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ABSTRACT Confinement of a plasma for controlled ther-
monuclear fusion is studied numerically. Toroidal equilibria
are considered, with an emphasis on the Modular Helias-like
Heliac 2 (MHH2), which is a stellarator of low aspect ratio
with just two field periods surrounded by 16 modular coils.
The geometry is fully three-dimensional, but there is an axial
symmetry of the magnetic structure that is calculated to give
confinement competitive with that in circular tokamaks. Ad-
ditional vertical and toroidal field coils, together with a cur-
rent drive, provide the flexibility and the control of rotational
transform necessary for a successful experiment. An MHH3
device with three field periods and comparable quasi-axial
symmetry is presented, too, and because of reversed shear,
its physical properties may be better. Variational analysis of
equilibrium and stability is shown to give a more reliable pre-
diction of performance for these stellarators than linearized
or local theories that suffer from a failure of differentiability
and convergence.

1. Introduction

It is natural to choose toroidal geometry for the magnetic con-
finement of plasma in a fusion reactor because the orbits of
hot ions and electrons should not be allowed to escape. In
an axially symmetric tokamak the poloidal field required for
equilibrium is produced by net toroidal current that is hard to
control and may cause disruptions. Stellarators instead pro-
vide for the poloidal field by introducing three-dimensional
asymmetries that cause the magnetic lines to spiral around
on nested flux surfaces where they acquire nonzero rotational
transform in a natural way. The advantage of stellarators is
that they can be operated in a steady state and are relatively
stable, but complicated geometry makes them difficult to vi-
sualize and construct.

The conventional way to generate a stellarator field is by
means of helical coils that become interlocked as they rotate
around the torus. However, better configurations have been
found by shaping the plasma so that the external magnetic
field confining it is produced by a system of modular coils
wound on a desirable outer control surface. Numerical calcu-
lations enable one to design modular stellarators with twisted
coils not unlike the toroidal field coils of a typical tokamak.
This new approach opens up opportunities to optimize equi-
librium, stability, and transport of the plasma.

Modern methods of computational physics have been ap-
plied to improve the equilibrium, stability, and transport prop-
erties of modular stellarators. One of the best new configura-
tions is the helias (1), which was discovered by running the
BETA code written at New York University (2). The Wendel-
stein 7-X (W7-X) experiment authorized for construction in
Germany is one implementation of this concept (3). Another
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is the Helically Symmetric Experiment (HSX) at the Univer-
sity of Wisconsin, which has been designed so that the mag-
netic structure has a helical symmetry leading to good con-
finement of hot elecrons (4). A related configuration, called
the Modular Helias-like Heliac, was developed; it has been
optimized by lowering the number of field periods from 4
to 2 and reducing the aspect ratio of the plasma to 3.5 (5).
This stellarator, known as the Modular Helias-like Heliac 2
(MHH2), has a magnetic structure approximating remarkably
well the two-dimensional symmetry of a tokamak. Here we
shall study physics problems for the MHH2 that have arisen
during discussions of a new experiment. We also introduce a
new MHH3 configuration with three field periods and aspect
ratio 4.5 whose magnetic spectrum has axial symmetry almost
as good as that of the MHH2 and whose rotational transform
has reversed shear (cf. Fig. 1).

For toroidal equilibria the matrix of Fourier coefficients
of the magnetic field strength in a flux coordinate system is
known as the magnetic spectrum (6). The MHH2 and MHH3
are called quasi-axially symmetric stellarators because their
spectra consist to a good approximation of just one row of el-
ements with the same indices as those of a tokamak. Because
of this symmetry property, the orbits of trapped particles lie
on closed drift surfaces and remain well confined. The favor-
able transport in quasi-axially symmetric stellarators has been
substantiated by Monte Carlo calculations employing a variety
of codes (7).

