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Although temporal coding is a frequent topic of neurophysiology
research, trial-to-trial variability in temporal codes is typically
dismissed as noise and thought to play no role in sensory function.
Here, we show that much of this supposed ‘‘noise’’ faithfully
reflects stimulus-related processes carried out in coherent neural
networks. Cortical neurons responded to sensory stimuli by pro-
gressing through sequences of states, identifiable only in exami-
nations of simultaneously recorded ensembles. The specific times
at which ensembles transitioned from state to state varied from
trial to trial, but the state sequences were reliable and stimulus-
specific. Thus, the characterization of ensemble responses in terms
of state sequences captured facets of sensory processing that are
missing from, and obscured in, other analyses. This work provides
evidence that sensory neurons act as parts of a systems-level
dynamic process, the nature of which can best be appreciated
through observation of distributed ensembles.

gustatory � hidden Markov model

The time courses of sensory neural responses are rich with
structure. Taking time into consideration increases the

amount of information that can be extracted from neural codes
(1–5) and changes the nature of that information (6–8). Such
temporal complexity is the natural result of interactions among
neural populations (9–11), a concept recently illustrated in
studies of olfactory antennal lobe responses in insects (12–14).

The behavior of mammalian sensory systems has proven more
difficult to characterize, due in part to the relative complexity of
these networks and of the behaviors and neural activity that they
subtend. Feedback and convergence found in mammalian brains
are extensive and diffuse (15), a fact that contributes to high
trial-to-trial variability of mammalian cortical sensory responses
(16). This variability is usually dismissed as noise, a decision
formalized by the use of across-trial averages such as peristimu-
lus time histograms (PSTHs) (8) and compilations of sequen-
tially recorded neurons (13) to characterize temporal codes.

If the variability in neural responses is not noise, however [if,
for instance, it reflects network processes evolving at different
speeds from trial to trial (17, 18)], then trial-averaging tech-
niques will obscure features of the underlying neural processes.
Recent evidence indirectly suggests that this possibility may be
the case: repeating multineuronal temporal patterns that are not
reflected in PSTHs follow application of sensory stimuli (19, 20)
and precede initiation of motor behaviors (21–23), although the
search algorithms used to identify such patterns are controversial
(24, 25); furthermore, the speed of perceptual identification
itself varies from trial to trial (26, 27) in a manner linked to the
dynamics of network activity (27–30).

Here, we provide direct evidence that trial-to-trial variabil-
ity is a reliable, information-rich part of ensemble sensory
processing in awake rats, by using hidden Markov models
[HMM (31)] to detect coherent rate patterning in populations
of simultaneously recorded neurons. This method, which has
been successfully used to study decision making (32), reveals
that taste processing can be characterized as a progression of
reliably stimulus-specific sequences of ensemble firing rate

states. The specific times at which ensembles transition be-
tween states vary from trial to trial, but the sequences remain
the same. Because trial-specific information is obscured in
across-trial averages, stimuli are identified more successfully
by using state sequences than trial-averaging techniques. This
simple, dynamic characterization of primary sensory activity
captures important facets of sensory codes that are missing
from most classical analyses, suggesting that the variability
between trials represents an important part of the structure of
perceptual processing (33) and that the sense of taste makes
use of true distributed codes (34).

Results
Sensory Responses Are Reliably Characterized as Sequences of En-
semble Firing Rate States. We implanted 32 electrodes into the
gustatory cortex (GC) of four attentive rats (28) and recorded
bilateral ensemble sensory responses in 13 separate sessions (9.3
neurons per session). By standard analysis, 38% of the neurons
were classified as ‘‘taste-responsive’’ (Fig. 1A). Such responses
were typically noisy from trial to trial, however (Fig. 1B). The
coefficient of variation for response magnitudes was 0.76 � 0.59
(average � SD). Even in pairs of trials with similar response
magnitudes, variability was high (Fig. 1C).

