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Abstract
Adenosine A2A receptors localized in the dorsal striatum are considered as a new target for the
development of antiparkinsonian drugs. Co-administration of A2A receptor antagonists has shown a
significant improvement of the effects of L-DOPA. The present review emphasizes the possible
application of A2A receptor antagonists in pathological conditions other than parkinsonism, including
drug addiction, sleep disorders and pain. In addition to the dorsal striatum, the ventral striatum
(nucleus accumbens) contains a high density of A2A receptors, which presynaptically and
postsynaptically regulate glutamatergic transmission in the cortical glutamatergic projections to the
nucleus accumbens. It is currently believed that molecular adaptations of the cortico-accumbens
glutamatergic synapses are involved in compulsive drug seeking and relapse. Here we review recent
experimental evidence suggesting that A2A antagonists could become new therapeutic agents for
drug addiction. Morphological and functional studies have identified lower levels of A2A receptors
in brain areas other than the striatum, such as the ventrolateral preoptic area of the hypothalamus,
where adenosine plays an important role in sleep regulation. Although initially believed to be mostly
dependent on A1 receptors, here we review recent studies that demonstrate that the somnogenic
effects of adenosine are largely mediated by hypothalamic A2A receptors. A2A receptor antagonists
could therefore be considered as a possible treatment for narcolepsy and other sleep-related disorders.
Finally, nociception is another adenosine-regulated neural function previously thought to mostly
involve A1 receptors. Although there is some conflicting literature on the effects of agonists and
antagonists, which may partly be due to the lack of selectivity of available drugs, the studies in
A2A receptor knockout mice suggest that A2A receptor antagonists might have some therapeutic
potential in pain states, in particular where high intensity stimuli are prevalent.
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1. Introduction
There is emerging evidence that A2A receptor antagonists might be useful clinically in treating
Parkinson’s disease. A2A receptor antagonists show promising results as an adjuvant to L-
DOPA therapy (see 2.3.). The dorsal striatum, which contains a high density of A2A receptors
(Rosin et al., 1998), appears to be the site of action for the antiparkinsonian effects of A2A
antagonists. The dorsal striatum receives its dopaminergic input from the substantia nigra (pars
compacta), the predominant area of neurodegeneration in Parkinson’s disease (Hirsch et al.,
1988; Rinne, 1993). The ventral striatum, which receives its dopaminergic input from the
ventral tegmental area (VTA; see 2.1.), also contains the same density of A2A receptors (see
Lillrank et al., 1999). The ventral striatum (nucleus accumbens) is implicated in drug addition.
Here we review recent experimental evidence suggesting that A2A receptor antagonists could
become new therapeutic agents for drug addiction.

It is commonly stated that A2A receptors are localized primarily in the striatum while A1
receptors are distributed much more widely (see Ferré et al., 1992, 1997). Although the striatum
contains the highest density of A2A receptors in the brain (Rosin et al., 1998), morphological
and functional studies have identified lower levels of A2A receptors in other brain areas. A2A
receptors appear to be involved in some adenosine-regulated brain functions previously thought
to be mediated solely by A1 receptors. Adenosine is an endogenous sleep-promoting substance
and it is currently believed that A1 receptors in the cholinergic basal forebrain mediate sleep-
inducing mechanisms (recently reviewed in Basheer et al., 2004). Here we review evidence
demonstrating a key role of hypothalamic A2A receptors in sleep regulation.

Nociception is another adenosine-regulated neural function previously thought to mostly
involve A1 receptors (recently reviewed in Liu and Salter, 2005). Here, we review recent
evidence demonstrating that A2A receptors in peripheral nerve endings also regulate
nociception. Taken together, this review emphasizes the possible application of A2A receptor
ligands in pathological conditions other than Parkinson’s disease.

2. Adenosine A2A receptors in ventral striatum. Implications for drug
addiction
2.1. The ventral striatum in drug addiction

The striatum is functionally subdivided into dorsal and ventral striatum. The dorsal striatum
receives glutamatergic input from sensoriomotor and association cortical areas and
dopaminergic input from the substantia nigra pars compacta (Parent and Hazrati, 1995; Gerfen,
2004). The ventral striatum, mostly represented by the nucleus accumbens (with its two
compartments “shell” and “core”), receives glutamatergic input from limbic and paralimbic
cortices and the amygdala and hipoccampus, as well as dopaminergic input from the VTA
(Parent and Hazrati, 1995; Gerfen, 2004). Glutamatergic and dopaminergic inputs converge
on the dendritic spines of the GABAergic striatal efferent neurons, also called medium-sized
spiny neurons, which constitute more than 90% of the striatal neuronal population (Gerfen,
2004). Glutamatergic and dopaminergic inputs usually establish synaptic contact with the head
and the neck of the dendritic spines, respectively (Gerfen, 2004), enabling dopaminergic
neurotransmission to modulate glutamatergic neurotransmission (Fig. 1). Adenosine functions

Ferré et al. Page 2

Prog Neurobiol. Author manuscript; available in PMC 2008 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



as a modulator of glutamatergic and dopaminergic neurotransmission on GABAergic striatal
efferent neurons, in part by acting on heteromers of adenosine receptors with metabotropic
glutamate and dopamine receptors (see below).

The ventral striatum is a component of the brain circuitry involved in goal-directed behavior,
in the conversion of motivation into action, i.e., in the selection of appropriate behavioral
responses elicited by specific motivational stimuli (Mogenson et al., 1980). A current working
model of the circuitry involved in goal-directed behaviour proposes that the glutamatergic input
to the nucleus accumbens carries information about motivationally relevant stimuli to be
selected for an appropriate behavioral response, which is implemented by parallel processing
of cortico-striatal circuits involving both ventral and dorsal striatum. Dopaminergic input to
the nucleus accumbens provides a mechanism to select the most appropriate stimuli according
to predictive reward value. Furthermore, dopaminergic input modulates changes in excitatory
synapses of the nucleus accumbens, thereby enhancing the probability that motivational stimuli
elicit a goal-directed behaviour in the future (Horvitz, 2002; Schultz, 2002; Wolf, 2002; Kelley,
2004; Wise, 2004).

Dopamine release in the ventral striatum is a common characteristic of acute responses to
addictive substances (opiates, ethanol, nicotine, amphetamine, cocaine, Δ9-
tetrahydrocannabinol) (Pontieri et al., 1995; Di Chiara et al., 1999). It is generally assumed
that addictive drugs take control of dopaminergic signals in the nucleus accumbens (and other
dopamine-innervated limbic areas), and convert the normal elicitation and learning of goal-
directed behaviors into “drug-seeking” and “drug-taking” behaviors (Wolf, 2002; Kelley,
2004). By contrast, advanced stages of addiction, characterized by an uncontrollable urge to
obtain drugs and by relapse, seem to depend mostly on adaptations in cortical glutamatergic
projections to the nucleus accumbens (Kalivas and Volkow, 2005).