The most satisfactory way to study magnetohydrodynamic
equilibrium and stability of complicated configurations like
the MHH2 and MHH3 is to run three-dimensional computer
codes (8, 9). In this work, we rely on the NSTAB code written
by Mark Taylor (10), a code that constructs weak solutions
of the differential equations and captures islands or current
sheets that are sometimes poorly modelled. The variational
principle of ideal magnetohydrodynamics enables us to treat
questions of equilibrium and stability simultaneously by a sin-
gle method. In Section 2, we shall use this procedure to ana-
lyze global stability of the MHH2 and MHH3. In Sections 3
and 4, we discuss specifications for a tentative experiment,
with an emphasis on flexibility. We show how modular coils
can be found that are only moderately twisted and would
not be excessively hard to manufacture. We analyze the de-
pendence of the equilibrium on auxiliary vertical and toroidal
fields and suggest how these can be used to obtain a family of
interesting configurations within the framework of a single ex-
periment. Parameters defining the new quasi-axially symmetric
MHH3 stellarator that has been discovered are also given.

2. Equilibrium and Stability

The NSTAB code provides a computer implementation of the
variational principle∫ ∫ ∫

�B2/2 − p�dx1dx2dx3 = minimum
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Fig. 1. Top view of the plasma in an MHH3 stellarator colored to
display quasi-axial symmetry of the magnetic spectrum.

of magnetohydrodynamics, where B is the strength of the
magnetic field and p is the pressure (10). Excellent resolu-
tion is obtained by combining a spectral representation in the
toroidal and poloidal angles with a low order but exception-
ally accurate finite difference scheme in the radial direction.
Conservation form of the magnetostatics equations is used to
capture islands and current sheets effectively on crude grids
(11). This method enables one to discuss global stability by
looking for bifurcated solutions of the equilibrium problem.
We shall apply it to investigate physical properties of the
MHH2 quasi-axially symmetric stellarator.

In our formulation of the problem, the toroidal equilibria
calculated by the variational principle lend themselves in a
natural way to representations

B = ∇s 3 ∇θ = ∇φ+ ζ∇s
of the magnetic field in terms of Clebsch potentials (2). It is
convenient to choose the toroidal flux s as a radial coordi-
nate and to renormalize θ and φ so they become poloidal and
toroidal angles on each flux surface s = const. In this invariant
coordinate system, we can expand the magnetic field strength
in a Fourier series

1/B2 =
∑

Bmn cos�mθ− �n− ιm�φ�;

where ι is the rotational transform. The coefficients Bmn,
which are functions of s alone, comprise the magnetic spec-
trum of the equilibrium (6). The axial symmetry property of
the MHH2 and MHH3 stellarators simply asserts that the
terms with n 6= 0 are relatively small. More specifically, in the
case of the MHH2 they contribute little more than 1% to the
total field strength, which suffices to guarantee confinement
times comparable to those in standard tokamaks (5).

The equilibrium conditions

∇ · B = 0; J 3 B = ∇p
can be manipulated to arrive at a simple magnetic differential
equation

∂λ

∂φ
= p′ ∂

∂θ

1
B2

for the parallel current λ in terms of the field strength B. For-
mal integration then yields the remarkable Fourier expansion

λ = J · B
B2
= p′

∑ mBmn
n− ιm cos�mθ− �n− ιm�φ�;

provided that the relevant differentiations can be performed.
The small denominators that appear on the right exhibit dra-
matically the resonances that occur at rational surfaces where
ι = n/m. The resulting failure of convergence of the series is
important in the KAM theory, which shows that smooth solu-
tions of the equilibrium problem cannot exist in three dimen-
sions because the coefficients Bmn do not in general vanish (2).

The success of stellarator experiments makes it imperative
to find a formulation of the toroidal equilibrium problem in
three dimensions that overcomes the difficulty about nonex-
istence of continuously differentiable solutions. The answer
furnished by the NSTAB code is to calculate weak solutions
determined by equations in a conservation form that is associ-
ated with the variational principle of magnetohydrodynamics
and requires less differentiation. Because the dependence of
the magnetic field on the poloidal and toroidal angles is rel-
atively smooth, good resolution in those variables can be ob-
tained by the spectral method. However, in the radial coordi-
nate s we use a special finite difference scheme that captures
islands accurately on grids with a mesh size comparable to
the island width. Detailed calculations have demonstrated that
this mathematical model simulates the physics of the plasma
remarkably well (10).

It has been proposed to construct a compact tokamak with
stellarator sidebands that might contribute very little to the
rotational transform. We applied the NSTAB code to such a
configuration with ι decreasing over the full torus from 1.1
at the magnetic axis down to 0.2 at the separatrix. Significant
m = 3; n = 2 islands appear at the rational surface ι = 2/3.
We performed calculations of the relevant equilibrium at

β = 2�p�/B2 = 0:007

by using 15 mesh intervals in the radial coordinate s and by
using spectral terms of degree up to 20 in the angle coordi-
nates. Despite the nested surface hypothesis implicit in our
method, the presence of islands became clearly visible in the
computation.

