ten- 
sion, upon the mesenchyme, by the most rapidly growing epithelium, is shown in 
the elongated muscle cells m." These cells are homogeneously strained in the 
centrifugal path c' due to the progressively diverging radii. Cells marked m, m', 
and m" represent the progressive steps in the strain ellipsoid in the differentiation 
of a muscle from a mesenchyme cell. The expansile force of the epithelium is 
shown by the double arrow a-d; the reacting resistance of the serous membrane by 
the line d-a. Equilibrium is established in the middle of the mesenchyme and is 
graphically represented by the double arrows a-b and d-c. This is another factor 
in the tensional elongation of the middle cells. The smooth muscle ring exerts 
a centrifugal reaction to the applied centripetal force of the dexiotropic spiral 
rotation of the epithelial tube. The mitotic figures of the descending colon pri- 
marily follow the path of a left-handed helix. 
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This force of expansion is represented by the arrow a-d. A re- 
sistance f, due to the peritoneal epithelium, is met. This causes a 
reaction d-a, With progressively increasing growth a zone of equili- 
brium of expansile and reacting forces is established in the middle, 
represented by the double arrows b-a, and d-c. This action and re- 
action of forces is another factor tending to compress the cells in the 
middle of the mesenchymal wall of the intestine. The action of the 
centripetal component of the spiral growth of epithelium in forming 
the rings of dense spindle-shaped muscle cells m" is represented by the 
broken curved arrows. The spiral growth of the epithelial tube in a 
dexiotropic rotation exerts a centripetal force upon the surrounding 
mesenchyme. The mesenchyme consequently exerts a simultaneous 
equal and opposite centrifugal force upon the epithelial tube. This 
growth is primarily in the form of a left-handed helix from the rectal 
to the ileocecal valvular regions of the large intestine. In Figs. 14 
and 15 the right-handed helix is depicted. 

Although by direct observation of serial sections no motion is seen, 
there is, however, objective evidence of homogeneous and ellipsoidal 
strains upon the surrounding mesenchyme. The mesenchyme is 
drawn out into concentric tings, the outermost of which are most 
viscid, by the spiral growth of the epithelial tube, roughly comparable 
to the increase of viscosity and concentric annular formation of 
egg albumin when subjected to an egg-beater. 

CONCLU SION. 

The genesis and maintenance of muscle tissue represents a result- 
ant or equilibration of converging factors which are active and forma- 
tive during development. One of these factors is the tensional stresses 
to which the mesenchyme is subjected by a force extrinsic to the differen- 
tiating zone. In subsequent involution or degeneration of muscu- 
lar tissue during the prenatal or postnatal periods, this equilibrium is 
upset by altering or destroying the tensional reacting stress. 

Tension is developed when a muscle contracts. Contractility is a 
fundamental property of protoplasm and, when manifested, tension 
is developed. In both, the development and specific function of 
muscle tissue, tensional stresses are inseparably involved. The 
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Ameba possesses the property of contractility in all possible directions. 
The function of contraction in one definite direction characterizes 
muscle tissue from that  of undifferentiated protoplasm. What  ini- 
tiates the progressive series of physicochemical changes in the mesen- 
chyme resulting in an alteration of its attribute from non-specificity 
to its specificity of direction of contractility? This question is an- 
swered as follows. 

The mesenchyme before differentiating into muscle tissue must  be 
subjected to a certain minimal homogeneous and elllpsoidal strain. 
This strain is objectively evident by an alteration of the form of the 
spherical nuclei, into the ellipsoidal and spindle conditions and by an 
elongation of the granular cytoplasm into parallel granular and con- 
tinuous fibrill~e. The fibrill~e are arranged along lines of internal and 
reacting tensional stresses. The ends of the mesenchymal cells, in 
tension, must  be attached to supports of which one, at least, is mobile. 
The tensional stresses are reactions to simultaneous forces extrinsic 
to the zone of myogenesis. The external forces are produced by a 
progressive divergence or separation of the mobile supports to which 
the mesenchymal cells are attached. Therefore, muscle tissue is not 
self-differentiating but  is dependent upon an external dynamic stimu- 
lus. As regards smooth muscle this stimulus is the tension of differ- 
ential growth. 

SUMMARY. 

1. The region of most active mitosis per ram. of cross-section in the 
intestine is the entodermal epithelial tube. The mitotic figures pri- 
marily follow the path of a right-handed helix. In one of the twenty 
embryos the mitotic figures describe the path  of a right-handed helix. 

2. The region of least active or relatively passive growth per mm. 
of cross-section is the mesenchyme, derived from the splanchnic 
mesoderm surrounding the epithelial tube. 

