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Mutual synchronization by exchange of chemicals is a mechanism for
the emergence of collective dynamics in cellular populations. General
theories exist on the transition to coherence, but no quantitative,
experimental demonstration has been given. Here, we present a
modeling and experimental analysis of cell-density-dependent gly-
colytic oscillations in yeast. We study the disappearance of oscillations
at low cell density and show that this phenomenon occurs synchro-
nously in all cells and not by desynchronization, as previously ex-
pected. This study identifies a general scenario for the emergence of
collective cellular oscillations and suggests a quorum-sensing mech-
anism by which the cell density information is encoded in the
intracellular dynamical state.

collective dynamics � glycolysis � cell synchronization � oscillations �
cell density

Oscillatory behavior characterizes many cellular processes
(1–4). When cellular oscillators interact, the mutual en-

trainment of their rhythms produces an emergent dynamics at
the population level (5, 6). In cases for which this interaction
takes the form of an exchange of signaling molecules through a
homogeneous extracellular medium (2, 6–9), the coupling is
global and its strength depends on the cell density (10, 11). In this
way, cell density is expected to modulate the emergent dynamics.
Collective glycolytic oscillations in yeast cells are a well estab-
lished example of such a system (5, 10). These oscillations are
detected by recording the time trace of the NAD(P)H autofluo-
rescence in starved, anaerobic yeast cell suspensions (see Ma-
terials and Methods) (12–15). As expected, the collective oscil-
lations disappear at cell densities below a threshold value (16),
but the nature of this transition at the cellular level has remained
an open question for 30 years (2, 5, 10, 16, 17).

Synchronization theory provides one possible answer in the
form of the so-called Kuramoto transition to incoherence (6, 18),
where collective oscillations are lost via desynchronization of the
individual oscillators (Fig. 1a). Another possibility is that the
intracellular dynamics depends on population density in such a
way that oscillations are lost within each cell (Fig. 1b). At low cell
densities, these alternatives are equivalent with respect to pop-
ulation-level observations but have very different biological
implications. Density variations have marginal effects on the
intracellular oscillations in the Kuramoto transition to incoher-
ence, whereas in the second case they cause a qualitative change
in the cellular dynamics. We test the validity of the two different
scenarios by combining theoretical results from synchronization
theory with experiments in an open-flow reactor, with which a
steady regime can be kept indefinitely (15). Cell density is our
control parameter. The collective oscillations are characterized
by the amplitude and frequency of the asymptotic dynamics. At
low cell densities, when no spontaneous oscillation is detected,
we analyze the transient dynamics after resonant forcing rather
than instantaneous pulse responses, so as to limit spurious effects
due to the excitation of fast modes (19).

Results
Density-Dependent Dynamics. We observe that the collective dy-
namics is progressively damped and slowed down as cell density is

reduced. The amplitude of sustained collective oscillations de-
creases and vanishes at the critical cell density of 6.3 mg of dry
weight per milliliter, �7 � 108 cells per milliliter (Fig. 2). For
densities below this value, the damping takes the form of an
increased attractiveness of the steady state, as quantified by the
amplitude decay exponent [see SI Fig. 12 in supporting information
(SI) Appendix 1]. The slowing of the dynamics with decreasing cell
density is shown in Fig. 3. The damping is in accordance with ref.
16, but the slowing was an unexpected finding.

Scenarios for Loss of Oscillations. Yeast cell suspensions are mod-
eled as a population of oscillators coupled by the exchange of
metabolites with a homogeneous extracellular medium (Eq. 1 in
Mathematical Model). Theoretical studies reveal that the two
aforementioned alternative scenarios have distinct hallmarks,
which can be compared with the experimental data.

Author contributions: S.D.M., F.d.O., and S.D. designed research; S.D.M., F.d.O., S.D., and
P.G.S. performed research; S.D.M., F.d.O., and S.D. analyzed data; and S.D.M., F.d.O., S.D.,
and P.G.S. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

Abbreviation: Aca, acetaldehyde.

†To whom correspondence should be addressed. E-mail: demonte@biologie.ens.fr.

¶Present address: Topsoe Fuel Cell, Nymøllevej 55, DK-2800 Lyngby, Denmark.

