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I 

Present State of Problem 

1. Previous Work.--The critical frequency at  which the visual fu- 
sion of rhythmical ly  produced illumination takes place depends for its 
value on a var ie ty  of factors. The most effective of these is the in- 
tensi ty  of the illumination. 

The dependence of critical frequency on illumination was recognized 
by Plateau a century ago (1829), and is apparent from the later work 
of Emsmann (1854) and of Nichols (1884); but  it  was Ferry (1892) who 
first proposed the formulation tha t  the critical fusion frequency varies 
directly with the logarithm of the intensity. 1 Ferry 's  published meas- 
urements do not  support his generalization. In a plot of critical 
frequency against log I ,  his data,  though covering little more than  one 

* A preliminary report of this work was given to the Dutch Ophthalmological 
Society in December, 1930, and appears in the Nederl. Tijdschr. Geneesk., April 
25, 1931, p. 2274. It was reported more fully at the meeting of the Optical Society 
of America in February, 1933, and appears in abstract in the J. Opt. Soc. America, 
1933, 23, 194. 

** Fellow (1929-30) of the Donders Foundation (Holland). 
' Ferry's actual statement is that the "persistence" of vision is inversely pro- 

portional to log I. By "persistence" Ferry merely means the necessary duration 
of the light flash alone, at the critical fusion frequency. The interval is thus equal 
to one half of the reciprocal of the critical frequency. It was generally believed 
that this time interval measures "the duration of the retinal impression," and 
Ferry so construes his data. The term is still used by Allen (1926), though Grii*l- 
baum (1898) long ago exposed its absurdities. 
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logarithmic unit, form a sharply curved line convex to the log I axis, 
and bear no resemblance to the results of later investigators. 

Adequate measurements of the relation between intensity and fusion 
frequency were first made by Porter (1902) who used an intensity 
range of 1 to 50,000. His data fall on two straight lines intersecting 
at an illumination of about 0.25 meter candles. Porter's work was 
corroborated by Kennelly and Whiting (1907), by Ives (1912), and 
by Luckiesh (1914). Ires measured not only white light but also 
colored lights and found that the data for different parts of the spec- 
trum show a dual logarithmic relation similar to that for white light. 
The slope of the lines, however, varies with the wave-length, the upper 
and lower lines varying independently. For blue light Ires found 
that the lower line becomes horizontal. All these peculiarities of 
slope disappear when a small field is used. 

Allen (1919, 1926) has in general confirmed the work of Porter and of 
Ives, but has differed from them by drawing through his measure- 
ments about five short straight lines of different slope instead of the 
usual two. In our estimation, the data presented by Allen do not 
justify this treatment; the points appear to lie on a continuously curv- 
ing line. The recent work of Lythgoe and Tansley (1929), distinctly 

~gives no support to Allen's multiplicity of straight lines. 
Lythgoe and Tansley's measurements confirm the logarithmic rela- 

tion of intensity to fusion frequency, but Lythgoe and Tansley attach 
no importance to its strict formulation as done by Ferry, by Porter, 
and by Ives, and consider that their data agree only under certain con- 
ditions with the linear relation of critical frequency to log I. The 
same may be said about the measurements of Granit and Harper 
(1930), who found that for a range of about 1 to 1000 in intensity the 
critical frequency is very nearly directly proportional to the logarithm 
of the intensity. For higher intensities the relationship does not hold, 
and the curve of frequency against log I tends to become horizontal, as 
already found by Grtinbaum (1898). 

Recently S~tlzle (1932) has measured this relation for the first time 
in an animal other than man. He finds for the dragon fly larva that 
critical frequency is a sigmoid function of log I, the curve being nearly 
horizontal at upper and lower critical frequencies. In a paper just 
published, Wolf (1933) records precisely similar measurements for the 
honey bee. 
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Of the other numerous observations relating to intensity and critical 
frequency, some cover so small a range (e.g. Pi~ron, 1922; Polikarpoff, 
1926) that no certain conclusions can be drawn from them about these 
variables, while others deal with the influence of various conditions 
on critical frequency and are not relevant here (of. Parsons, 1924). 