3. The rapid expansion, due to epithelial growth in a rotating 
spiral manner, of the intestinal lumen is greater than the activity man- 
ifest in the surrounding mesenchyme. This causes a pressure in the 
latter resulting in a flattening and elongation of the mesenchymal 
cells. The successive changes in shape of these cens through the 
spherical, ellipsoidal, and spindle cellular phases are seen. The 
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mesenchymal wall decreases in thickness, due to tension caused by 
Epithelial tubular dilation. 

4. The rotating spiral growth of the epithelial cells causes the forma- 
tion of  a series of mesenchymal cellular and fibriUar concentric rings 
due to the centripetal force of the former. 

S. The circular, smooth muscle cells are differentiated in the outer, 
more condensed margins of the ring. At these points the developing 
tensional stresses are greater than within the ring. 

6. The inner circular smooth muscle coat is the first one differenti- 
ated and is incident to the rapid growth of the epithelial tube in di- 
ameter. The former soon tends to restrict the growth of the epi- 
thelial tube in diameter. The tube, pursuing the lines of least re-, 
sistance, grows in length. During the period of rapid growth in length 
the outer longitudinal muscle coat is in the process of formation. 

7. The tensional stresses to which the elongated strained mesen- 
chymal cells are subjected appear to be a dynamic stimulus to smooth 
muscle differentiation. 

8. From this study of a closely graded and progressive series of sec- 
tion~ of intestinal development, the conclusion is drawfl that muscle 
tissue is not self-differentiating, in the strict sense of the term, but  
that  the tension of differential growth acts as the stimulus to smooth 
muscle differentiation. 

The writer wishes to express his indebtedness to Professor H. yon 
W. Schulte for his interest and his valuable suggestions; to Madame 
Helen Ziska for the illustrations; and to his wife for her help in reading 
the proof. 

BIBLIOGRAPHY. 

Bardeen, C. R., Johns Hopkins Hosp. Rep., 1900, ix, 231; Am. J. Anat., 1906-07, 
vi, 259. 

Boveri, T., Sitzungsb. phys.-meal. Ges. zu Wurzburg, 1904, 16; Ergebnisse fiber 
die Konstitution der ehromatisehen Substanz des Zelikerns, Jena, 1904, 
115. 

Carey, E. J., Anat. Rec., 1917, xi, 1; 1918, xiv, 30; 1919, xvi, 45, 114. 
Child, C. M., Biological lectures from the Marine Biological Laboratory of Woods 

Hole, 1899, 231; Individuality in organisms, Chicago, 1915, 5. 
Conklin, E. G., Biological lectures from the Marine Biological Laboratory of 

Woods Hole, 1896-97, 17; J. Exp. Zool., 1905, ii, 145. 



372 DYNAMICS OF HISTOGENESIS. I 

Driesch, H., Analytische Theorie der organische Entwicklung, Leipsic, 1894, 97; 
Biol. Centr., 1899, xix, 225; Arch. Entwcklngsmechn. Organ., 1899, viii, 123. 

Harrison, R. G., Am. J. Anat., 1905, iii, 197. 
His, W., Unser K6rperform und das physiologische Problem ihrer Enstehung, 

Leipsic, 1874, 165. 
Jackson, C. M., Anat. Rec., 1909, iii, 361. 
Keibel, F., and Elze, C., Normentafeln zur Entwicklun-geschichte der Wirbel- 

tiere, Jena, 1908, viii, 1. 
Lewis, W. H., Am. J. Anat., 1904, iii, 505; J. Exp. Zoot., 1905, ii, 431; in Kiebel, 

F., and Mall, F. P., Manual of human embryology, Philadelphia and London, 
1910, i, 456. 

Loeb, J., Arch. Entwcklngsmechn. Organ., 1897, iv, 502; The organism as a whole, 
New York, 1916, 11,152. 

Morgan, T. H., Biological lectures from the Marine Biological Laboratory of 
Woods Hole, 1898, 196; J. Morphol., 1895, x, 419. 

Roux, W., Der Kampf der Theile im Organismus, Leipsic, 1881, 152; in Merkel, 
and Bennet, Ergebnisse der Anatomie und Entwickelungsgeschichte, 1892, ii, 
415; Zool. Anz., 1893, 115. 

Whitman, C. 0., J. Morphol., 1893, viii, 639. 
Wilson, E. B., J. Morphol., 1892, vi, 361; 1893, viii, 579; The cell in development 

and inheritance, New York, 1897, 23; J. Exp. Zool., 1904, i, 1, 197. 
Zeleny, C., J. Exp. Zool., 1904, i, 293. 