When the display was reorganized such that the responses of
all simultaneously recorded neurons were aligned in time (Fig.
2A), coherence in the ensemble firing response to each stimulus
was revealed: the firing rates of several neurons changed simul-
taneously at certain times. HMM confirmed and extended this
characterization, showing that ensembles progressed through a
series of three or four firing rate states (shaded regions of each
panel) across 2.5 sec of poststimulus time. State sequences were
punctuated by brief transitions during which HMM could not
identify a state as most likely (�80% likelihood, denoted by the
lack of shading).

Fig. 2B shows four more trials of each taste delivered in this
session. In every case, the ensemble switched through a sequence
of states, each stable for an order of magnitude longer than
between-state transitions. The timing of the transitions changed
from trial to trial, but the sequence itself was conserved. The
ensemble patterns of firing rates (Fig. 2C) for a subset of states in
each sequence were clearly stimulus-specific (i.e., were significantly
different from all states specified by HMM of other tastes, P � 0.01,
ANOVA interaction term for two-state comparisons).
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To test how well the HMM characterized spike trains across
the 13-ensemble dataset, we performed a post hoc probability
analysis [see supporting information (SI) Methods]. This analysis,
which specifically examined how likely particular spike trains
were to have come from particular rate functions, confirmed that
the HMM fit the data well; across 309 neuron–taste pairs, the
mean log ratio of probabilities comparing fits of HMM and
PSTH with spike trains was 2.44 (�0.77) in favor of HMM, a
highly significant difference (P � 0.001) even though the
smoothed PSTH uses more than twice as many parameters to
describe an average trial than HMM (200 compared with 68).

State-to-state transitions involved the coordinated activity of
many neurons. Fifty-one percent of the neurons in each ensemble
changed their firing rates (P � 0.01 by paired t test comparing firing
rates in pairs of states) at transitions, including similar percentages
of putative interneurons (58%) and pyramidal neurons (49%; see
SI Fig. 5). An implication of this high percentage is that some
neurons involved in state transitions are not recognized as taste-
responsive in across-trial averaging (19, 28).

State Sequences Reflect Coherent Network Processing. To evaluate
further the above characterization of sensory processing, we first
asked whether transitions truly reflected coherent shifts in
neural ensemble rates. We compared the data-derived results
with those calculated on the basis of ideal simulated datasets,
constructed to progress instantaneously from one underlying
state to another. Inhomogenous Poisson spike trains were gen-
erated directly from the HMMs of the datasets but with periods
of uncertainty removed; e.g., for one simulation, neurons fired
at rates specified in Fig. 2C, with changes occurring at the

midpoints of the transitions shown in Fig. 2B (see SI Methods).
Fig. 3 demonstrates that these ideal transitions, which by design
were as fast as could be achieved, were no faster than those in
the actual data (48 � 4 vs. 53 � 3 msec, P � 0.05, t test). Thus,
coherent GC ensembles transition between stable states as
quickly as is theoretically possible.

Further, these rapid transitions are not an artifact of applying
HMM to this kind of dataset; even subtle data perturbations
significantly increase the length of transitions. We constructed
trial-shuffled datasets, in which trials of the responses of each
neuron to a particular taste were randomly swapped with other
trials of the same neuron’s response to the same taste. This
procedure disrupts within-trial coherence in the dataset but
leaves intact all temporal information available in the PSTH. If
the true rate changes are gradual (as they look in PSTHs; see Fig.
2) or unrelated to interneuronal coherence, trial shuffling should
not increase transition durations.

In fact, when HMM is fit to such datasets, state-to-state
transitions are significantly less well defined (Fig. 3); trial-
shuffled data consistently switched from state to state more
slowly (64 � 5 msec) than unshuffled data (P � 0.01). Note that
the difference between the original and trial-shuffled data is
more than twice the size of the difference between the original
and simulated data (which, again, transitions from state to state
as quickly as possible); the small-seeming absolute increase in
transition duration caused by trial-shuffling is, in relative terms,
large. When spike trains were randomly swapped without regard
to taste (taste/trial-shuffling), transition durations increased
further; in fact, transitions become more prominent (742 � 61
msec) than states after this shuffle. Rapid switches between