This article contains supporting information online at www.pnas.org/cgi/content/full/
0706089104/DC1.

© 2007 by The National Academy of Sciences of the USA

0 50 100 150 200
time

x

a

0 50 100 150 200
time

x

b

Fig. 1. Two possible explanations for the lack of collective oscillations at low
cell density: simulations of populations with random initial conditions. The
gray lines represent the evolution in time of four oscillators within a popula-
tion (n � 100), and the black line represents the macroscopic observable, the
average over the population. (a) Incoherence. Cells progressively loose their
mutual entrainment, and their average is asymptotically stationary up to
finite-size fluctuations. (b) Dynamic quorum sensing. Cells have a coherent
motion and stop oscillating in synchrony with the medium.
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The desynchronization scenario (Fig. 1a) involves the transi-
tion to an incoherent regime, where the cellular oscillations have
no fixed phase relation with each other (18). Averaged over a
large number of cells (�109 in our reactor), this results in a
macroscopic stationary state. The incoherent regime is charac-
terized by nonexponential relaxation modes at the macroscopic
level (20). If a population is initially in phase, desynchronization
is reached by a progressive phase drift (due to noise or frequency
differences) of the cells, giving rise to an algebraic (i.e., nonex-
ponential) decay of the oscillation amplitude. At low cell den-
sities, we have used external forcing to set the same initial phase
in all cells. When the forcing is stopped, we see no indication of
a nonexponential decay trend (see SI Fig. 11 in SI Appendix 1).
Theory also predicts that collective oscillations are separated
from incoherence by a region of complex (quasiperiodic and
chaotic) collective dynamics (21). In our experiments, no signif-
icant deviation from the purely sinusoidal oscillations has been
detected while approaching the critical cell density (in particular,
no subharmonics were observed in the Fourier spectrum).

The second scenario is a synchronous transition to a steady
state (Fig. 1b); i.e., the steady state is attained both microscop-
ically and at the population level. This happens when the
coupling is sufficiently strong to keep the cells entrained to the
medium at all cell densities so that the dynamics is affected by
the balance between the intracellular and the extracellular
component. The effect of density changes on the synchronous
regime can be assessed by simplifying the population model of
Eq. 1 through the following assumptions: (i) the intracellular
oscillators are identical and confined to a plane in concentration
space, and (ii) the time scale of the diffusive coupling through the
cell membrane is very fast compared with those of the intracel-
lular oscillatory dynamics. We can thus obtain a reduced equa-
tion for the overall dynamics (Eq. 2 in Mathematical Model) and
scaling laws for the experimentally observed variables (Eqs. 3–5
in Mathematical Model). As discussed in Mathematical Model,
numerical simulations show that these laws also remain valid if
the aforementioned assumptions are relaxed.

The observed intracellular oscillations are attributed to the
nonlinearities of the glycolytic module and have the properties
of planar Hopf oscillators (1, 15, 22). The coupling is mediated
by the exchange of acetaldehyde (Aca), a small molecule that
diffuses passively through the cell membrane (19, 23, 24). Aca is
weakly connected to the core metabolic oscillator by affecting
the NAD�/NADH balance (25, 26). It is not a merely slaved
variable, but it has a small component in the oscillation plane. As
a consequence, changes in the extracellular Aca concentration
can affect the intracellular biochemical dynamics. The diffusion
rate of Aca is much faster than the time scale of the intracellular
dynamics (see SI Appendix 1) so that its concentration inside the
cell and in the extracellular medium will equilibrate almost
instantaneously. We thus expect the experimental data to scale
as predicted by the reduced equation (see Mathematical Model).
The measured amplitudes and frequencies of the oscillations
satisfy the scaling laws (Figs. 2 Inset and 3 Inset) and confirm that
the synchronous transition scenario explains the experimental
observations. In such a scenario, cell density affects the intra-
cellular dynamics even if the average chemical concentrations
are unchanged. This conclusion is also supported by a recent
experiment (24), which indicates that a single, noninteracting
yeast cell (corresponding to our limiting case of infinite dilution)
does not show spontaneous glycolytic oscillations under condi-
tions in which dense populations do.