Relapse can be modeled in laboratory animals as reinstatement of drug-seeking behavior after
the behavior has been extinguished by drug deprivation. Reinstatement can be produced by
administering one dose of the originally self-administered drug (“priming”), by drug-paired
environmental cues, or by stress (for recent review, see Bossert et al., 2005). With this paradigm
the animals reinstate operant responding (usually lever pressing) for drug in the absence of
actual drug delivery. Reinstatement of drug-seeking behavior to different addictive drugs
requires the release of glutamate and stimulation of AMPA glutamate receptors in cortico-
accumbens synapses, particularly in the nucleus accumbens core (reviewed in Kalivas and
Volkow, 2005). It has been hypothesized that pathophysiologic changes in cortico-accumbens
glutamatergic synapses promote the compulsive character of drug seeking in addicts by
decreasing the value of natural rewards, diminishing cognitive control (choice), and enhancing
glutamatergic drive in response to drug-associated stimuli (Kalivas and Volkow, 2005).

2.2. Adenosine A2A receptors in the ventral striatum and the acute behavioral effects of
addictive drugs

Both in the dorsal and ventral striatum, two classes of GABAergic efferent neurons,
enkephalinergic and dynorphynergic, can be distinguished. GABAergic enkephalinergic
neurons contain dopamine and adenosine receptors predominantly of the D2 and A2A subtype,
respectively. On the other hand, GABAergic dynorphinergic neurons express A1 and D1
receptors predominantly (Robertson and Jian, 1995; Ferré, 1997; Svenningsson et al., 1997a;
Lu et al., 1998). In the ventral striatum GABAergic enkephalinergic and dynorphinergic cells
project to the ventral pallidum, which is considered to be an output structure of the basal ganglia
(reviewed in Ferré, 1997). The nucleus accumbens also projects to the ventral mesencephalon,
with the shell innervating the VTA and the core innervating the substantia nigra. These
accumbens-mesencephalic projections are mostly represented by GABAergic dynorphinergic
neurons (Robertson and Jian, 1995; Ferré, 1997; Svenningsson et al., 1997a; Lu et al., 1998).
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In the brain, adenosine A2A receptors are mostly localized in the striatum (both dorsal and
ventral), where they are found in two main locations: in the dendritic spines of GABAergic
enkephalinergic neurons and in the glutamatergic terminals (Rosin et al., 2003). In the dendritic
spines, A2A receptors seem to be mostly localized in the perisynaptic ring adjacent to the
postsynaptic density, where they form heteromers with D2, glutamate mGlu5 and cannabinoid
CB1 receptors (Agnati et al., 2003; Ferré et al., 2002, 2005; Ciruela et al., 2006; Carriba et al.,
2007) (Fig. 1). In the glutamatergic terminals they are found intrasynaptically, forming
heteromers with adenosine A1 receptors (Ciruela et al., 2006) (Fig. 1) and possibly with
presynaptic D2, mGlu5 and CB1 receptors (Tanganelli et al., 2004; Rodrigues et al., 2005;
Carriba et al., 2007). The different A2A receptor-containing heteromers provide distinct
molecular entities with unique functional and pharmacological properties (as reviewed in Ferré
et al., 2007). The cross-talk between the A1 and A2A receptors in the A1-A2A receptor heteromer
modulates glutamate release. Thus, stimulation of the A2A receptor (at high intrasynaptic
concentrations of adenosine) counteracts the inhibitory effect of A1 receptor stimulation (which
inhibits glutamate release) and promotes glutamate release (Ciruela et al., 2006; Ferré et al.,
2007). The receptor cross-talk in A2A-D2, A2A-mGlu5 and A2A-CB1 receptor heteromers
modulates postsynaptic changes at the striatal glutamatergic synapses of the GABAergic
enkephalinergic neuron (Ferré et al., 2007).

A2A-D2 receptor interactions have been intensively studied. A2A is a Gs-olf-coupled receptor
and D2 is a Gi-o-coupled receptor. Depending on the conditions of study, the A2A-D2 receptors
cross-talk implies antagonistic or synergistic interactions (Ferré et al., 1997, 2005, 2007; Agnati
et al., 2003, Yao et al., 2002, 2003). The antagonistic A2A-D2 receptor interactions depend on
the ability of A2A receptors to modulate the binding characteristics of D2 receptors in the
A2A-D2 receptor heteromer (decrease in the affinity of D2 receptor for agonists upon A2A
receptor activation) and on the ability of activated D2 receptors to counteract A2A receptor-
mediated type V adenylyl cyclase (ACV) activation (Ferré et al., 1997, 2005, 2007; Agnati et
al., 2003). Due to the existence of strong synergistic interactions between A2A and mGlu5
receptors, co-activation of mGlu5 receptor upon strong glutamatergic input allows A2A
receptor to counteract D2 receptor antagonism (Ferré et al., 2002; 2005, 2007). The synergistic
A2A-D2 receptor interactions depend on the presence of an activator of G protein signaling
(AGS3), which facilitates a synergistic interaction between Gs- and Gi-coupled receptors on
the activation of types II/IV adenylyl cyclase (ACII/IV; see below). Antagonistic A2A-D2
receptor interactions are however predominant in most conditions, since ACV is the most
expressed type of adenylyl cyclase in the striatum (Chern, 2000). However, synergistic
interactions can become important during conditions of upregulation of AGS3, such as during
withdrawal from repeated treatment with cocaine (see below).

In rodents, systemic administration of A2A receptor antagonists counteracts most of the
biochemical as well as the motor depressant and cataleptic effects produced by
pharmacological or genetic inactivation of D2 receptors, which seems to be related to the
predominant A2A receptor-mediated signaling, not opposed by the antagonistic interaction with
the D2 receptor in the A2A-D2 receptor heteromer. This has been shown in several experimental
models including rodents pretreated with D2 receptor antagonists, reserpine, 6-OH-dopamine
or MPTP or after genetic inactivation of D2 receptors (Kanda et al., 1994; Pollack and Fink,
1995; Shiozaki et al., 1999; Ward and Dorsa, 1999; Chen et al., 2001, Ferré et al., 2001; Hauber
et al., 2001; Wardas et al., 2001) or MPTP-treated monkeys (Kanda et al., 1998; Grondin et
al., 1999). Reserpinized mice, rats with unilateral 6-OH-dopamine lesions and MPTP-treated
monkeys are well-established validated models of Parkinson’s disease. The results obtained in
animal models of Parkinson’s disease strongly support the hypothesis that A2A receptor
antagonists could be useful for the symptomatic treatment of this disease (Ferré et al., 1992).
Indeed, clinical trials show that A2A antagonists potentiate L-DOPA therapy in Parkinson’s
disease (Bara-Jimenez et al., 2003; Hauser et al., 2003).
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However, Parkinson’s disease is characterized by degeneration of dopaminergic neurons in the
substantia nigra (pars compacta), reducing dopaminergic innervation of the dorsal striatum.
Nevertheless, we have also demonstrated A2A-D2 receptor interactions in the ventral striatum
that are similar to interactions in the dorsal striatum (reviewed in Ferré, 1997). At the behavioral
level, by acting on the ventral striatum, A2A receptor agonists counteract and A2A antagonists
potentiate the motor, discriminative and rewarding effects of psychostimulants (Heffner et al.,
1989; Popoli et al., 1994; Rimondini et al., 1997; Shimazoe et al., 2000; Knapp et al., 2001;
Poleszak and Malec, 2002; Justinova et al., 2003; Filip et al., 2006). The non-selective A1 and
A2A antagonist caffeine also potentiates these responses to psychostimulants (Misra et al.,
1986; Logan et al., 1989; Gauvin et al., 1990; Horger et al., 1991; Comer and Carroll, 1996;
Gasior et al., 2000; Munzar et al., 2002). By contrast, different from the effects obtained with
pharmacological blockade, A2A receptor knockout mice show a reduction in psychostimulant-
induced motor responses (Chen et al., 2000, 2003; Soria et al., 2005; for discussion, see Filip
et al., 2006). In summary, A2A receptor pharmacological blockade mostly potentiates the acute
behavioral effects of psychostimulant addictive drugs, most probably involving the
antagonistic interactions between A2A and D2 receptors in the ventral GABAergic
enkephalinergic neurons. On the other hand, pharmacological blockade of A2A receptors
reduced ethanol self-administration (Arolfo et al., 2004) and genetic and pharmacological
experiments also indicate that A2A receptors are involved in the acute behavioral effects of
cannabinoids and CB1 receptor agonists. Thus, Soria et al. (2004) have reported a decreased
place-preference to Δ9-tetrahydrocannabinol (THC) in mice with genetic blockade of A2A
receptors. Furthermore, genetic and also pharmacological blockade of A2A receptors
significantly reduces cataleptogenic effects induced by systemic administration of the CB1
receptor agonist CP55,940 (Andersson et al., 2005). Finally, results obtained with A2A receptor
knockout mice also suggest a requirement for A2A receptors in morphine and THC withdrawal
syndromes (Berrendero et al., 2003; Bailey et al., 2003; Soria et al., 2004).