Fig. 1. Taste responses in GC neurons. (A1) Waveforms representing the average action potential shapes for the 10 neurons (each numbered in bottom right)
of one simultaneously recorded ensemble; x axis, time; y axis, amplitude (�V). (A2) PSTHs of the response of each neuron to the four basic taste stimuli (top);
x axis, time; y axis, firing rate (Hz); dashed vertical line, stimulus onset. (A3) Responses of each neuron to the four tastes, averaged across trials and across 2.5
sec of poststimulus time; color panels are taste-specific by classic analysis (28). (B) (Upper) Raster plots of a neuron response on individual trials (rows). Each tick
mark is an action potential. (Lower) Resultant PSTH; the red dashed line indicates the spontaneous firing rate. (C) Two pairs of trials from B, each matched for
number of action potentials.
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states in a sequence are therefore a true feature of the ensemble
sensory responses and not an artifact of HMM analysis.

State Sequences Are Centrally Generated. It is highly unlikely that
observed state sequences represent either a reflection of oro-
facial behaviors (26, 33) or of reliable taste receptor activation
sequence caused by such behaviors. For one thing, stimulus-
specific state sequences routinely began within the first 200 msec
of the responses, whereas stimulus-specific behaviors do not
emerge until much later (26). Furthermore, analysis of video,
captured simultaneously with ensemble recordings, reveals that
even the time series of nondistinctive oral movements that are
produced during the 1st sec of stimulus processing differ across
trials and are not time-locked to states or state transitions in any
appreciable way (SI Fig. 6; see also refs. 26 and 33). We found
no significant Pearson correlations between behavioral latencies
and the latencies of the first three neural state transitions
(average R2 � 0.15 � 0.04).

As one further test of this possibility, we examined the degree
to which somatomotor neurons account for rate changes at
transitions. Because much of the rat’s oral behavior is rhythmic
(35, 36), the across-session power spectra of neurons with oral
somatomotor receptive fields tend to be strongly modulated at

6–9 Hz (8). Such neurons were plentiful in our ensembles (n �
21), but they were no more likely to be involved in transitions
than were other GC neurons (in fact, 51% of each subsample
changed firing rates between successive states). In summary,
several analyses all fail to show any evidence for any peripheral
sensory or motor explanation for state sequences (8, 37).

State Sequences Provide Information Greater Than That Available in
Averaged Temporal Codes. Fig. 4A shows three trials from the
original dataset (Left, pink label); all three contain the identical
state sequences (the assigned numbers of the states are overlain
on each trial), with trial-specific timing of transitions. Right
columns show that the reliability of the calculated sequence is
lower for trial-shuffled data (blue), lower still for trial/taste-
shuffled data (green), and nonexistent for randomly shuffled
(trial/taste/neuron shuffling) data (orange). Across 13 sessions
(Fig. 4B), the dominant state sequence was observed in 87 � 6%
of normal trials, 80 � 7% of trial-shuffled trials, 63 � 9% in
trial/taste-shuffled trials, and 22 � 7% (i.e., chance) of trial/
taste/neuron-shuffled trials. All shuffled percentages were sig-
nificantly different from the original data (P � 0.05 by paired t
test).

If reliable sequences demonstrate trial specificity of transition

Fig. 2. Coherent state sequences in GC ensembles. (A) Representative single trials of the response of one GC ensemble to each basic taste stimulus (top) reveal
simultaneous changes in firing rates in several neurons. Overlaying the population raster plots (each tick mark is an action potential, and each row is a different
simultaneously recorded neuron; right y axis) is the HMM output: black continuous lines show the likelihood (left y axis) of each state through time (x axis), and
shaded regions are periods during which one particular state (each shade represents specific states, numbered above the panel) exceeds 0.8 likelihood (horizontal
dashed line). In nonshaded periods, no state was dominant. (B) Four more trials of the response of the same ensemble to each taste, showing reliability of state
sequence and trial-to-trial variability of transition time. Numbers within each colored region label the state number. (C) Histograms showing firing rates of each
neuron (open horizontal bars) in each state for each taste. Each box summarizes the states for the above taste, and each shaded panel within each box corresponds
to a state (color-coded as above); the number of the state is listed above. [Scale bars (below each shaded panel): spikes per sec; y axis, neuron (numbered from
1 to 10).]
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timing, then they should transmit stimulus-related information
more cleanly than across-trial averages. We tested this possibility
directly, by using a jackknife cross-validation procedure to