Even for true tokamaks with two-dimensional solutions we
have been able to find a variety of bifurcated equilibria that
have islands breaking the axial symmetry. An example is dis-
played in Fig. 2 for a spherical tokamak of aspect ratio A= 1:8
with rotational transform in the interval 1:1 � ι � 0:2. The
computation is similar to what we described above and con-
firms the ability of the NSTAB code to capture small islands
on coarse grids in toroidal equilibria. To draw correct physical
conclusions, it is necessary to allow for this kind of complica-
tion in the structure of the magnetic surfaces.

The NSTAB code solves the magnetostatic equations nu-
merically by means of an accelerated method of steepest de-
scent. In significantly unstable cases, the potential energy has
access to a lower level and a second bifurcated solution can be
constructed. Calculation of the bifurcated equilibrium is facil-
itated by introducing a perturbation δf in the equations that is
associated with some mode deemed to be dangerous. A quo-
tient of norms � δU � / � δf � of the corresponding change
δU of the solution U and of δf itself serves as one mea-
sure of the instability (11). More convincing evidence is ob-
tained when there is convergence to a bifurcated solution dif-
ferent from the original equilibrium after the perturbation has
been removed. That is a result relatively free of details about
the specific formulation of the variational principle that is
used.

Our most successful analysis of stability for the new MHH3
configuration has resulted from performing perturbations δf
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Fig. 2. NSTAB calculation of four Poincaré sections of the flux
surfaces of a spherical tokamak showing how the code captures small
islands at the resonance 2/3 in a bifurcated equilibrium without two-
dimensional symmetry.

that break the stellarator symmetry of the equilibrium over a
single period that is characterized by the appearance of exclu-
sively cosine terms in the Fourier series for 1/B2. A bifurcated
solution found this way is displayed in Fig. 3 for a mode trig-
gered by trigonometric functions with m = 6; n = 2. The in-
stability has been induced by adding a large net current so that
the rotational transform ι over one field period falls from 0.28
at the magnetic axis down to 0.21 at the edge of the plasma. In
this computation, we used a pressure profile p = p0�1−s1:5�2:0

Fig. 3. Four Poincaré sections of a bifurcated MHH3 equilibrium
with magnetic surfaces that do not have an expected stellarator sym-
metry. This establishes nonuniqueness and consequent instability at
an average β of 5.5% because there is large net current in the solu-
tion. The ripple of the flux surfaces is localized in an outer region of
bad curvature and follows the magnetic lines, like a ballooning mode.

with β = 0:055. Once more the mesh had 15 radial inter-
vals and the spectral approximation was truncated at terms
of degree 20. Observe that the asymmetric ripple of the bifur-
cated flux surfaces is concentrated in a region of bad curvature
and has a ballooning structure that follows the magnetic lines.
Individual bulges are confined to little more than two field
periods.

Because the variational principle of magnetohydrodynam-
ics furnishes an accepted mathematical model of stability
in plasma physics, the key issue in our approach becomes
the numerical accuracy of the NSTAB code. Extensive com-
parisons with two-dimensional theory and with laboratory
measurements suggest that NSTAB computations of the kind
we have described do have the necessary resolution, and the
results seem to provide a realistic simulation of the most es-
sential phenomena. More specifically, it has been found that
recent estimates of β limits for the Compact Helical Sys-
tem experiment in Japan agree well with our prediction of
nonlinear stability for modes of moderately high order (12).
Only a limited number of harmonics are retained in the spec-
tral method when differentiability fails because convergence
is only asymptotic, but adequate force balance is achieved
before applying the stability test.