Some biochemical effects of CB1 receptor agonists had been reported to depend on A2A
receptor function, although it was suggested that these effects might be due to indirect
interactions involving D2 receptors (Yao et al., 2003, Andersson et al., 2005). We have recently
demonstrated that A2A and CB1 receptors co-immunoprecipitate from extracts of rat striatum,
where they co-localize in dendritic processes and possibly nerve terminals (Carriba et al.,
2007). It was also shown that both receptors form direct physical interactions, i.e., A2A-CB1
receptor heteromers in co-transfected cells (Carriba et al., 2007). At a functional level, CB1
receptor function was found to be dependent on A2A receptor activation both in vitro and in
vivo. Thus, activation of A2A receptors was necessary for CB1 receptor signaling in a human
neuroblastoma cell line and blockade of A2A receptors significantly decreased the motor
depressant effects of the central administration of a synthetic cannabinoid receptor agonist into
the rat dorsal striatum (Carriba et al., 2007). This suggests that the rewarding effects of
cannabinoids might also depend on striatal A2A-CB1 receptor heteromers, since CB1 receptors
localized in the nucleus accumbens seem to be involved in those effects (Gardner, 2005). In
fact, we have obtained preliminary evidence indicating that A2A receptor antagonists can
counteract self-administration of THC or the endocannabinoid anandamide in squirrel
monkeys (Ferré and Goldberg, unpublished). In summary, A2A receptor antagonists can either
potentiate or attenuate the acute behavioral effects of addictive drugs, most likely depending
on the receptor-receptor interactions and A2A receptor heteromers involved.

2.3. Adenosine A2A receptors in the ventral striatum and drug-seeking behavior
But, what about drug-seeking behavior? Although not yet demonstrated for psychostimulants,
we have shown that A2A receptor antagonists, either administered systemically or locally into
the nucleus accumbens, completely eliminate heroin-induced reinstatement in rats addicted to
self-administered heroin (Yao et al., 2006). As mentioned above, cortico-accumbens
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glutamatergic neurotransmission seems to play a key role in drug seeking behaviour (Kalivas
and Volkow, 2005) and the A2A receptors that are included in receptor heteromers localized
pre- and postsynaptically at striatal glutamatergic synapses play an important facilitatory role
of glutamatergic neurotransmission (Ferré et al., 2005, 2007). In fact, we have recently shown
with in vivo experiments that an A2A receptor antagonist or the non-selective adenosine
receptor antagonist caffeine, but not a selective A1 receptor antagonist, completely prevents
striatal protein phosphorylation (ERK1/2 and AMPA receptor phosphorylation) induced by a
strong cortical input (cortical electrical stimulation) (Quiroz et al., 2006). These experiments
involved the dorsal striatum, but ongoing experiments will soon determine if A2A receptor
antagonists can also impair cortico-accumbens glutamatergic neurotransmission and the
involvement of pre- and presynaptic A2A receptors. Another mechanism by which A2A receptor
blockade could prevent drug-seeking behavior is by impairing CB1 receptor function in the
A2A-CB1 receptor heteromer (see above). The rational is that several experimental data suggest
that CB1 receptor antagonists are particularly effective in reducing cue-induced reinstatement
of drug seeking (reviewed in De Vries and Schoffelmeer, 2005).

In addition to blocking cortico-accumbens glutamatergic neurotransmission and interfering
with striatal CB1 receptor signaling, A2A receptor antagonists could be beneficial in advanced
stages of addiction because of the possible involvement of A2A receptors in the pre- and
postsynaptic adaptations of the cortico-accumbens glutamatergic synapses associated with
withdrawal from chronic exposure to addictive drugs (Fig. 1). A consistent biochemical finding
associated with exposure to different addictive drugs is a reduced signaling through Gi/o
protein-coupled receptors (Nestler et al., 1990;Terwilliger et al., 1991;Striplin and Kalivas,
1993;Self et al., 1994;Zhang et al., 2000;Hummel and Unterwald, 2003;Rahman et al.,
2003;Bowers et al., 2004). Recent studies suggest that these drug-induced biochemical
responses involve specific accessory proteins that regulate Gi/o protein-coupled receptors, such
as RGS9-2 and AGS3 (Rahman et al., 2003;Bowers et al., 2004). Regulators of G protein
signaling (RGS) constitute a large family of proteins that potently modulate G proteins by
stimulating the GTPase activity of the Gα subunits, which can thus dampen G protein-mediated
signaling (De Vries et al., 2000;Ross and Wilkie, 2000). RGS9-2 is an RGS family member
highly enriched in the GABAergic enkephalinergic and GABAergic dynorphinergic neurons
with very low expression in the rest of the brain or peripheral tissues (Thomas et al.,
1998;Rahman et al., 2003). RGS9-2 is up-regulated in the dorsal and ventral striatum during
chronic cocaine administration, which decreases D2 receptor-mediated signaling in the
GABAergic enkephalinergic neurons (Rahman et al., 2003) (Fig. 1).