quantify stimulus prediction in single trials. The analysis revealed
that HMM correctly identified stimuli in 64 � 3% of the
individual trials (Fig. 4C), despite the use of as few as five trials
to construct the model. This percentage was only modestly
related to the number of neurons and taste neurons in an
ensemble (SI Fig. 7). Trial shuffling significantly reduced the
percentage of trials that could be correctly identified (59 � 2%,
P � 0.02); both trial/taste and trial/taste/neuron shuffling re-
duced stimulus identification to chance levels (both 28 � 3%).

We also compared directly the predictive efficacy of HMM
with that of more commonly used approaches. First, we evalu-
ated predictions based on jackknifed ensembles of PSTHs, which
proved to be significantly less successful than HMM-based
predictions (54 � 4%, P � 0.01), despite using more parameters
(see SI Methods). Next, we used principal components analysis
(PCA) to classify jackknifed sets of trials by means of automatic
and manual clustering techniques (see Methods) in low-
dimensional space. This technique is the same one used to
describe and classify temporal codes in insect olfactory responses
(13, 38), here restricted to simultaneously recorded ensembles.
Using automatic clustering, we were able to identify successfully
53 � 3% of the trials (Fig. 4C), 11% fewer than HMM (P � 0.01);
discrete clusters were difficult to discern in our sets of simulta-
neously recorded neurons (SI Fig. 8). Even when classification
was optimized by using manually defined clusters, PCA per-
formed significantly worse (54 � 6%, Fig. 4C) than HMM (P �
0.05). The similarity in performance of the unsupervised PCA,
manual PCA, and PSTH analyses likely reflects the fact that all
assume trial-to-trial variability to be noise (38).

Fig. 3. State transitions are rapid in simultaneously recorded neural ensem-
bles. The average duration of transitions between states (�SEM) for the real
data (pink bar) was equivalent to that for simulated data with instantaneously
changing underlying states (light gray bar) and faster than that for both
trial-shuffled (dark gray bar) and trial/taste-shuffled (medium gray bar) data.

*, P � 0.05; **, P � 0.001.

Fig. 4. State sequences predict sensory stimuli better than other techniques. (A) State sequences were more consistent for original (unshuffled) trials than after
trial-shuffling, trial/taste-shuffling, or trial/taste/neuron-shuffling. Shown are three representative trials per dataset; as in Fig. 2, continuous lines represent the
probability of a specific state (y axis), numbers label the dominant states, and the dashed line is 0.8 probability. (B) Across ensembles, the percentage of trials
beginning with the same three-state sequence (y axis) is higher for the original data (pink bar) than for trial-shuffled (blue bar), trial/taste-shuffled (green bar),
or trial/taste/neuron-shuffled data (orange bar). (C) The percentage of trials in which the taste was correctly predicted is higher for the original data (pink bar)
than for trial-shuffled (dark blue bar), trial/taste-shuffled (green bar), or trial/taste/neuron-shuffled data (orange bar). HMM also performed better than
ensembles of PSTHs (gray bar) and better than PCA (light blue bar). *, P � 0.05; **, P � 0.01; ***, P � 0.001, all paired t tests.
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Discussion
GC neurons produce temporally complex sensory responses (8,
28), as do neurons in other systems (1–8). Although sensory
dynamics have been extensively characterized in systems with
highly reliable responses (12), our understanding of inherently
noisy awake mammalian cortical sensory responses (39) has
progressed more slowly. Here, we show that sensory responses
are coherent across ensembles of mammalian cortical neurons,
which respond to tastes with reliable, taste-specific sequences of
relatively stable firing-rate states. The information accessible in
the state sequences is degraded by any shuffling of the data and
thus reflects a genuine network property of sensory responses.
It is unrelated to ongoing sensorimotor sequences and thus
reflects central rather than peripheral mechanisms.