2. Need for the Present Work.--In spite of all this work the relation 
between intensity and critical fusion frequency is not adequately 
known in several important respects. In the first place, none of the 
measurements cover a range of intensities sufficiently wide to define 
the relationship over the functional range of the eye, and to include 
very high and very low illuminations. As a result of this lack, we 
know almost nothing about fusion frequencies below 10 cycles and 
above 40 cycles per second. 

In the second place, none of the measurements except those of Ires 
describe the real relation between illumination and retinal effect, 
because they were all made with the natural pupil, and thus contain 
an additional and uncertain variable. The correction of such data by 
means of existing measurements of the pupil area (Reeves, 1918), al- 
ready a dubious procedure since Schroeder's (1926) work, has now be- 
come meaningless in terms of the studies on the pupil by Stiles and 
Crawford (1933). 

In order that an adequate theoretical structure may be built for the 
physiology of intermittent illumination, it is obviously necessary to 
possess the data in a fairly complete condition. We therefore meas- 
ured the relation between critical fusion frequency and intensity for 
different portions of the retina over as large a range of illumination as 
possible, and under such conditions as to render the data reproducible 
and definitive. 

II 

Method and Material 

The details of the apparatus and of the procedure which we used for 
this work have, for editorial convenience, been described separately 
in the preceding paper of this group. 

All the measurements here recorded were made with the right eye of 
C. D. V. and with the right eye of S.H.  When C. D. V. was the ob- 
server, S. H. acted as manipulator and recorder. When S. H. was ob- 
server, the manipulations and recording were made in the main by Mr. 
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Morton Schweitzer, and occasionally by Mr. Simon Shlaer. 
to record here our 
kindness. 

We wish 
indebtedness to both these gentlemen for their 

III 

Measurements with the Fovea 

The data which we secured fall into several groups, depending on the 
ideas which urged us to make them. The original measurements of 
Porter, when plotted as critical frequency against log I show two 
straight lines, one of small slope, and continuing from it, another of 
greater slope. In conformity with the duplicity theory (yon Kries, 
1929) it is generally supposed that  the lower line represents the func- 
tioning of the rods, while the upper, steeper line represents the func- 
tion of the cones. The transition from the dominance of one system 
to that  of the other then corresponds to the region of intersection of the 
two straight lines, which in Porter's data comes at a frequency of about 
18 cycles per second. 

If this separation of rod and cone function is correct, it should be 
possible to get a more complete cone curve below this critical value by 
deliberately confining the measurements to the rod-free area of the 
fovea, and by maintaining the fixation at this place even below the 
break when the fixation normally would wander to the periphery. 
Our first measurements were therefore made with strictly central 
fixation. We used white light, and a flickering area 2 ° in diameter 
surrounded as already described by a 10 ° field continuously illumi- 
nated. The measurements thus concern that  part of the fovea which 
according to Wolfrum (Dieter, 1924) is practically rod-free. 

The lowest intensity at which readings can be taken in this manner 
with the fovea is obviously well above the threshold of the rod sys- 
tem. I t  is even above the thresholds of some of the foveal cones as 
well, because we had to choose such an intensity that  the slowest in- 
terruption in the illumination was dearly visible with central fixation. 
This is very nearly 0.01 photons. Below these intensities the field 
appears uniformly illuminated with central fixation even when the 
central test area of 2 ° is completely extinguished. 

The measurements for central fixation were taken over a period of 
3 months for C. D. V. and of a year and a half for S.H.  Fig. 1 shows 



$RLIG HECHT AND CORNELIS D. VERRIyP 255 

the 176 individual measurements made by S. H. Each setting is 
separately recorded so as to give an idea of the reproducibility of the 
observations. In this respect, the measurements of C. D. V. are 
exactly like those of S. H., but  about three times as numerous, and 
thus more difficult to plot similarly in one figure. I t  is clear that 
the measurements, though protracted over a long period of time, are 
concordant and describe a real relationship in the eye. They may 
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Fia. 1. Critical frequency function of the rod-free fovea as influenced by the 
illumination. Data for S. H. recording the 176 separate measurements. The 
curve is the same one as drawn through the average data in Fig. 2. 

therefore be averaged in groups to record this relationship. The data 
so averaged are given in Table I and in Figs. 2 and 3. The line 
drawn through the unaveraged, individual measurements in Fig. 1 
is the same as the one drawn through the average data of Fig. 2, and 
shows that the process of averaging has merely served to smooth the 
data without in the least distorting the relationship which they 

describe. 
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The data indicate that the direct logarithmic relation between 
intensity and critical frequency holds for the middle region of inten- 
sities, but that the complete relationship is more nearly sigmoid, the 
S shape being quite drawn out. Two aspects of the data require 

TABLE I 

Critical fusion frequency (cycles per second) for white light at  various retinal 
illuminations (photons). Test  field 2 ° in center of fovea. Surround 10 °. 