The activator of G protein signaling (AGS) family consists of three functionally distinct groups
(Blumer et al., 2005). AGS3 is particularly enriched in neurons and belongs to Group II, which
has the ability to bind preferentially to Giα and stabilize the GDP-bound conformation of
Giα, thereby dampening the signaling of the receptor through Giα-GTP, while simultaneously
increasing the activity of Gβγ-regulated effectors (Blumer et al., 2005). In primary cultures of
nucleus accumbens neurons, D2, μ-opioid and cannabinoid CB1 receptors associate with Giα3
(Yao et al., 2005, 2006) and AGS3 binds preferentially to Giα3, preventing reassociation with
released βγ subunits. Upon activation of Giα3-coupled receptors, unbound βγ subunits released
in the presence of AGS3 are free to transiently stimulate ACII/IV which can lead to increased
cAMP production and therefore to a paradoxical activation of PKA and the cAMP-dependent
gene expression (Yao et al. 2002, 2003, 2005, 2006). This βγ-mediated activation of adenylyl
cyclase depends on co-stimulation of a Gs-coupled receptor, such as A2A. Thus, activation of
D2, μ-opioid or cannabinoid CB1 receptors synergistically stimulates adenylyl cyclase II and
IV via released Gβγ subunits. Furthermore, synergy between these receptors requires tonic
activation of A2A receptors (Yao et al., 2003, 2006).
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It has recently been shown that withdrawal from repeated treatment with cocaine (self- or non-
self-administered) up-regulates AGS3 in the prefrontal cortex and in the core region of the
nucleus accumbens (Bowers et al., 2004). In rats, knocking down AGS3 expression in the
prefrontal cortex or the nucleus accumbens core (with antisense oligonucleotides) counteracts
reinstatement of cocaine- or heroin-seeking behaviour, respectively (Bowers et al., 2004; Yao
et al., 2005). Therefore, upregulation of AGS3, with the consequent dampening of Giα3
signaling while simultaneously promoting βγ-dependent signaling of Gs-coupled receptors,
such as D1 in the prefrontal cortex or in the nucleus accumbens (as suggested by Bowers et al.,
2004), or A2A in the nucleus accumbens (as suggested in the present review), can be an
important mechanism responsible for the pathophysiologic changes in cortico-accumbens
glutamatergic function associated with different addictive drugs (Fig. 1). Upregulation of
AGS3 associated with the withdrawal of addictive drugs most probably leads to a predominant
signaling of A2A receptors over D2 receptors in the A2A-D2 receptor heteromer and to a
paradoxic βγ-mediated synergistic A2A-D2 receptor interaction in the ventral GABAergic
enkephalinergic neuron. At the presynaptic level upregulation of AGS3 probably leads to a
predominant signaling of A2A receptors over A1 receptors in the A1-A2A receptor heteromer
(or over other Gi-coupled receptors, such as group II and III metabotropic glutamate receptors,
as suggested by Kalivas and Volkow, 2005) in the cortico-accumbens glutamatergic terminals.

Thus, A2A receptor antagonists, although they can potentiate the acute effects of
psychostimulants, could be useful in the treatment of drug addiction and relapse during drug
withdrawal. This hypothesis might seem at odds with the results of several reports that indicate
that caffeine can reinstate or prevent the extinction of cocaine-seeking behaviour (Worley et
al., 1994; Schenk et al., 1996; Self et al., 1996; Kuzmin et al., 1999; Green and Schenk,
2002; Weerts and Griffiths, 2003). However, these effects of caffeine appear to be due to A1
rather than A2A receptor blockade (Kuzmin et al., 1999; Green and Schenk, 2002, Solinas et
al, 2002, 2005; Karcz-Kubicha et al., 2003; Quarta et al., 2004 Quarta et al., 2005; Antoniou
et al., 2005). Thus, caffeine and selective A1 receptor antagonists have many behavioral,
subjective and biochemical similarities to other psychostimulants, including their ability to
induce dopamine release in the nucleus accumbens (Solinas et al, 2002, 2005; Karcz-Kubicha
et al., 2003; Quarta et al., 2004a, 2004b; Antoniou et al., 2005). Nevertheless, we should
distinguish between acute and chronic caffeine treatment. We recently demonstrated that A1
receptor antagonism plays a key role in the acute motor-activating, discriminative stimulus and
dopamine-releasing effects of systemically administered caffeine in rats (Solinas et al, 2002,
2005; Karcz-Kubicha et al., 2003; Quarta et al., 2004a, 2004b; Antoniou et al., 2005). However,
the A1 receptor antagonistic effects disappear with chronic treatment with caffeine, while
A2A receptor antagonistic effects remain (Karcz-Kubicha et al., 2003; Quarta et al., 2004a).
Thus, although acute caffeine use can enhance the effects of addictive drugs, chronic caffeine
use could be beneficial to avoid relapse. Although more preclinical work needs to be done,
particularly using different reinstatement paradigms to study different addictive drugs, the
current literature suggests that A2A receptor antagonists could be clinically useful to treat
relapse whereas A1 antagonists may be contraindicated.

3. Adenosine A2A receptors in hypothalamus. Implications for sleep
regulation
3.1. Adenosine and its role in sleep

The concept of humoral, rather than neural, regulation of sleep dates as far back as almost 100
years ago when Kuniomi Ishimori and Henri Piéron demonstrated the presence of some
endogenous sleep-promoting substance(s) that accumulated in the cerebrospinal fluid (CSF)
of sleep-deprived dogs (Kubota, 1989). More than 30 so-called endogenous sleep substances
in the brain, CSF, urine, and other organs and tissues of animals have been reported since then
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by numerous investigators. For example, delta-sleep-inducing peptide, muramyl peptides,
uridine, oxidized glutathione, vitamin B12, prostaglandin (PG) D2 and adenosine have been
identified as endogenous somnogenic substances (Inoué, 1989; Hayaishi, 1991; Basheer et al.,
2004). Among these compounds, PGD2 and adenosine are the most plausible candidates for
endogenous sleep-promoting substances.

PGD2 is the most potent endogenous sleep substance and adenosine has been proposed to be
involved in the somnogenic effect of PGD2 (Hayaishi et al., 2004; Hayaishi and Urade,
2007). PGD2 is produced as a major PG in the brain of various mammals including humans
by lipocalin-type PGD synthase (L-PGDS; Qu et al, 2006), which is dominantly present in the
arachnoid membrane surrounding the brain, the choroid plexus in the ventricles, and
oligodendrocytes in the brain parenchyma (Beuckmann et al., 2000). From its sites of synthesis,
it is secreted into the CSF and bound to DP receptors (Qu et al, 2006), which are also present
in the arachnoid membrane yet limited to that of the rostral basal forebrain (Mizoguchi et al.,
2001). The binding of PGD2 to DP receptors on the meninges is followed by an increase in the
extracellular concentration of adenosine (Mizoguchi et al., 2001), which transfers the
somnogenic signal from the meningeal membrane into the brain parenchyma including the
sleep and wake centers in the hypothalamus (Scammell et al., 1998; 2001).

Adenosine has been considered to be an endogenous sleep substance based on experimental
evidence obtained from a variety of pharmacological and behavioral studies. For example,
adenosine and its stable analogues are known to induce sleep when administered to rats, cats,
and other experimental animals (Basheer et al., 2004). The concentration of extracellular
adenosine increases in the cortex and basal forebrain during sleep deprivation of cats and
decreases during the recovery period after sleep deprivation (Pokka-Heiskanen et al., 2000).
Because energy restoration is one of the functions of sleep, adenosine is proposed to be
produced as a terminal product of energy metabolism and to act as a homeostatic regulator of
energy in the brain during sleep. Caffeine inhibits sleep by acting as an adenosine antagonist
(Fredholm et al., 1999), as described later in detail.

3.2. Adenosine A1 and A2A receptors in sleep regulation
Increased evidences indicate that A2A receptors play a crucial role in the sleep promoting effect
of both PGD2 and adenosine (Huang et al., 2007). PGD2-induced sleep is inhibited by
pretreatment of rats with the A2A receptor antagonist, KF17837 (Satoh et al., 1996). A2A
receptor agonists, such as CGS 21680 and APEC, induce non-rapid eye movement (NREM)
sleep when infused into the PGD2-sensitive zone of the basal forebrain of rats during the night
(Satoh et al., 1998). On the other hand, A1 receptor agonists, such as CPA, are ineffective.
However, previous results suggested that A1 receptors are involved in sleep regulation by
inhibiting ascending cholinergic neurons of the basal forebrain (Porkka-Heiskanen et al.,
2000).