None of the methods that have been proposed to solve the
three-dimensional equilibrium problem are completely suc-
cessful. The principal difficulty with the NSTAB approach is
to filter out erroneous harmonics in the neighborhood of the
magnetic axis. In the PIES code, the interface between a re-
gion of nested surfaces and an island region at constant pres-
sure ought to be a flux surface, but the surface current there
caused by discontinuity of the magnetic field at any sharp
boundary is neglected (13). Most linearized stability calcula-
tions build on runs of the VMEC code that may not be fully
converged. The VMEC method is closely related to ours (14),
but a compatibility condition associated with nonuniqueness
of the Clebsch angle θ in the specification of B is treated in
a different fashion, and it is unclear whether the discrete sys-
tem of equations in the code has an exact solution. Moreover,
a question of reliability arises about the evaluation of deriva-
tives occurring in the linearized problem whose existence is
placed in doubt by the KAM theorem (2). In changing coor-
dinates for an analysis of ballooning modes, a problem can
also occur if infinite series calculated by means of the finite
Fourier transform are not filtered appropriately to arrive at
meaningful results.

The Mercier local stabiity criterion can be written in the
form

� = C1 + C2p
′2
[(∫

λdF

)2

−
∫
dF

∫
λ2dF

]
, 0;

where the coefficients Ck and the measure dF have been de-
fined elsewhere (2). Because of Schwarz’s inequality, the con-
tribution in square brackets is always negative. The divergence
of the Fourier series for the parallel current λ in fully three-
dimensional equilibria therefore signifies that the criterion will
predict instability if too many terms are included in the calcu-
lation. However, the series has been truncated in the NSTAB
code to arrive at a more practical version that turns out to
be well correlated for stellarators with our nonlinear analysis.
In this context a physically more realistic criterion for stability
seems to be � , −0:01.

Ballooning mode algorithms that have been presented in
the literature involve a system of ordinary differential equa-
tions obtained from an asymptotic expansion of perturbations
in the neighborhood of some magnetic line (15). The Mercier
criterion emerges as a limiting case of the ballooning the-
ory, so the latter may also predict erroneous instability for
stellarators if it is carried to an extreme. Of more concern,
however, are computations restricted to a shorter arc of the
magnetic line. The answer depends on the length of the arc,
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so results may become biased to produce a misleading con-
clusion. Moreover, the ordinary differential equations for
ballooning modes have features in common with linearized
stability theory, which means that derivatives have to be com-
puted that may not exist. We circumvent these difficulties by
appealing in the last analysis to the nonlinear stability test
based on an NSTAB computation of bifurcated solutions, and
we only rely on a truncated version of the Mercier criterion
for quick parameter searches. On the whole, the Mercier re-
sults seem to fit stellarator data well, whereas the ballooning
theory is preferred for tokamaks.

Net current in toroidal equilibria can be a cause of instabil-
ity. Because our MHH2 and MHH3 stellarators have a mag-
netic structure with the two-dimensional symmetry of a toka-
mak, they are expected to have significant bootstrap current.
This means that the size of the bootstrap current may well
become the decisive factor determining the β limit. A small
amount of bootstrap current seems to improve the equilib-
rium, but, as we have indicated in Fig. 3, larger amounts can
be damaging to stability. On the whole equilibrium seems to
be more of a problem than stability for stellarators, so if sen-
sible estimates of the bootstrap current turn out to be correct,
we predict that the average β limit of an optimized MHH2
configuration might be as high as 4%, and results for the new
MHH3 are comparable.

3. Configuration Parameters

In the design of the MHH2 stellarator, an important role has
been played by Monte Carlo transport calculations and by line
tracing in addition to the work we are describing here with the
NSTAB code. In a cylindrical coordinate system r, ϑ and z the
geometry of the plasma is defined by the formula

r + iz = r0 + iz0 + R�r1 + iz1 − r0 − iz0�;
where R depends on the toroidal flux s and a pair of poloidal
and toroidal coordinates u and v = ϑ/π. The magnetic axis is
described by the two functions, r0 and z0, of the toroidal angle
v, whereas r1 and z1 specify the shape of the plasma boundary.
For this separatrix, we introduce the Fourier representation

r1 + iz1 = eiu
∑

1mne
−imu+inv;

whose form is suggested by conformal mappings of the exte-
rior of the unit circle in the complex plane. Improved zoning
can be obtained by performing an additional substitution

u = u1 −
∑

Zmn sin�mu1 − nv�
on the poloidal angle u. Rezoning helps to achieve adequate
resolution in harder cases like the helias. In the NSTAB code,
the potential energy is minimized as a functional of the un-
knowns R, θ, r0, and z0.