Right eye S.H. Right eye C.D.V. 

No. of I Retinal 
Criterion readin s illumination 

Normal 10 0.0131 

No flicker on 
slight shift 

Rapid read- 
ings 

10 
5 

12 

0.0219 
0. 0424 
0. 0834 
0.184 
0.391 
1.02 
2.43 
5.79 

18.0 
42.7 

124. 
321. 
638. 

1832. 

490. 
1585. 
4571. 

120. 
331. 

1000. 
1950. 

Critical No. of 
frequency readings 

4.59 
6.75 
9.59 

12.55 
15.55 
19.63 
24.39 
29.18 
32.15 
37.64 
42.43 
44.96 
44.70 
44.68 
41.66 

50.3 
51.3 
48.0 

41.7 
40.7 
39.4 
37.5 

30 
22 
21 
35 
25 
23 
32 
33 
29 
40 
48 
35 
35 
22 
25 
28 

Retinal 
illumination 

0.0105 
0.0207 
0.0328 
0.0635 
0.161 
0.440 
1.34 
7.18 

19.8 
56.8 

129. 
334. 
698. 

1803. 
3556. 
6039. 

Critical 
frequency 

3.95 
6.14 
8.51 

11.70 
15.00 
19.86 
25.82 
33.98 
38.64 
44.13 
47.38 
50.40 
52.87 
52.00 
52.15 
51.03 

special consideration: first, the slope of the middle portion and second, 
the levelling-off and decrease of the critical frequency at the highest 
illuminations. 

In the range of intensities between about 0.1 photons and 100 
photons, the data, when plotted as in Figs. 2 and 3, lie with extra- 
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FIo. 2. Data for S. H. showing re/ation between critical frequency and log I for 
white light for three different retinal locations: at  the fovea, and at  5 ° and 15 ° 
above the fov~.  
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for white light for three retinal locations: at the fovea, and at 5 ° and 20 ° above the 
fovea. 
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ordinary precision on a straight line. In this respect we can confirm 
Porter, Ives, and the other workers. The slope of this line is 11.1 for 
C. D. V., and 11.0 for S. H. 

We may strictly compare our measurements with those of Ives 
(1912 and 1922), the only previous worker who used a pupil of fixed 
dimensions. The slope of Ires '  1912 data is 11.2, whereas for his 
1922 data it is 10.0. The slope of the upper portion of Porter's data 
is 12.4. Kennelly and Whiting's slope is 11.0. Luckiesh's slope as 
published is 5.6, which is an extraordinarily low value. Most sec- 
tored wheels are constructed to give 4 cycles per revolution, and it is 
quite possible that Luckiesh erred in multiplying his motor frequencies 
by 2 and not by  4 to give cycles per second. His published slope, 
when multiplied by  2 gives 11.2. The same holds for Granit and 
Harper whose slope appears to be 5.5, but  whose values must clearly 
be multiplied by  2 to record cycles per second and not motor fre- 
quencies. Their slope is therefore 11.0. Lythgoe and Tansley's 
data for the fovea contain 3 or 4 points in this region of the curve. 
For their only observer who was trained in visual work (R. L.) these 
points are regular and show a slope of 11.0. For their two untrained 
observers the points are irregular; but  they seem to show a slope of 
about 9.0. Allen's (1926) measurements give a slope of 8.6 for yellow 
light of 570 m~, which on the basis of general experience, may be con- 
sidered the same as for white light. Thus most observers record 
values between 9 and 12, with a preponderance of 11. These varia- 
tions do not seem to be connected with any obvious experimental 
conditions like pupil area, binocular observation, or size of field. 2 

Little need be said about the data below 0.1 photons. The critical 
frequency continues to decrease as log I decreases forming a gentle 
curve convex to the axis of abscissas, and stopping fairly abruptly 