Quantitative Description of Density-Dependent Dynamics. By fitting
the scaling laws of Eqs. 3–5 to the data, we perform a quanti-
tative parameterization of the model (see SI Appendix 1 for
details). The parameters quantify the dynamical features of the
glycolytic module and of the reactor. We have estimated the
natural frequency of the intracellular oscillator �0 � 0.17 s�1

(corresponding to a period T0 � 37 s). This quantity is not
directly measurable, because �0 is the frequency limit for an
infinitely dense suspension. This frequency is rapidly attained as
the cell density is increased from zero. This fact, surprising at
first, is explained by the dependence of the collective dynamics
on an effective cell density (see Mathematical Model) rather than
on the real one. The sensitivity to density changes is controlled
by the rescaling factor c � 800. This value of c indicates that the
coupling direction is almost orthogonal to the oscillation plane,
in line with the previous finding that the synchronizing metab-
olite, Aca, is only weakly coupled to the core oscillator (25, 26).
If all substances were allowed to diffuse instantaneously (or,
equivalently, if there were no cell membranes), c would be equal
to one and the frequency increase with cell density would be less
steep. According to Eq. 3, the oscillation frequency of suspen-
sions of intact cells (c � 800) is �40� that of extracts (c � 1)
for intermediate cell densities (� � 0.025). The coupling via a
metabolite weakly linked to the core oscillator can thus explain

Fig. 2. Amplitude A of the collective glycolytic oscillations as a function of
cell density. The open and filled circles correspond to sustained and damped
oscillations, respectively, of the NAD(P)H fluorescence relative to the mean
fluorescence signal. Cell density is reported as dry weight (dw). The continuous
line is a fit with the reduced model (Eq. 5 in Mathematical Model). (Inset) The
predicted linear relation between A2 and 1/dw. The vertical error bars indicate
the maximum and minimum values observed, and the horizontal error bars
indicate two independent determinations of cell density. See SI Appendix 1
for data analysis.

Fig. 3. Angular frequency � of the self-sustained (open circles) or damped
(filled circles) collective glycolytic oscillations as a function of cell density
measured as dry weight (dw). The continuous line is a fit with the reduced
model (Eq. 3 in Mathematical Model). (Inset) The predicted linear relation
between 1/� and 1/dw. The error bars are as in Fig. 2. See SI Appendix 1 for data
analysis.
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the observation that intact yeast cells oscillate at higher fre-
quencies than extracts of comparable dilutions (10). A further
consequence of rescaling, potentially interesting in an evolution-
ary perspective, is that cell-density sensitivity can be modulated
by changing the identity of substances that cross the membrane,
rather than by a change in the biochemical core of the cellular
oscillator. The other parameters of the reduced model, the
relaxation time constant � � 9.9 min�1 and the linear stability of
the steady state �0 � 0.015 s�1, are in good agreement with
independent biochemical estimates (see SI Appendix 1).

Simulations of a population of oscillators (Eq. 1) with the
experimentally determined parameters reproduce the experimen-
tal measurements of the transient and asymptotic collective dy-
namics (see Fig. 5 and Mathematical Model). They also show that the
synchronous scenario is robust to the presence of a distribution of
natural frequencies, representing the natural variability among the
individual oscillators.

Conclusions
The experimental results are consistent with the scenario where the
intracellular metabolism does not oscillate below a threshold cell
density. The intracellular dynamics are damped by the extracellular
medium, and the oscillations are progressively lost as the extracel-
lular volume increases (Eq. 2). The cell-density information is
coded into the collective behavior and conveyed to the cell by fast
exchange of the diffusing metabolite Aca. This mechanism can be
seen as a dynamic analog to bacterial quorum sensing (27), where
population density is reflected by the dynamical state of the cell,
rather than by the concentration of a signaling molecule.

Besides the prediction and quantification of density-dependent
dynamics in yeast, our general model shows that such density
dependence can occur in any population of oscillators coupled to
an extracellular medium by diffusion, provided that this diffusion is
fast compared with the oscillators’ amplitude and phase dynamics.
This family potentially includes quorum-sensing bacteria with os-
cillating genetic circuits (11, 28), cAMP-secreting amoebae (29), as
well as chemical systems that mimic cellular populations (30, 31).