The conventional aspect ratio of the plasma has the value
A = 110/100, and we usually impose the normalization 100 =
1 on the small plasma radius. Conformal mapping shows that
shape factors 1mn with large negativem cause unrealistic cusps
to penetrate the plasma, so we choose to leave them out when
m + −1. The terms with m = −1, which define catenoids or
crescents, are helpful because they contribute significantly to
the magnetic well. Analytic geometry shows that the coeffi-
cients 11n specify the helical excursion of the magnetic axis,
whereas 12n makes the plasma shape elliptical, 13n makes it
triangular, 14n makes it rectangular, and so forth. Experience
with the computations establishes that each 1mn has a strong
influence on the corresponding coefficient Bmn in the mag-
netic spectrum, which makes it easier to design stellarators
with approximate two-dimensional symmetry.

Resonant surfaces ι=m/n are dense throughout the plasma,
and at each of them there is singular behavior of the parallel

current λ unless the corresponding term Bmn in the magnetic
spectrum vanishes. These coefficients seem to become large
when islands form at the resonances, so it is desirable to re-
duce them as much as possible in the design of a stellarator.
Unfortunately, the problem of eliminating unwanted terms in
the spectrum does not respond well to systematic treatment
in resonant cases, but we have been successful anyway in the
development of specifications for quasi-axially symmetric stel-
larators. What matters most is that in any helias the coefficient
B21 is extremely small despite the fact that the ellipticity 121
contributes the bulk of the rotational transform.

After equilibrium, stability and transport computations have
produced satisfactory values of the shape factors 1mn defin-
ing the separatrix, we find modular coils to generate the ex-
ternal magnetic field by applying a modified version of the
NESCOIL code (16). This method is based on the Biot–Savart
formula

B = ∇ 3
∫ ∫

∇ϕ 3 N dσ/r;

which represents the magnetic field in terms of a potential
function

ϕ = v/�2π� +
∑

ϕmn sin�mu− nv�
defined over an outer control surface given by rules just like
those for the separatrix (5). In Table 1, values of coefficients
1bmn for the plasma boundary, coefficients 1cmn for the con-
trol surface, and coefficients ϕmn for the potential are all pre-
sented for a choice of the MHH2 configuration designed to

Table 1. Specifications for an MHH2 stellarator whose separatrix is
defined by the parameters 1bmn, whereas the control surface for the
coils is defined by the coefficients 1cmn

m n 1amn 1bmn 1cmn ϕmn 1dmn

−2 −1 0.00 0.00 −0.16 0.000 0.00
−1 −1 0.18 0.19 0.37 0.000 0.14
−1 0 0.16 0.15 0.23 0.000 0.10
−1 1 −0.02 −0.02 −0.10 0.000 0.02

0 0 1.00 1.00 1.95 0.000 1.00
0 1 −0.03 −0.03 0.00 −0.694 −0.01
0 2 0.00 0.00 0.00 −0.088 −0.01
1 −1 0.05 0.05 0.03 −0.092 0.05
1 0 3.20 3.20 3.35 0.196 4.50
1 1 0.30 0.27 0.20 0.539 0.07
1 2 0.05 0.05 0.10 0.098 0.01
1 3 0.00 0.00 0.00 −0.019 0.00
2 −1 0.00 0.00 0.00 −0.024 0.02
2 0 0.00 0.00 0.00 0.036 −0.08
2 1 −0.49 −0.45 −0.32 −0.556 −0.36
2 2 −0.07 −0.06 0.00 0.028 0.00
2 3 0.00 0.00 0.00 0.031 0.00
3 0 0.00 0.00 0.00 0.018 0.02
3 1 −0.04 −0.04 0.00 0.072 −0.04
3 2 0.09 0.08 0.12 0.118 0.09
3 3 0.00 0.00 0.00 −0.133 0.02
4 −1 0.00 0.00 0.00 0.000 0.01
4 0 0.01 0.02 0.00 −0.067 0.00
4 1 0.03 0.02 0.00 0.067 0.02
4 2 −0.02 −0.02 0.00 −0.069 0.00
4 3 −0.02 −0.02 0.00 −0.100 −0.02
4 4 0.00 0.00 0.00 0.089 0.00
4 5 0.00 0.00 0.00 −0.030 0.00
5 1 −0.01 0.00 0.00 0.000 0.00
5 2 0.00 0.00 0.00 0.037 0.00
5 3 0.00 0.00 0.00 0.080 0.00
6 2 0.00 0.00 0.00 −0.046 0.00