The measurements with white light here recorded were terminated for C. D. V. 
in 1930 and for S. H. early in 1932. Recently, i.e. about a year after the series 
was terminated, measurements with white light, with foveal fixation, and with the 
identical apparatus have been made by S. H. with the startling result that the 
slope of the data is now nearly I0.0 instead of i 1.0. It is significant also that Ires 
in later publications (Ives, 1922) shows a similar change in slope from 11.2 to 10.0 
for white light. Obviously there are unknown factors which seem to influence 
the value of the dope. 
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when with central fixation the field appears uniform even when the 
test area is extinguished. 

At the highest intensities the relation between critical frequency 
and log I rapidly ceases to be linear. As the intensity is raised a 
maximum critical frequency is soon reached, beyond which a further 
increase in intensity results in no further increase in critical frequency; 
rather it results in a decrease. The maximum critical frequency comes 
at about 500 photons for S. H. and at about 1000 photons for C. D. V. 
The value of the critical frequency at this maximum is 53 cycles per 
second for C. D. V. and 45 cycles per second for S.H. With a further 
increase in the intensity, the critical frequency distinctly decreases. 
At first we were skeptical about this, and therefore made many meas- 
urements in order to be certain of it. 

In the course of these observations at the higher intensities we tried 
two variations in the technic for securing the data already given. In 
the first, the procedure was like that heretofore used, except that the 
end-point for the extinction of flicker was considered reached on pro- 
longed observation only when no flicker was apparent even on a slight 
shift in fixation. The data, shown in Table I, indicate that by this 
rather undesirable criterion the critical frequency is raised consider- 
ably. In the second procedure, rigid fixation was maintained as 
usual, but the readings were made as rapidly as possible, say in about 
30 seconds, thus preventing the complete adaptation of the eye to the 
experimental intensity. The data, also given in Table I, show clearly 
that inadequate light-adaptation decreases the critical frequency, a 
fact already evident from the work of Lythgoe and Tansley. The 
significant thing about these data, is that in common with the pro- 
cedure normally used, they show a maximum critical frequency and a 
decline at the highest intensities. 

Considered as a whole, the foveal measurements definitely bear 
out the general notion advanced to account for the abrupt change in 
slope in the original data of Porter and in the subsequent measure- 
ments of Ires. This is tk..t the steeper part  of the data represents 
the function of the cones, and the less steep part represents the par- 
ticipation of the rods. When, as has been done by us, the meas- 
urements are confined to the fovea, in an area which is practically 
rod-free, only one continuous relationship appears between critical fre- 
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q u e n c y  a nd  in t ens i ty  over  the  whole  range,  and  it  is to  this  re la t ionship  

t h a t  the  cone por t ion  of prev ious  inves t iga tors  c lear ly  corresponds,  

IV 

Measurements with the Periphery 

T h e  correctness  of this  conclusion becomes  even  more  a p p a r e n t  

when  the  m e a s u r e m e n t s  are m a d e  wi th  regions of the  re t ina  outs ide  

the  fovea  centralis.  W e  measured  the  crit ical f r e q u e n c y  for  whi te  

TABLE II  

Critical fusion frequency (cycles per second) for white light at various retinal 
illuminations (photons). Test field 2 ° placed 5 ° above center of fovea. Surround 
10 °. 

Right eye S.H. Right eye C.D.V, 

No. of Retinal Critical No. of Retinal Critical 
readings illumination frequency readings illumination frequency 

0.00O166 
0.000491 
O.00134 
0.OO710 
0.0138 
0.0264 
0.0514 
0.146 
0.968 
3.66 

16.5 
138. 
514. 

1954. 

3,50 
5,64 
7.31 
8.51 
8.97 
8.25 
7.7O 
9.41 

15.32 
19.70 
26.66 
34.70 
34.96 
31.70 

11 
9 
7 
5 

12 
12 
12 
7 

l0 
13 
11 
8 

0.000258 
0.000518 
0. 00185 
0.00698 
0.0276 
0.239 
0.764 
2.98 
7.93 

24.2 
448. 

2118. 