An important practical implication of our findings is that, when-
ever substances are exchanged with an extracellular medium,
intrinsic oscillatory dynamics are at risk of being damped to a stable
steady state if the experiments are carried out at low cell densities.
Current experimental designs, in particular microscope-assisted

single-cell studies, might thus be inadequate for the observation of
dynamical processes involving cell–cell and cell–environment
interactions.

Mathematical Model
We consider a population of cellular oscillators coupled by diffusion
to a homogeneous extracellular medium. The homogeneity of the
suspension in a stirred reactor introduces a global coupling among
the cells. The time evolution of the system is described by a set of
ordinary differential equations for the vectors xj (indexed by j � 1
. . . N, with N being the total population size) and X, representing
the chemical concentrations in the intracellular and extracellular
compartments, respectively (22):

dxj

dt
� F�xj, pj� � D�xj � X� , j � 1 . . . n

dX
dt

�
�

n � j D�xj � X� � JX.
[1]

The rate equation for the jth cell is composed of the term F(xj,pj)
defining the intracellular dynamics and of a second term accounting
for the diffusion across the membrane. This exchange of metabo-
lites is assumed diffusive and linear. The corresponding first-order
rate constants appear as elements of the diagonal matrix D. We will
focus on the case where D has only one positive element (for the
case of yeast, Aca), chosen large compared with the typical time

Fig. 4. Model of the intracellular oscillator used to simulate the individual
cells of Eq. 1. The plane of oscillations (shaded gray) is spanned by the complex
eigenvectors of the origin, associated with the eigenvalues �0 	 i�0. The stable
perpendicular mode is associated with a third, stable eigenvalue  �fast 


 �0 , quantifying the rate of relaxation toward the plane of oscillations. The
coupling to the external medium takes place along the direction of the
diffusing species (Aca). This direction forms an angle � with the plane of
intracellular oscillations.
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Fig. 5. Numerical simulations of Eq. 1 for a population of n � 100 limit-cycle
oscillators. The parameters are derived from the experimental data or chosen
according to the hypothesis of time-scale separation and fast diffusion. Am-
plitude A (a) and frequency � (b) are plotted against cell density. The exper-
imental data of Figs. 2 and 3 (black circles) and the reduced system (solid line)
are compared with simulations of a population of identical oscillators (gray
dots) and of a population with a mismatch in the frequencies of the individual
oscillators (Gaussian distribution with a relative standard deviation of 15%;
black dots). The parameter values are �0 � 0.17 s�1, �0 � 0.015 s�1, � � 0.16 s�1,
g � �3.8 s�1, � � 87°, �fast � �500 s�1, and daca � 300 s�1. See also Fig. 4 and
Mathematical Model.
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scales of the intracellular oscillations (see SI Appendix 1). The
equations for the concentrations X in the medium are composed of
a transport term (�/N)�j D(xj � X), balancing the fluxes to and from
the cells, and of a relaxation term �JX. The latter accounts for the
inflow and outflow of the reactor and can incorporate chemical
reactions taking place in the extracellular medium. The cell density
parameter � � Vcyt/Vx is the ratio between the total cytosolic and
the extracellular volume.

Reduced Equation and Scaling Laws. If cells are identical and syn-
chronized, the equations for the population reduce to one oscillator
coupled to an external medium. If, in addition, diffusion is infinitely
fast, the concentration of the diffusing species is the same inside the
cell and in the medium. The synchronous regime of Eq. 1 then
follows the reduced equation (see SI Appendix 1):

dz
dt

�
�c

�c � 1
f�z� �

�z
�c � 1

, [2]

where z is a variable in the oscillation plane, the functional
form of f(z) describes the intracellular dynamics in the plane
of oscillations, and the parameter � measures the half-life of an
external perturbation to the steady state. The parameter c
introduces a rescaling of the density. The value of c depends
on the nature of the diffusing metabolite and on its interaction
with the core oscillator. A high value of c indicates weak
interactions. The reduced system Eq. 2 provides an approxi-
mate description of the dynamics of Eq. 1. Its validity also
holds in cases when the simplifying assumptions of separated
time scales and identical oscillators are relaxed, as checked by
numerical simulations. The overall dynamics, described by Eq.
2, results from the competition between the intracellular
oscillatory dynamics and the extracellular relaxation dynamics,
the relative weights of which are controlled by the rescaled
volume ratio �c. By choosing the functional form of a Hopf
limit-cycle oscillator (1, 15, 22) for the intracellular dynamics,
we obtain three simple scaling laws for the density dependence
of the dynamic observables. The frequency � of the self-
sustained or damped oscillations obeys