The shape factors 1amn were obtained from the magnetic lines of
an altered equilibrium found by adding auxiliary toroidal and vertical
fields. The coefficients ϕmn determine the location of coil filaments
on the control surface. The last column, 1dmn, defines the separatrix of
a quasi-axially symmetric MHH3 stellarator with three field periods.
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have a high β limit (11). The shape factors 1cmn have been fil-
tered judiciously to ensure that the modular coils, which are
defined by level curves of ϕ, do not overlap or become exces-
sively twisted. The first column 1amn in the table was calculated
afterwards from the separatrix of another configuration ob-
tained by activating auxiliary toroidal and vertical field coils.
The off-design case also has desirable physical properties and
exhibits the flexibility of the MHH2 concept. The last column
lists the Fourier coefficients 1dmn specifying the separatrix of
the new quasi-axially symmetric MHH3.

The NESCOIL code solves for the potential ϕ by fitting
the external harmonic field to the field inside the plasma in a
sense of least squares. This is not a well posed problem be-
cause there may not be a global analytic continuation of B
outside the plasma. Therefore, in practice we examine mag-
netic lines produced by the coils to make sure that some flux
surface of the Biot–Savart field does have the originally pre-
scribed values for the Fourier coefficients 1bmn. In the calcula-
tions, it is easy to include an additional vertical field and an
additional toroidal field. That enables one to investigate the
influence corresponding auxiliary coils might have on the con-
figuration and to correct for any outward shift of the plasma
column as β increases. From our work, it becomes clear that
there is flexibility in the implementation of the MHH2 con-
cept and that a family of good configurations can be studied
with one basic set of modular coils. Smaller toroidal coils can
be used to control the rotational transform, perhaps in con-
junction with a current drive.

The rotational transform ι over one field period of the
MHH2 device specified in Table 1 drops from just above 1/4 at
the magnetic axis to just above 1/5 at the separatrix. Numeri-
cal studies of the effect of changes in the definition of the coils
show that the magnetic surfaces are robust. An m = 4; n = 1
island located near the magnetic axis can be controlled by
means of variations in the corresponding harmonic associ-
ated with the winding law. When the surface they lie on is
placed properly, 16 modular coils are enough to avoid un-
wanted toroidal ripple. There is ample space between the
coils, which seem easier to construct than those of more con-
ventional stellarators. At lower β it might be desirable to con-
struct a device with less shear and a bigger magnetic well. That
can be achieved by reducing the crescent shape factor 1−1;0.

In the vacuum magnetic field of the MHH3 we have de-
fined, the rotational transform over one period rises from ap-
proximately 0.12 at the magnetic axis to 0.16 at the separatrix.
This leaves plenty of room for a significant contribution from
bootstrap current without crossing resonances at ι = 1/4 or
ι = 1/3 when β increases. Possible improvement in the perfor-
mance of the MHH3 over that of the MHH2 associated with
reversed shear is under investigation, and ballooning mode
calculations predict a noticeably higher β limit for the MHH3
than for the MHH2.

4. Proposal for an Experiment

Research thus far on the helias concept has all been theoret-
ical and relies heavily on large-scale computer codes. There
are so many questions about the mathematical model that the
calculations are perhaps best viewed as a simulation of the
physics. Therefore, it is of interest to plan a proof of principle
experiment to verify the predictions of the numerical work.
This might be feasible at a cost of tens of millions of dollars
for construction and operation over a period of several years.
The large radius of the device could be as small as 1.5 m and
still allow for a minimum radius of 20 cm to deal with impu-
rities. With a magnetic field of only 0.5 tesla, one could test
the β limit and address concerns about the role of ballooning
modes. A goal of the experiment would be to get informa-
tion about the level of bootstrap current to be expected in
toroidal configurations, and it might be possible to investigate

the control of islands and the behavior of a divertor in this
geometry.

Computerized machining now makes it possible to build
the kind of modular coils required for an MHH2 experiment
with frames meeting the necessary tolerances (3). Smaller
toroidal and vertical field coils placed at some distance from
the plasma should supply adequate flexibility and provide for
control of the rotational transform. The addition of a cur-
rent drive would be desirable, especially because bootstrap
current is expected to be important in a quasi-axially sym-
metric stellarator. It should be possible to study the quality
of the magnetic surfaces and learn more about islands, but
our computations indicate that one should not expect to raise
the rotational transform much above ι = 0:3 over one field
period. Because the problem of constructing a successful stel-
larator experiment is technically challenging, the plan of the
physics should be as simple as possible.