2.53 
4.59 
6.80 
8.90 
9.21 
9.67 

14.80 
19.90 
25.20 
30.16 
37.10 
36.00 

l ight  wi th  the  same se t -up as before b u t  wi th  f ixation a t  5 ° above  the  

center ,  15 ° above  the  center ,  and  20 ° above  the  center .  T h e  d a t a  
t hus  concern  a ret inal  tes t  a rea  of 2 ° d i ame te r  h a v i n g  a su r round  of 

10 °, a nd  s i tua ted  a t  5 °, 15 °, and  20 ° above  the  center  of the  eye.  
T h e  d a t a  for  5 ° above  the  center  are given in Tab le  I I  and  Fig.  2 

for  S. H.  a nd  in Tab le  I I  and  Fig. 3 for C. D . V .  I n  all essentials the  
two  sets of m e a s u r e m e n t s  agree. A t  the  lowest  i l luminat ion  the  

cri t ical  f r equency  rises v e r y  d is t inc t ly  w i th  log I .  As  the  in tens i ty  
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reaches about 0.01 photons, the critical frequency ceases to increase, 
and remains approximately constant over a range of 1.25 logarithmic 
units. 

For C. D. V. this plateau is horizontal within the accuracy of the 
measurements; for S. H. the plateau has a slight, but distinct undula- 
tion. The undulation is not a product of averaging the data. I t  
appears in every set of measurements made by S. H., and occasionally 
in those of C. D.V.  Examination of the data of Ives shows the pres- 
ence of such an undulation in the measurements for blue light at lower 
intensities, where Ives supposes the relation between critical frequency 
and log I to be horizontal; it is also apparent in some of the data of 
Lythgoe and Tansley. 

The plateau in our data continues till about 0.2 photons, after which 
the critical frequency rises with log I. I t  continues to rise until 
it reaches a maximum at about 400 photons, after which it decreases 
as the intensity increases. 

Figs. 2 and 3 show that the data for 5 ° off-center clearly fall into 
two parts. The first is at low intensities, where the critical frequency 
first rises with log I and then reaches a maximum which is approxi- 
mately maintained. The intensity range covered by this rise and 
plateau is about 3.25 logarithmic units. The second part also begins 
with a rise in critical frequency as log I increases, and also terminates 
when the critical frequency reaches a maximum, and then declines. 
The intensity range covered by the second part  is about 4 logarithmic 
units. 

For the low intensity rise of critical frequency, the slope of the data 
is 5.0 for C. D. V., and 4.5 for S.H. There are only three points each 
available for these determinations, but the points are well established. 
For the high intensity rise in critical frequency the slope of the data 
is 10.5 for C. D. V. and 8.5 for S .H.  The slope for C. D. V. is thus 
only slightly less than for the fovea, whereas for S. H. it is distinctly 
less for the 5 ° fixation than for central fixation. 

The only measurements with which we can compare ours are those 
by Lythgoe and Tansley, who made a special point of determining the 
slope of their data at the higher illuminations for a 1 ° field placed 10 ° 
peripherally. Their two observers give slopes of 14.4 and 11.7 re- 
spectively. Lythgoe and Tansley state that the slope remains the 
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same for all parts  of the retina, and indeed give the slope for one ob- 

server at  50 ° off-center as 11.7. Their other data  (cf. especially their 

Fig. 12) distinctly do not  bear out  this conclusion, bu t  indicate in- 

stead a higher slope for the periphery than  for the fovea. This differ- 

ence between their and our data  m a y  be due to the difference in size of 

surround: ours covered 10 ° whereas theirs covered the whole eye. 

This m a y  account  also for the rather high values of the critical fre- 

quency found by them for the periphery. 

TABLE III 

Critical fusion frequency (cycles per second) for white light at various retinal 
illuminations (photons). Test field 2 ° placed 15 ° above center of fovea for S. H. 
and 20 ° above center for C. D.V. Surround 10 °. 

Right eye S.H. 15 ° above center Right eye C.D.V. 20 ° above center 

No. of Critical 
readings frequency 

2.05 
7.60 

57.7 
214. 
796. 