� �
�c

�c � 1
�0. [3]

The exponent � of the amplitude damping is

� �
�c

�c � 1
�0 �

�

�c � 1
. [4]

The amplitude A of the collective oscillations scales as

A2 �
�

g�c
�

�0

g
. [5]

These scaling laws are compared with the experimental mea-
sures (Figs. 2 and 3; see SI Fig. 12 in SI Appendix 1), and their
fit provides a quantitative parameterization of the model (see SI
Appendix 1).

Numerical Simulations. We use the experimentally determined
parameters along with estimates of the time scale of fast intra-
cellular relaxation dynamics and Aca transport kinetics to sim-
ulate Eq. 1 for a population of n � 100 cells. We describe the

intracellular dynamics with the Hopf normal form (Eq. S4 in SI
Appendix 1) in a plane and with a fast, stable mode perpendicular
to this plane (see Fig. 4). We test the validity of Eq. 2 when the
limiting assumptions used to derive it are relaxed. That is, we
introduce a mismatch in the frequencies of the intracellular
oscillators and an incomplete time scale separation between slow
and fast modes, and we consider large but finite diffusion rules.
Specifically, we have used the simulations to check (i) the
reproducibility of the experimental measurements by a popula-
tion of identical individuals, in particular the fact that the
synchronous solution is stable; (ii) the fact that the reduced
system Eq. 2 describes the macroscopic bifurcation scenario of
the population; and (iii) the robustness of these results with
respect to frequency dispersal among the oscillators.

Fig. 5 shows the comparison of the experimental data with the
bifurcation diagram for the population of identical oscillators, for
the reduced system, and for the population of oscillators with
frequency distribution. In the simulations of both populations, the
transitions to stationarity at low cell densities correspond to syn-
chronous Hopf bifurcations. In other words, the oscillatory behav-
ior is suppressed simultaneously at the population level and for each
individual oscillator. With narrow frequency distributions, the
reduced system captures the behavior of the full system both
qualitatively and quantitatively. When the frequency distribution is
wider, a larger critical cell density is observed, whereas the cell
density dependence of the frequency is almost unchanged.

Another experimentally observed phenomenon, which is repro-
duced by the population simulations, is the small modulations of the
amplitude of the collective oscillations (visible in SI Fig. 8 in SI
Appendix 1), corresponding to a weak deviation from perfectly
sinusoidal shape of the time trace.

Materials and Methods
Measurements of Cellular Dynamics. The yeast cells (Saccharomyces
cerevisiae X2180) were harvested at the diauxic shift, washed,
starved, and kept cold (2–4°C) in a phosphate buffer at pH 6.8
as previously described (32). The glycolytic dynamics was studied
by means of NAD(P)H autofluorescence in a continuous-f low
stirred tank reactor at 25°C as previously described (15). The
specific f low rate (k0 � 0.062 min�1) and the mixed flow
concentrations of glucose ([Glc]0 � 60 mM) and cyanide
([CN�]0 � 5.9 mM) were kept constant throughout the exper-
iments. This maintained glucose concentration sufficiently high
for the glucose transporter to be saturated (15, 33). Hence, the
cellular dynamics was unaffected by the changes in extracellular
glucose concentrations. An additional f low of Aca was used for
resonant forcing at low cell densities (mixed flow forcing am-
plitude of 8 	M), where the cell suspensions do not display
autonomous oscillations. The average mixed flow Aca concen-
tration ([Aca]0 � 0.75 mM) is constant throughout all experi-
ments. To obtain a smooth oscillatory signal with defined
amplitude and phase, the NAD(P)H fluorescence time series are
processed as described in SI Appendix 1.

Additional Methods. Information about cell density determina-
tion, data processing, and the estimation of model parameters
can be found in SI Appendix 1.
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