Because it is hard to predict the precise size of the bootstrap
current, we have investigated situations where the associated
rotational transform becomes as large as a third of the total
(17). In that case, the MHH2 stellarator seems to have a β
limit of only 4%, and a certain amount of profile optimiza-
tion is required to arrive at this estimate. Small values of the
bootstrap current help to achieve good equilibrium, but insta-
bility of low order modes may be triggered by more substantial
amounts. In a flexible experiment, the increase of rotational
transform caused by bootstrap current can be compensated
for by using toroidal field coils to reduce the stellarator con-
tribution.

The MHH2 concept offers the possibility of assessing prop-
erties of a helias within the framework of a compact stel-
larator program. The W7-X experiment under construction in
Europe is a much more ambitious proposal to achieve compa-
rable goals. Because of the substantial elongation of its plasma
cross-sections, the minimum small radius will only be 20 cm
for a planned large radius of 5 m. On the other hand, a four
field period MHH4 configuration modelled on the HSX de-
vice at the University of Wisconsin seems quite competitive
because it would have much less bootstrap current and yet
not need to be as big as the W7-X. Among the compact stel-
larators that have been proposed, only the MHH2 and MHH3
seem to have good transport at reactor conditions. Moreover,
a hybrid tokamak with only small stellarator sidebands may
not be attractive because of the tendency of resonant islands
to form and because of difficulties in controlling the net cur-
rent. However, if the bootstrap current turns out to be very
big, an MHH3 configuration with relatively little rotational
transform, like the one in Table 1, might become quite attrac-
tive.

I wish to express my appreciation for helpful discussions with
Frances Bauer and Long-Poe Ku. The recognition of prerequisite re-
search on fusion in the citation for the 1998 National Academy of
Sciences Award in Applied Mathematics and Numerical Analysis is
gratefully acknowledged. This work has been supported by the United
States Department of Energy under Grant DE-FG02-86ER53223 and
the National Science Foundation under Grant DMS-9420499.

1. Nuehrenberg, J. & Zille, R. (1988) Phys. Lett. 129A, 113–116.
2. Bauer, F., Betancourt, O. & Garabedian, P. (1984) Magnetohy-

drodynamic Equilibrium & Stability of Stellarators (Springer, New
York).

3. Grieger, G., Beidler, C., Harmeyer, E., Lotz, W., Kisslinger, J.,
Merkel, P., Nuehrenberg, J., Rau, F., Strumberger, E., Wobig, H.,
et al. (1992) Fusion Technol. 21, 1767–1778.

4. Anderson, D. & Garabedian, P. (1994) Nucl. Fusion 34, 881–885.
5. Garabedian, P. (1996) Phys. Plasmas 3, 2483–2485.
6. Boozer, A. & Kuo-Petravic, G. (1981) Phys. Fluids 24, 851–859.
7. Kuhl, N. (1996) J. Comp. Phys. 129, 170–180.
8. Bauer, F., Betancourt, O. & Garabedian, P. (1988) Proc. Natl.

Acad. Sci. USA 85, 7423–7425.



Applied Physical Sciences: Garabedian Proc. Natl. Acad. Sci. USA 95 (1998) 9737

9. Betancourt, O. (1988) Comm. Pure Appl. Math. 41, 551–568.
10. Taylor, M. (1994) J. Comp. Phys. 110, 407–418.
11. Garabedian, P. (1997) Plasma Phys. Control. Fusion 39, B129–

B134.
12. Okamura, S., et al., Compatibility of drift orbit optimization with

MHD stability in CHS, in press.

13. Reiman, A. & Greenside, H. (1990) J. Comp. Phys. 87, 349–365.
14. Hirshman, S. & Betancourt, O. (1991) J. Comp. Phys. 96, 99–109.
15. Hameiri, E. (1985) Comm. Pure Appl. Math. 38, 43–66.
16. Merkel, P. (1987) Nucl. Fusion 27, 867–871.
17. Garabedian, P. & Gardner, H. (1995) Phys. Plasmas 2, 2020–

2025.