Retinal Critical 
illumination frequency 

0.0000551 2.62 
0. 000205 5.33 
0.000760 9.61 
0.00577 9.31 
0.0214 9.14 
0.0796 8.43 
0.551 10.15 

11.45 
15.05 
18.05 
17.63 
17.05 

No. of Retinal 
readings illumination 

9 0.000109 
9 0.000194 
9 0.000402 
9 0.00104 
8 0.00258 
8 0.00887 
7 0.0209 
9 0.0678 
9 0.218 
9 0.726 
9 1.52 
9 3.24 
5 7.78 

15 21.1 
13 144. 
9 3319. 

2.65 
4.44 
6.08 
8.10 
9.04 
9.26 
9.44 
9.63 
9.81 

11.30 
14.83 
18.00 
21.00 
22.06 
22.60 
22.10 

The new element contained in our measurements  of the periphery 
is the existence of two separate par ts  to the relationship between 

critical f requency and intensity. The measurements  with the test 
field farther  out  in the periphery confirm and extend these findings. 
The da ta  for a retinal test area of 2 ° with a 10 ° surround placed a t  15 ° 

above the center are given in Table I I I  and Fig. 2. The da ta  for a 
similar area placed at  20 ° above the center are given in Table I I I  and 
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Fig. 3. The data show the same division into two parts, each with a 
rise of critical frequency versus log I and subsequent plateau as do 
the data already given for a 5 ° peripheral displacement. 

The slope of the rise at low intensities is 6.1 for C. D. V. and 6.0 
for S .H .  The slope for the rise at the higher intensities is 9.6 for 
C. D. V. and 7.0 for S .H.  Again the value for C. D. V. is not very 
much below that for the fovea, whereas that for S. H. is distinctly less. 

The plateau for the 15 ° and 20 ° off-center measurements is about 
0.75 log units longer than for the 5 ° off-center data. This is because 
at 15 ° and 20 ° the low values of the critical frequency occur at lower 
intensities and the high values occur at higher intensities than at 5 ° 
off-center. We are quite certain of this broadening out of the curve 
at low and high intensities for the more peripheral positions because 
we made special measurements to test this point. We do not record 
these special measurements here because they merely corroborate 
those already given in the tables and figures. 

V 

Various Quadrants 

The results we secured with peripheral stimulation seemed so 
striking, and yet so clear in their significance that  we wished to be 
certain of their general validity over the retina. The peripheral data 
so far reported deal with regions above the fovea. We therefore mea- 
sured the relation between critical frequency and illumination for the 
same test area and surround as before, but placed 5 ° peripherally in 
the four principal directions: up, down, nasal, temporal. 

The data for C. D. V. are given in Table IV and in Fig. 4. Each 
group represents only one set of measurements made in a day. Each 
point is thus the average of two or three concordant readings. I t  is 
apparent that the essential phenomenon recorded is a general one, 
since the data all show the same division into two parts, with a rise 
and a plateau for each part. 

Certain details are to be noted in which the four directions differ. 
The height of the low intensity plateau seems to increase in the follow- 
ing order: temporal, nasal, down, and up. The two horizontal posi- 
tions have the same slope for the high intensity rise; its value is 8.7, 
and it is therefore less than the up position which as before is 10.4. 
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TABLE IV 

Critical fusion frequency (cycles per  second) for whi te  l ight  a t  var ious ret inal  
i l luminat ions (photons).  Tes t  field 2 ° placed 5 ° away from center  in four different 
directions. Righ t  eye of C. D . V .  Surround 10 °. 

Nasal 

Retinal 
illumination 

O. 000372 
O. 000873 
O. 00381 
O. 00980 
0.0276 
O. 0662 
O. 103 
O. 159 
1.05 
4.80 

38.1 
276. 

Critical 
frequency 

2.20 
4.24 
6.88 
6.96 
7.48 
7.40 
7.40 
9.08 

15,2 
20.3 
29,6 
35.1 

Temporal 

Retinal Criti~ 
illumination requez 

0.000372! 2.2 
0.00163 4.8 
0.00604 5.7 
0.0219 6.6 
0.0662 6.8 
0.200 8.6 
0.317 10.7 
O. 873 14.8 
3.99 19.9 

15.5 25.0 
56.4 30.3 

276. 36.2 

Down 

Retinal 
illumination 

0.000438 
0.000693 
0.00145 
0.00418 
0.0142 
0.0428 
0.129 
0.390 
0.693 
1.59 
5.02 

15.2 
41.8 

276. 
1026. 
4375. 