When CGS 21680 or CPA are infused into the lateral ventricle of wild-type mice, CGS 21680
induces both NREM and REM sleep in a dose- and time-dependent manner, while CPA does
not affect their sleep-wake patterns (Urade et al., 2003). A high concentration of CPA slightly
increases NREM sleep of wild-type mice. However, CPA-induced sleep was not observed in
A2A receptor knockout mice, suggesting that the effect of high concentration of CPA is due to
its loss of selectivity for A1 receptors. Thus, although the subtype of adenosine receptor
responsible for sleep regulation is still a matter of debate (Basheer et al., 2004), these results
strongly suggest a predominant role of A2A receptors in sleep regulation.
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3.3. Activation of hypothalamic sleep center in adenosine A2A agonist-induced sleep
There are two important nuclei related to sleep-wake regulation in the hypothalamus, one is
ventrolateral preoptic (VLPO) area, a sleep center, and the other is the histaminergic
tuberomammillary nucleus (TMN), a wake center. To determine which neuronal groups
respond to adenosine, especially to A2A receptor agonists, Fos-immunoreactivity was
examined (Satoh et al., 1999; Scammell et al., 2001). When the A2A receptor agonist CGS
21680 was infused for 2 h into the subarachnoid space of the ventral surface of the rat basal
forebrain, a marked increase in the number of Fos-positive cells was observed in the VLPO of
the anterior hypothalamusr, concomitant with the induction of NREM sleep. In contrast, the
number of Fos-positive neurons decreased markedly in the histaminergic TMN of the posterior
hypothalamus. Using Fos-immunoreactivity, Sherin et al. (1996) showed a discrete cluster of
neurons in the VLPO play a critical role in the generation of sleep. The VLPO is known to
send specific inhibitory GABAergic and galaninergic efferents to the TMN, which nucleus
contains the ascending histaminergic arousal system. These VLPO neurons may directly induce
NREM sleep or send inhibitory signals to the TMN to down-regulate the wake neurons. Thus,
the sleep-wake cycle is proposed to be regulated by a flip-flop mechanism involving the
interaction between these two centers (Hayaishi and Huang, 2004; Saper et al., 2005).

CGS 21680 was recently demonstrated to inhibit histamine release in both the frontal cortex
and medial preoptic area in a dose-dependent manner, and to increase GABA release
specifically in the TMN but not in the frontal cortex (Hong et al., 2005). Furthermore, CGS
21680-induced inhibition of histamine release was antagonized by perfusion of the TMN with
a GABAA antagonist, picrotoxin, suggesting that the A2A receptor agonist induces sleep by
increasing GABA release in the TMN and, therefore, inhibiting the histaminergic arousal
system. These results provide further evidence to support the original idea of a flip-flop
mechanism by which sleep is promoted by up-regulating the activity of the sleep neurons in
the VLPO and, at the same time, down-regulating the activity of the wake neurons in the TMN
(Saper et al., 2001, Hayaishi et al., 2004).

Disinhibition of VLPO sleep-active neurons through presynaptic reduction of GABA release
by adenosine was suggested by the intracellular recording of VLPO neurons in vitro (Morairty
et al., 2004). More recent experiments using intracellular recording of VLPO neurons in rat
brain slices demonstrated the existence of two distinct types of VLPO neurons, type-1 and
type-2, in terms of their responses to serotonin and adenosine (Gallopin et al., 2005). VLPO
neurons are inhibited uniformly by two arousal neurotransmitters, noradrenaline and
acetylcholine, and mostly by the A1 receptor agonist CPA. Serotonin inhibits type-1 neurons
but excites type-2 neurons. The A2A receptor agonist CGS 21680 excites postsynaptically
type-2, but not type-1, neurons. These results suggest that type-2 neurons are involved in the
initiation of sleep and that type-1 neurons contribute to sleep consolidation, since they are
activated only when released from inhibition by arousal systems.

3.4. Sleep-wake regulation in adenosine A1 and A2A receptor knockout mice
The sleep-wake patterns of A1 receptor knockout mice of the inbred C57BL/6 strain generated
by Dr. Fredholm and collaborators (Johansson et al., 2001) and of A2A receptor knockout mice
generated by Dr. Chen and collaborators (Chen et al., 2001) were compared with those of wild-
type mice. Both knockout mice showed clear circadian variations of sleep-stage distribution
during basal conditions, similar to WT mice (Fig. 2). However, A2A receptor knockout mice
showed REM sleep rebound after sleep deprivation but not NREM sleep rebound at all, similar
to L-PGDS knockout mice and DP receptor knockout mice, indicating that the L-PGDS-DP
receptor-A2A receptor system plays a crucial role in the homeostatic regulation of NREM sleep
(Hayaishi et al., 2004). On the other hand, A1 receptor knockout mice showed almost the same
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amounts of NREM and REM sleep rebound after sleep deprivation as those of wild-type mice,
suggesting that A1 receptors are not essential for the homeostatic regulation of NREM sleep.

Caffeine binds to A1 and A2A receptors and acts as a non-selective antagonist and induces
insomnia and wakefulness (Fredholm et al., 1999). We have recently obtained evidence for a
predominant role of A2A receptor in caffeine-induced wakefulness using A1 and A2A receptor
knockout mice. Thus, caffeine increased wakefulness in both wild-type and A1 receptor
knockout mice, but not in A2A receptor knockout mice (Huang et al., 2005). When caffeine is
administered by the intraperitoneal route to wild-type mice (Fig. 2a and 2c) and A1 receptor
knockout mice (Fig. 2d) at a dose of 15 mg/kg, it suppresses both NREM and REM sleep almost
completely for 2 hr after the administration. NREM and REM sleep returned to the normal
levels by 4 hr after the caffeine injection. In contrast, caffeine given to A2A receptor knockout
mice does not change the profiles of NREM and REM sleep (Fig. 2b). Thus, insomnia should
be considered as a possible side effect when considering the application of A2A receptor
antagonists in Parkinson’s disease, drug addiction or pain, which could probably be
counteracted by avoiding evening administration. Also, A2A receptor antagonists could be
considered as a possible treatment for narcolepsy and other sleep-related disorders.

4. Adenosine A2A receptors in nociceptive circuitry. Implications for pain
4.1. Adenosine and its role in pain

In considering the role of the A2A receptor in pain it should first be stressed that the evidence
comes predominantly from experimental animal studies, and thus strictly speaking we are
talking about the role of the A2A receptor in nociception (i.e. a response to a noxious stimulus).
The description of pain requires verbalization and is thus exclusively a human phenomenon.
Nevertheless, there has been clinical use of adenosine in pain and thus some aspects of
adenosine receptor modulation can truly be described as pain modulation. Throughout this
review there will be some synonymous use of the terms pain and nociception and also of
analgesia and antinociception, recognizing that animal models of nociception have led to the
development and clinical use of analgesics for pain conditions.