Our work takes its cue from the success of theoretical work
treating neural activity as a function of coherent (40, 41)
underlying states with minimal assumptions. Our results are
consistent with previous findings showing that variability in the
response of one neuron may predict variability in others (4, 19,
42, 43) in a way that carries information efficiently (44, 45) and
with evidence that ensemble rate changes accompany ‘‘up/down’’
states in visual (46) and somatosensory cortex (47). It is clear that
the use of averaged neuronal responses misses perceptually
meaningful interactions between neurons. The slow changes in
firing rate observed in PSTHs (Fig. 1) in fact create a false
impression of taste information accumulating gradually in single
neurons, obscuring the rapid transitions that are cleanly ob-
served in ensemble analysis. Recent modeling efforts have
suggested that transient olfactory dynamics (13) also vary from
trial to trial (17, 18), but here, we provide an empirical demon-
stration that sensory information available in single-trial ensem-
ble codes exceeds that available in across-trial averages (see also
ref. 48).

Although the significant differences between the performance
of HMM and PSTH/PCA classifiers are not large in terms of
absolute numbers (Fig. 4 B and C), this subtlety is to be expected;
PSTHs are used because they do carry a great deal of informa-
tion. The value of the conceptual advance offered here goes far
beyond raw effect size. Coherent ensemble codes take into
account the basic fact that neurons interact within networks,
whereas other characterizations do not. In addition, such codes
offer a plausible synchronization signal whereby an animal might
determine the actual onset times of important stimuli within
constant, ever-varying streams of action potentials; the zero time
point used to construct PSTHs is something that the experi-
menter knows but that the animal does not. Finally, our state-
sequence characterization is consistent in important ways with
the nature of perception itself, which is reliable but variable in
latency from trial to trial.

Coherent state sequences are likely the result of coordinated
action in distributed, massively recursive neural systems (15, 46,
49). As such, they probably do not represent pure ‘‘sensory
codes’’ to be interpreted by downstream ‘‘grandmother neu-
rons.’’ Rather, we suspect that we are observing a process in
which sensory input is being transformed into motor output
through neuron–neuron interactions (perhaps underlain by asyn-
chronous convergence upon GC of inputs from multiple brain
regions; see ref. 15). Single-neuron analyses have suggested that
information in GC taste responses progresses from being sen-
sory- to action-related within the first 1.5 sec after stimulus (8,
28). The three coherent ensemble states that we observe un-
folding across this same period may reflect, in much sharper
relief, explicit temporal multiplexing in sensory responses: rather
than sensory coding, decision making, and motor coding being
handled by separate regions in a spatial hierarchy, the distributed
system may be processing sensory stimuli through a temporal
hierarchy. As such, these data go beyond extant theories of taste

function (15), which propose that the roles of neurons in the
sensory neuroaxis are spatially determined, and beyond theories
of sensory function that dismiss trial-to-trial variability.

Methods
Experimental Preparation. Methods conform to the Brandeis Uni-
versity Institutional Animal Care and Use Committee guide-
lines. Female Long–Evans rats (250–300 g) were anesthetized
and implanted with bilateral GC-drivable microelectrode assem-
blies (16 wires per bundle) and intraoral cannulae (for stimulus
delivery). After recovery, rats were trained to wait patiently in
restraint for 40-�l aliquots of 100 mM NaCl, 100 mM sucrose,
100 mM citric acid, or 1 mM quinine HCl (tastes selected
randomly without replacement).

Electrophysiology. Recordings were amplified (1,000–2,000), fil-
tered (300–800 Hz), and digitized. Single neurons of �3:1 signal-
to-noise ratio were isolated by using a waveform template, aug-
mented with offline cluster cutting software (Plexon, Dallas, TX)
(50). Resultant taste responses are similar to those observed with
sharp 5-M� electrode penetrations (51, 52).

Taste Profile Analysis. A neuron was deemed a taste neuron if it
responded differently to at least one taste than to others (53); the
significance of the difference was established by using ANOVA
and a subsequent post hoc test (Tukey’s HSD, P � 0.01). This is
a relatively conservative measurement: a neuron producing
strong but similar responses to all tastes will not be deemed
taste-responsive.