Critical 
frequen~ 

1.93 
4.08 
5.80 
7.40 
7.84 
7.96 
8.28 

10.5 
15.2 
19.7 
23.8 
30.3 
36.4 
37.7 
37.4 
36.0 

Up 

Retina] Critical 
illumination frequency 

0.000310 2.50 
0.000647 4.24 
0.00214 6.32 
O. 0163 8.92 
0.0235 8.28 
0. 289 10.4 
0.491 12.4 
1.38 16.8 
6.18 24.2 

19.5 29.4 
28.3 29.8 

1589. 34.8 
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FIG. 4. Data for C. D. V. showing relation between critical frequency and log ! 
for white Ught for 5 ° off-center in the four princi~I retinal directions. 
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Moreover the down position data show a slope of 12.0 which is dis- 
tinctly greater than that of the up position and of the fovea. Very 
likely these variations in detail represent variations in structure at 
which we can only guess in our present knowledge. Possibly they are 
related to the population density of the elements in various parts of 
the retina. 

VI 

Structural Interpretation 

The general relations among the data are apparent when they are 
considered all together as in Figs. 2 and 3. Their interpretation in 
terms of the well known histological composition of the retina is 
immediately obvious. 

The data for the fovea are represented by a single relationship be- 
tween critical frequency and illumination. Since there are almost no 
rods in the foveal area used for the measurements, the central fixation 
data must surely record the behavior of the cones of the fovea. 

The data for the periphery are represented by two separate rela- 
tionships between critical frequency and illumination. The part at 
the higher illuminations resembles the foveal curve in appearance, 
and for the 5 ° eccentric field, has practically the same slope. Clearly 
this portion also represents the behavior of the cones. Moreover, the 
portion of the peripheral data at low illumination is apparently a 
distinct and complete relationship, and does not appear in the foveal 
curves. The obvious conclusion here is that the rise and the plateau 
at low illuminations represent the function of the rods. 

These conclusions are strengthened by the fact that  as the measure- 
ments are made farther in the periphery, the low intensity plateau be- 
comes longer, and therefore the separation between the rise at low 
intensities and the rise at high intensities becomes greater. Thus the 
rod system becomes more sensitive and the cone system less sensitive 
as the measuring area moves from the center farther into the pe- 
riphery. This is in keeping with the anatomical increase in number 
of rods and the converse decrease in cones as one proceeds along the 
retina toward the periphery. 

All our data and their structural interpretation are thus strictly in 
line with the knowledge and ideas embodied in the duplicity theory 
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(yon Kries, 1929) which functionally separates the anatomically dis- 
tinct rods and cones, and places the dominance of the rod system at 
low illuminations and the dominance of the cone system at higher 
illuminations. I t  will be shown in a later paper of this series how 
this description of the data is further borne out by  work with colored 
lights (cf. Hecht and Verrijp, 1933). 

V I I  

S U ~  ~RY 

When measurements of the critical fusion frequency for white light 
over a large range of intensities are made with the rod-free area o[ the 
fovea, the relation between critical frequency and log I is given b y  a 
single si~-noid curve, the middle portion of which approximates a 
straight line whose slope is 11.0. This single relation must be a func- 
tion of the foveal cones. 

When the measurements are made with a retinal area placed 5 ° 
from the fovea, and therefore containing both rods and cones, the 
relation between critical frequency and log I shows two clearly sepa- 
rated sections. At the lower intensities the relation is sigrnoid and 
reaches an upper level at about 10 cycles per second, which is main- 
tained for 1.25 log units, and is followed by  another sigmoid rela- 
tionship at the higher intensities similar to the one given by  the rod- 
free area alone. 

These two parts of the data are obviously separate functions of the 
rods at low intensities and of the cones at high intensities. This is 
further borne out by similar measurements made with retinal areas 
15 ° and 20 ° from the fovea where the ratio of rods to cones is anatom- 
ically greater than at 5 ° . The two sections of the data come out 
farther apart on the intensity scale, the rod portion being at lower 
intensities and the cone portion at higher intensities than at 5 ° . 

The general form of the relation between critical frequency and 
intensity is therefore determined by  the relative predominance of the 
cones and the rods in the retinal area used for the measurements. 
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