The endogenous mediator adenosine has complex effects in pain, and can be either
pronociceptive or antinociceptive depending on the site of administration and the receptor
subtype activated (see Sawynok, 1998; Sawynok and Liu, 2003). In addition, as adenosine has
similar nanomolar affinities for both A1 and A2A receptors (see Fredholm et al., 2001b) their
relative contribution to the endogenous role of adenosine in pain processing may be finely
balanced. Also, inevitably ascribing a role to each receptor in the action of adenosine is
dependent on the use of highly subtype-selective receptor ligands or receptor knockout mouse
models.

Most attention has been focused on the effects on pain pathways of adenosine acting via the
A1 receptor. There is ample evidence that activation of spinal A1 receptors results in
antinociceptive effects in a wide range of animal models, including both acute nociceptive tests
and models of neuropathic and inflammatory pain (see Dickenson et al., 2000; Sawynok,
1998). There is debate as to whether A1 receptors on peripheral sensory nerves are pro- or
antinociceptive, as inhibition of PGE2-induced nociception (Aley et al., 1995; Aley and Levine,
1997) and stimulation of sensory afferents (Dowd et al., 1998; Kirkup et al., 1998) has been
reported after A1 receptor activation. Overall, however, the antinociceptive effects of central
A1 receptors dominate and this is confirmed in A1 receptor gene knockout mice, which have
an enhanced response to nociceptive stimuli (Johansson et al., 2001).

In humans, systemic infusion or intrathecal injection of adenosine has been demonstrated to
have long-lasting clinical benefit in patients with neuropathic pain (Belfrage et al., 1995,
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1999) and also after major surgery (Segerdahl, 1997; Segerdahl et al., 1995; Segerdahl and
Sollevi, 1998). It is believed that this is largely A1 receptor mediated. Accordingly most of the
interest in adenosine and pain has related to its A1 effects and the importance of the A2A receptor
and the endogenous role of adenosine at this site has been relatively neglected.

4.2. Pain circuitry and localization of adenosine A2A receptors
The production of pain and its amelioration involves sites in the periphery, the spinal cord and
via ascending and descending pathways to and from the brain. Clearly the localization of any
receptor potentially involved in pain circuitry has a bearing on where any pain modulation
resulting from receptor agonism or antagonism might occur. Both ascending and descending
pain pathways have been well characterized (see Millan, 1999; 2002) and several mid and
hindbrain regions, such as the thalamus, hypothalamus, parabrachial nucleus, pons, superior
colliculus, raphe, periaqueductal grey and locus coreleus, are well established as key relay
structures in pain circuitry. In addition, integration of pain signals involves the somatosensory
cortex and other frontal cortical regions. It might be easy to be dismissive of a central role for
A2A receptors in pain processing as autoradiographic mapping of the receptor with highly
selective ligands in both rat (Johansson et al., 1997; Svenningsson et al., 1999) and mouse
(Bailey et al., 2002; Bailey et al., 2004; Kelly et al., 2004) as well as in humans (Svenningsson
et al., 1997b; Ishiwata et al., 2005) shows predominantly a localization to the dorsal and ventral
striatum, structures with no major recognized role in pain circuitry. However, there is some
evidence that both the dorsal and ventral striatum are directly accessed by nociceptive neurones
(Newman et al., 1996) and that the ventral striatum, like many parts of the limbic system,
modulates pain processing (see Millan, 1999). Using immunohistochemical techniques, most
of the receptor expression is also seen in the basal ganglia (Rosin et al., 1998). However, it
should be stressed that A2A receptors are found at relatively low levels in somatosensory cortex
(Johansson et al., 1997; Kelly et al., 2004) and their presence in the cortex has been confirmed
by western blotting (Lopes et al., 2004), and thus a potential role of A2A receptors in the central
integration of pain cannot be completely ignored.

Early studies suggested that A2 as well as A1 receptors were present in the dorsal spinal cord
of the rat (Choca et al., 1987). However, the A2A receptor gene does not appear to be expressed
in the spinal cord (Kaelin-Lang et al., 1998) and autoradiographic techniques with selective
A2A receptor ligands, at concentrations well above KD values, confirm the absence of spinal
cord receptor binding (Bailey et al., 2002). Despite this evidence, recent immunohistochemistry
studies coupled with functional electrophysiology have shown responses to the A2A selective
agonist CGS 21680 in spinal cord (Brooke et al., 2004) and it has been proposed that these
receptors are located on presynaptic inhibitory terminals of descending fibers from higher
centers (Brooke et al., 2004). Thus, as for the central nervous system, the possibility of spinal
effects of A2A receptor activation cannot be completely excluded.

The A2A receptor gene is expressed in the dorsal root ganglion (Kaelin-Lang et al., 1998) and
this had led to the suggestion that there is retrograde transport of the receptor to the peripheral
terminals in sensory nerve fibres. Added to this the effects of pharmacological modulation (see
4.3) at sensory nerve sites, the primary site of A2A receptor modulation of pain is most likely
to be at peripheral nerve terminals (Sawynok, 1998).

4.3. Pharmacological studies with adenosine A2A receptor agonists and antagonists (Table
1)

Much of the pharmacological evidence for A2 receptor involvement in nociception comes from
studies using pharmacological tools with limited selectivity over the A1 receptor. Because the
A1 receptor has potent effects on nociception at peripheral, spinal and supraspinal sites, it is
highly likely that many of these studies are confounded by lack of selectivity for the A2A
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receptor of the compounds used. Nonetheless, studies with A2A receptor agonists have shown
antinociceptive effects in some, but not all, nociceptive tests. For example, CGS 21680 is
antinociceptive in the writhing test, a visceral pain model (Bastia et al., 2002), an effect reversed
by the A2A receptor antagonist, SCH 58261. Antinociception in the writhing test is also
observed with the A2A receptor agonist DPMA (Pechlivanova and Georgiev, 2002). CGS
21680 has also been shown to induce antinociception in thermal tests after intrathecal
administration (Suh et al., 1997) and also in inflammatory (Poon and Sawynok, 1998) and
neuropathic models (Lee and Yaksh, 1996). Some of these studies represent high dose
pharmacology and raise the issue of possible activation of the A1 receptor, and several did not
benefit from reversal by selective A2A receptor antagonists that are available now.

Local administration of formalin into the hindpaw activates both C- and Aδ fibers, results in
peripheral release of adenosine (Liu et al., 2001) and produces licking, biting and flinching
behaviours indicative of pain. In the formalin test CGS 21680 has been shown to be both
antinociceptive (Borghi et al., 2002) and pronociceptive in rats (Doak and Sawynok, 1995) as
is the A2 receptor agonist APEC in mice (Karlsten et al., 1992). A2 receptor agonists are also
pronociceptive in a mechanical paw pressure test in the rat (Taiwo and Levine, 1990), though
these early studies used very poorly selective drugs. Added to this, the recent development of
highly selective A2B antagonists shows that these compounds have antinociceptive activity in
the hot-plate test (Abo-Salem et al., 2004) and thus the A2A-A2B selectivity of the
pharmacological tools used in nociceptive studies also needs to be considered alongside their
A1 activity. The literature on A2A receptor agonists is therefore contradictory although
microdialysis studies of the release of adenosine in the hind paw in response to formalin has
led to the proposal that adenosine may act at pronociceptive A2A receptors. (Liu et al., 2000)

Studies with A2A receptor antagonists have been rather more consistent showing
predominantly antinociception, which would accord with a pronociceptive effect of A2A
receptor agonism and also with the hypoalgesia observed in A2A receptor gene knockout mice
(see 4.4). SCH 58261 is antinociceptive in both the writing test (Bastia et al., 2002) and in the
tail flick and hot plate test, two acute thermal pain tests (Godfrey et al., 2006). A less selective
A2A receptor antagonist, DMPX, is not antinociceptive in the writhing test in mice
(Pechlivanova and Georgiev, 2002), but does reverse formalin-induced flinching responses in
the rat (Doak and Sawynok, 1995), again indicative of pronociceptive A2A receptors on
peripheral nerves.