HMM. HMMs reveal the degree to which data can be described
as reflecting a sequence of stable ‘‘hidden states’’ (41). Trained
on neural ensemble data containing neurons from both left and
right GC (coherent firing rate changes are similar for uni- and
bilateral GC neuron pairs; see ref. 19), the Baum–Welch algo-
rithm (54) returns the set of underlying states, each defined as
a vector of firing rates, one for each neuron, and the probability
of transitioning from any one state to any other. We produced
three- to seven-state solutions for a subset of the data, but
higher-state solutions resembled the four-state solution; added
states occurred only very briefly and once (data not shown).
Hence, we chose five states as our upper limit.

For an extensive description of the procedure, assumptions,
and robustness, see SI Methods.

Comparison of States. ANOVAs were used to compare ensembles
of firing rates between states. States were considered signifi-
cantly different only when the interaction P � 0.01 (which meant
that states were deemed different when the shape of the
neuron � rate distributions differed) and to be the same when
the interaction P value exceeded 0.2. Few P values fell between
0.01 and 0.2. Tukey’s HSD (P � 0.01) revealed which neurons
had different firing rates in each pair of significantly different
states.

Data Shuffling. Three control datasets, each identical in size to the
original dataset, were constructed for each session, by random-
izing the trial ordering within groups of 2.5-sec spike trains. For
trial shuffling, shuffling was done independently on 6–12 trial
sets of the response of each neuron to a specific taste; when this
procedure is applied to each neuron in the ensemble, the
resultant ‘‘trials’’ (e.g., ‘‘trial 1’’ consisting of trial 3 of neuron 1,
trial 5 of neuron 2, trial 1 of neuron 3, etc.) contain no
information specific to simultaneous recordings but leave all
information available in across-trial averages (e.g., PSTH) in-
tact. For trial/taste shuffling, the set of trials encompassing the
responses of a single neuron to all tastes was randomized,
destroying the information in PSTHs but leaving any ‘‘cell-
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specific’’ information intact. For trial/taste/neuron shuffling, an
entire dataset was randomized.

All analyses performed on the original dataset were per-
formed anew on shuffled datasets.

Simulated Datasets. Ideal simulated datasets contained ensembles
of inhomogenous Poisson spike trains generated from the HMM
solutions for the real datasets. Spike trains in these simulations
changed rates coherently at transitions, and periods of uncer-
tainty concerning the dominant underlying state were eliminated
(for more detail, see SI Methods). Subsequent HMMs of these
datasets revealed the lower limit on detectable transition times
for datasets with the same numbers of neurons (at similar firing
rates) to be those empirically recorded.

Prediction of Stimuli in Single Trials with HMM. Using the Baum–
Welch algorithm (11), we determined the likelihood that ‘‘held-
out’’ ensemble spike trains came from each of the four taste
models constructed on n�1 trials. The model that yielded the
highest likelihood for each spike train was chosen as the taste
prediction for that trial. This procedure was repeated such that
each trial was held out once (jackknife cross-validation).

Prediction of Stimuli in Single Trials with PSTH Ensembles. PSTHs
were computed (100-msec bins) for the response of each neuron
to each taste, in n � 1 trials. Euclidean distances between

single-trial responses and the four taste-specific firing rate
models were then computed; the model with the smallest
Euclidean distance was chosen as the taste prediction. The
procedure was repeated such that each trial was held out once
(jackknife).

Prediction of Stimuli in Single Trials with PCA. Single trials were
represented as the time course of an ensemble response. For
each trial, PCA was performed on a vector of length n � b (where
n is the number of neurons in the ensemble and b is the number
of time bins). As shown in ref. 38, bin size � 50 msec, thus, b �
50. The first six principal components (describing 39% of the
variability) were used for clustering and classification on the
basis of examination of scree plots.

We calculated the PCA on n � 1 trials of each taste (see SI
Fig. 8) and then performed both an automated classification of
trial types (k means clustering) and a jackknife cross-validation
on manually determined clustering for each taste. For the latter,
cluster centers were defined as the mean of all used responses to
that taste for that ensemble. Each held-out trial was classified as
belonging to the nearest cluster based on the Euclidean distance
in PC space.
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