4.4. Adenosine A2A receptor gene knockouts and nociception (Table 1)
Deletion of the A2A receptor gene was first achieved in 1997 and the original behavioural
phenotyping of the A2A receptor knockout mice showed a hypoalgesia in thermal tests of pain
(Ledent et al., 1997). These observations have been extended, and although hypoalgesia is
observed in the tail immersion test and hot-plate test at 55°C (Bailey et al., 2002; Godfrey et
al., 2006) and in the tail immersion test at 53°C (Godfrey et al., 2006) in A2A receptor knockout
mice, at the lower temperature of 52°C nociceptive responses are not altered (Bailey et al.,
2002). In addition, there are no significant differences in nociceptive latencies in the knockout
mice in the tail pressure test (Bailey et al., 2002). Thus, alteration in pain sensitivity from
deletion of the A2A receptor gene is stimulus dependent, both in terms of intensity and modality,
but under some circumstances loss of the A2A receptor leads to reduced pain, suggesting a role
for the receptor in activating pain processing. Other observations support this concept of a tonic
role for the receptor in pain transmission from peripheral sensory nerves to the spinal cord. For
example, A2A receptor knockout mice have greatly reduced NMDA receptor binding in all
laminae and regions of the spinal cord, perhaps because of altered glutamate signaling in C-
fibres (Hussey et al., 2007). In addition, A2A receptor knockout mice have reduced biting and
flinching responses to intraplantar formalin injections in the first phase (0–15min) of the
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formalin test and reduced flinching only in the second phase (15–60min) of the test (Hussey
et al., 2007). As the first phase of the formalin test is recognized to be due to direct stimulation
of peripheral sensory nerves whilst the second phase results from an inflammatory component
and involves more complex pain circuitry (Dickenson and Sullivan, 1987), this data further
implicates A2A receptors on peripheral sensory nerves in pain modulation. The effect on the
second phase also suggests that A2A receptors on inflammatory cells might be of importance
in pain modulation and a well defined regulatory role and a potential therapeutic target has
been suggested (Lappas et al., 2005). In addition, a potential for A2A receptor antagonists in
inflammatory pain is further supported by blockade of both phases of the formalin response
by SCH 58261 (Hussey et al, 2007).

4.5. Adenosine A2A receptors and interactions with opioid nociception
Important interactions between adenosine systems and opioid (μ, δ and κ) receptors in the
central nervous system and spinal cord have long been recognized. In relation to pain, in the
spinal cord there is evidence that a component of the action of morphine is due to the release
of adenosine (Sweeney et al., 1987; Sweeney et al., 1989) and there is also evidence of analgesic
synergy between adenosine and opioid agonists active at the δ and κ but not the μ opioid
receptors (De Lander and Keil II, 1994). Others have shown that the relatively selective A2A
receptor antagonist DMPX administered intrathecally antagonises morphine analgesia after
intracerebroventricular administration, suggesting a spinal A2A receptor involvement in the
supraspinal action of morphine (Suh et al., 1997). The adenosine receptor subtype involved in
the adenosine released by morphine has not been defined though at the spinal level much of
the pharmacology points to a key role for A1 receptors (Montegazza et al., 1984; Reeve and
Dickenson, 1995; Zarrindast and Nikfar, 1994). Several studies have also reported morphine-
induced or enhanced release of adenosine in the brain (Fredholm and Vernet, 1978; Phillis and
Jiang, 1980; Stone, 1981) but much of the behavioural interactions have been focused to
addiction rather than pain. Although central administration of theophylline does not alter
morphine antinociception (De Lander et al., 1992), the adenosine analogue and A1 receptor
agonist L-PIA can potentiate tolerance to the analgesic effect of morphine (Ahlijanian and
Takemori, 1985). There are also a number of studies that show plasticity in both A1 and A2A
receptors in the brain after chronic administration of opioids (Kaplan and Leite-Morris,
1997; Kaplan et al., 1994), and A2A receptor knockout mice show altered expression of the
opioid peptide precursors proenkephalin, prodynorphin (Ledent et al., 1997) and pro-
opiomelanocortin (Jegou et al., 2003) though not opioid receptors (Bailey et al., 2002).
Although A1 receptor knockout mice are hyperalgesic, antinociceptive responses to morphine
after systemic injection are unaffected in the A1 receptor knockout mice which would point to
a lack of involvement of the A1 receptor in morphine’s effect on pain (Johansson et al.,
2001). However, if injected intrathecally, the morphine response is reduced in the A1 receptor
knockout mice implying a spinal interaction (Wu et al., 2005). In addition, it should be noted
that changes in μ opioid receptor expression in the spinal cord in response to formalin injections
in the paw can be counteracted by treatment with either A1 or A2A receptor agonists and thus
both receptors may play a role in spinal responses to opioids (Borghi et al., 2002).

Studies on peripheral mechanisms of pain have pointed to important interactions of adenosine
and opioid systems at sensory nerves. Intradermal co-injections of μ opioid and A1 receptor
agonists with the inflammatory mediator PGE2 show a bi-directional cross-tolerance to
peripheral antinociception, suggesting a common cellular role for the μ opioid and A1 receptors
on primary afferent nociceptors (Aley et al., 1995). Further cross-tolerance and cross-
withdrawal studies have led to the proposal that a μ opioid, α2 adrenergic, A1 receptor complex
mediates antinociception in the periphery (Aley and Levine, 1997). A role for the A2A receptor
on peripheral nerve terminals altering opioid mediated responses has also been suggested
(Bailey et al., 2002). Whilst antinociceptive responses to the μ opioid receptor agonist morphine
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are unaffected in A2A receptor knockout mice, δ opioid receptor-mediated antinocieption is
decreased and κ opioid antinociception is increased. These behavioural effects can be
correlated with parallel changes in spinal opioid receptor expression and suggest that lack of
the A2A receptor at peripheral terminals alters pain processing to the spinal cord resulting in
altered opioid modulation (Bailey et al., 2002).

In conclusion, the evidence points to opioid-adenosine interactions at all levels of pain
processing. At peripheral sites, A1 receptors synergise with MOP receptors, and this is also the
predominant response in the spinal cord. Spinal interactions of the A2A receptor are also evident
for the δ and κ opioid receptors, but not the μ opioid receptor. In the brain, although opioid-
adenosine interactions have been reported for other behaviors their potential co-operative role
in supraspinal nociception is less clear.

4.6. Therapeutic potential of adenosine A2A receptor modulation and pain
Overall the evidence suggests that A1 receptors exert inhibitory effects on nociception at
peripheral and spinal sites whilst the A2A receptor has an opposing role. Our current
understanding suggests that the A2A receptor plays a role in pain processing and that, although
spinal and supraspinal sites cannot be completely ignored, peripheral A2A receptors on sensory
nerves are probably the most important in this regard. Although there is some conflicting
literature on the effects of agonists and antagonists, which may be partly due to the lack of
selectivity of available drugs, the studies in A2A receptor knockout mice and the analgesic
effects of SCH 58261 in inflammatory models, suggest that blockade of the A2A receptor might
have some therapeutic potential in pain states. As there appear to be some differences in the
involvement of the A2A receptor dependent on the intensity and modality of the stimulus, more
detailed studies are needed to determine whether A2A receptor antagonists might have clinical
utility in certain types of pain conditions, in particular where high intensity stimuli are
prevalent.
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AGS  

activator of G protein signaling

Ferré et al. Page 23

Prog Neurobiol. Author manuscript; available in PMC 2008 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



AMPA  
α-amino-3-hydroxy-5-methyl-isoxazole-4-proprionate

APEC  
2-[(2-aminoethylamino)carbonylethyl phenylethylamino]-5’-N-
ethylcarboxamido adenosine

CGS 21680  
2-[p-(2-carboxyethyl)phenethylamino]-5’-N-ethylcarboxamido- adenosine

CSF  
cerebrospinal fluid

DMPX  
3,7-dimethyl-1-propargylxanthine

CPA  
N(6)-cyclopentyladenosine

GABA  
γ-aminobutyric acid

DPMA  
N6-[2-(3,5-dimethoxyphenyl)-2-(2-methylphenyl)ethyl]adenosine. KF17837,
(E)-8-(3,4-dimethoxystyryl)-1,3-dipropyl-7-methylxanthine

L-PIA  
[L(−)N(6)-(2-phenylisopropyl)adenosine]

L-PGDS  
lipocalin-type prostaglandin D synthase

MPTP  
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

NMDA  
N-methyl-D-aspartate

NREM  
non-rapid eye movement

PG  
prostaglandin

PKA  
protein kinase A

REM  
rapid eye movement

RGS  
regulator of G protein signaling

SCH 58261  
[5-amino-7-(2-phenylethyl)-2-(2-furyl)-pyrazolo[4,3-epsilon]-1,2,4-triazolo
[1,5-c]-pyrimidine

TMN  
tuberomammillary nucleus
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VLPO  
ventrolateral preoptic

VTA  
ventral tegmental area
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Figure 1. Scheme of a dendritic spine of the GABAergic enkephalinergic neuron and the A2A
receptor-dependent mechanisms involved in drug addiction
Glutamatergic and dopaminergic inputs usually establish synaptic contact with the head and
the neck of the dendritic spines. In the dendritic spines, A2A receptors (A2AR) are localized in
the perisynaptic ring adjacent to the postsynaptic density, where they form heteromers with
D2. glutamate mGlu5 and cannabinoid CB1 receptors (D2R, mGlu5R and CB1R, respectively).
In the glutamatergic terminals A2A receptors are found intrasynaptically, forming heteromers
with adenosine A1 receptors (A1R). Involvement of A2A receptors in drug-seeking behavior
seems to be related to its modulation of CB1 receptor signaling and its key role in both pre-
and postsynaptic glutamatergic neurotransmission, including neuroadaptations such as
upregulation of specific accessory proteins (RGS9-2 and AGS3) that dampen Gi/o protein-
dependent signaling and promote A2A receptor signaling (see text).
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Figure 2. Time course of changes in NREM and REM sleep after caffeine (15 mg/kg) treatment in
adenosine A2A receptor wild-type (A2AR WT, a) and knockout (A2AR KO, b), and A1 receptor
wild-type (A1R WT, c) and knockout (A1R KO, d) mice
Each circle represents the hourly mean ± s.e.m. (n = 5-7). Open and closed circles stand for
the baseline and experimental day profiles, respectively. The arrows indicate the injection time
(9 a.m.). *, P < 0.05; **. P < 0.01, significantly different from the vehicle, by the paired t-test.
Reprinted by permission from Macmillan Publishers Ltd: Nature Neuroscience, Huang et al.,
2005).

Ferré et al. Page 27

Prog Neurobiol. Author manuscript; available in PMC 2008 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Ferré et al. Page 28

Table 1
Pain responses to modulation of the adenosine A2A receptor

A2A modulation Species, dose and
route

Nociceptive test Effect Reference

A2A agonists
CGS 21680 Mouse, 10 μg i.th. Tail flick Analgesia Suh et al., 1997

Rat, 0.1–10 nmol
i.th.

Carrageenan (2 mg/100 μl) Analgesia Poon and Sawynok,
1998

Rat, 2–40 nmol i.th. Neuropathic spinal ligation Analgesia Lee and Yaksh, 1996
Mouse, 0.015–0.3
mg/kg i.p.

Formalin (5%) Analgesia (early phase) Borghi et al., 2002

Mouse, 0.01–0.1
mg/kg i.p.

Writhing (0.6% acetic acid) Analgesia (not dose related) Bastia et al., 2002

Mouse, 1–10 mg/kg
i.p

Hot plate 52.5°C Hyperalgesia (0.01 mg/kg
only)

Bastia et al., 2002

Rat, 1.5–50 nmol
i.pl.

Formalin (0.5%) Hyperalgesia (1.5 nmol)
Analgesia (50 nmol)

Doak and Sawynok,
1995

DPMA Mouse, 0.1–1 mg/
kg i.p.

Writhing (1% acetic acid) Analgesia (not dose-related) Pechlivanova and
Georgiev, 2002

APEC Mouse, 0.1 μM i.pl. Formalin Hyperalgesia Karlsten et al., 1992
A2A antagonists
SCH 58261 Mouse, 1–10 mg/kg

i.p
Writhing (0.6% acetic acid) Analgesia Bastia et al., 2002

Mouse, 1–10 mg/kg
i.p

Hot plate52.5°C No effect Bastia et al., 2002

Mouse 3 mg/kg i.p. Hot plate 55°C Analgesia Godfrey et al, 2006
Mouse 3 mg/kg i.p. Tail immersion 53°C Analgesia Godfrey et al., 2006

DMPX Mouse, 0.05–1 mg/
kg i.p.

Writhing (1% acetic acid) No effect Pechlivanova and
Georgiev, 2002

Rat, 50 nmol i.pl. Formalin (2.5%) Analgesia Doak and Sawynok,
1995

Mouse, 1–40 μg
i.th.

Tail flick No effect Suh et al, 1997

MSX-3 Mouse 30–100 mg/
kg i.p.

Hot plate 52°C No effect Abo-Salem et al., 2004

A2A gene
knockout

Mouse Hot plate 55°C Hypoalgesia Ledent et al., 1997
Tail flick Hypoalgesia Ledent et al., 1997
Tail immersion 55°C Hypoalgesia Bailey et al., 2002
Tail immersion 53°C Hypoalgesia Godfrey et al., 2006
Tail immersion 52°C No effect Bailey et al., 2002
Tail pressure No effect Bailey et al., 2002
Formalin (5%) Analgesia (flinches and bites,

early phase; flinches only
late phase)

Hussey et al., 2007

i.p. intraperitoneal, i.pl. intraplantar, i.th. intrathecal. CGS 21680, DMPA, APEC, SCH 58261, DMPX, MSX-3
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