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The dynamics and diversity of proliferating cellular populations are
governed by the interplay between the growth and death rates
among the various phenotypes within a colony. In addition, epige-
netic multistability can cause cells to spontaneously switch from one
phenotype to another. By examining a generalized form of the
relative variance of populations and classifying it into intracolony and
cross-colony contributions, we study the origins and consequences of
cellular population variability. We find that the variability can depend
highly on the initial conditions and the constraints placed on the
population by the growth environment. We construct a two-pheno-
type model system and examine, analytically and numerically, its
time-dependent variability in both unbounded and population-lim-
ited growth environments. We find that in unbounded growth
environments the overall variability is strictly governed by the initial
conditions. In contrast, when the overall population is limited by the
environment, the system eventually relaxes to a unique fixed point
regardless of the initial conditions. However, the transient decay to
the fixed point depends highly on initial conditions, and the time scale
over which the variability decays can be very long, depending on the
intrinsic time scales of the system. These results provide insights into
the origins of population variability and suggest mechanisms in which
variability can arise in commonly used experimental approaches.

cellular population diversity � gene noise � phenotyic variation

Cellular populations are rarely collections of homogeneous cell
types, even when the cells share the same genetic makeup.

Differences in cell size, growth rate, and morphology are common
and greatly contribute to the overall variability of the population.
Often, these variations are due to stochastic fluctuations that can
occur at many different scales (1–4). For instance, noise contributes
to the traversal of start and progression of yeast cells into the cell
cycle (5) and can limit the precision of circadian clocks (6).
Furthermore, noise plays an important role in determining the
phenotype of cells that exhibit epigenetic multistability. In such
cases, the same set of genes can lead to drastically different
phenotypic expression depending on the current state of the genes.
Epigenetic multistability has been found to play a role in many gene
networks including metabolic systems (7–9) and bacterial persis-
tence (10–12). Similarly, noise also appears to underlie the emer-
gence of neural precursor cells from an initially homogeneous
population during the development of Drosophila melanogaster
(13), and random fluctuations influence the fates of cells infected
with HIV (14).

Noise occurring at both the genetic and molecular level has been
intensively studied in the past few years (1–3, 15–18), and multiple
sources can contribute to the observed variability (19). Researchers
have classified noise into two general classes: intrinsic noise, which
stems from the low numbers of reactants involved in gene expres-
sion and regulation, and extrinsic noise, which arises from all other
sources such as environmental fluctuations (20, 21). Noise in gene
expression can be propagated through network cascades, and the
corresponding amplitude of the fluctuation (as measured by a
protein concentration, for instance) is affected by the details of the
network (22–26). However, variability at the molecular level is often
not the sole consequence of stochastic fluctuations. Genetic noise
can lead to macroscopic level fluctuations of entire cellular popu-
lations because different types of cells usually have distinct re-
sponses to various environments and will therefore have different

growth rates and survival capabilities (20, 21, 27–29). Additionally,
the switching of individual cells from one epigenetic phenotype to
another can lead to dramatic changes in the overall variability of an
entire population (30). Diversity of cellular populations, as mea-
sured by the overall numbers of specific phenotypes (31–33), is
therefore expected to be affected by the stochasticity inherent to
gene regulation.

In this article, we study the effects of epigenetic multistability on
population diversity. We first introduce a generalized form of the
relative variance (the square of the coefficient of variation), which
is closely related to Simpson’s index (34) and takes into account the
variability both within a single colony and between multiple, distinct
populations. Next, using a two-phenotype community as an exam-
ple, we analytically and numerically investigate the propagation of
the relative variance in different environments. We find that the
variation in a population depends highly on its initial state and
corresponding environments: Different initial conditions result in
permanent differences of variation in unbounded growth environ-
ments, whereas variability arising from initial conditions in growth-
limited environments (such as logistic growth or microfluidic
chemostats) eventually decays away. However, this transient decay
of the variability can occur on time scales that are longer than the
typical duration of many experimental procedures. Furthermore,
the type of growth limitation placed on the population can affect the
final steady-state variability. Therefore, our findings suggest that
care must be taken when designing experiments to measure the
variability of multistable cellular populations. If the transients are
not given a sufficient amount of time to decay or the type of growth
limitation is not taken into account, then conclusions drawn from
such experiments may be faulty.

Results
Generalized Relative Variance. To illustrate the effects of stochas-
ticity on cellular population variability, we examined the simple
two-phenotype community shown in Fig. 1a. Each type of cell can
divide, die, and switch to the other type. We assume that the cells
grow in an idealized microfluidic chemostat-like environment (35)
in which there is a maximum possible number of cells (Nmax, say)
but that the growth rates of the cells are not limited by the overall
population. In such an environment, once the population maximum
is reached, subsequent cellular divisions are still possible, but this
population growth begins to push cells out of the chemostat. To
simulate this, we used a modified version of Gillespie’s algorithm
(36). Each time the total population reached Nmax � 1, one cell
(chosen at random) was taken out of the population. The simula-
tions were run for a finite amount of time, representing six doubling
times of the fastest growing phenotype, which is typical for exper-
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iments performed in microfluidic chemostats. At that time, the
numbers of each type were recorded, and the trial was started anew.
Fig. 1b shows the coefficient of variation (CV) for the number of
each phenotype versus the number of trials averaged for two
different initial conditions. When the initial conditions are such that
there is only one cell of each type present in the system, the CV for
each type is very large when compared with the corresponding CVs
for large starting numbers (100 cells of each type). Also note that
the number of trials necessary for the CV to converge to its true
average is very large. This last point leads us to examine a
generalized form of the relative variance, which measures the
variability of the overall diversity of population and takes cross-
colony variability into account.

For the simple system depicted in Fig. 1, the overall variability
measured arises from the stochastic nature of the growing
system. Even with the same initial conditions, different trials may
lead to drastically different outcomes. For instance, consider the
initial condition in which there is only one cell of each type. Some
random trajectories may lead to the dominance of one pheno-
type or another, or neither may dominate. Snapshots of possible
trajectories with the same initial condition are shown in Fig. 2.

One way to measure the diversity of a cellular population was first
introduced by Simpson (34). For a community with S cellular types
(either genetic or phenotypic) and ni cells for phenotypes i � {1, 2,
. . ., I}, Simpson proposed a ‘‘concentration,’’ �, to measure the
diversity, where � � 1/N2�i�1

S ni
2, and N � �i�1

S ni is the overall
population of the community. Similar quantities have been intro-
duced in the study of spin glass dynamics and in the interpretation
of single-molecule dynamics (37, 38). Quantitatively, Simpson’s
concentration describes the probability that any two randomly
chosen individuals from a community are of the same type.

Therefore, the complement of the concentration, 1 � �, termed the
Simpson index, describes the probability that two randomly picked
individuals are different types of cells. Thus it is a measure of the
population diversity of a particular community. However, the
population for each phenotype can vary from one trial to the next,
and the index proposed by Simpson does not account for this. This
cross-colony variability has long been known to exist in genome
diversity (39), and the effects it has on various measures of
population diversity have been studied (40). Here, we investigate
population variability, taking into account variability between col-
onies by introducing a generalized relative variance [detailed in
supporting information (SI) Text]:

��t� �
�ni

2	 � ��ni	�
2

��ni	�
2 , [1]

where ni � ni(t) is an element of the S-dimensional vector n(t)
and represents the population of phenotypes i at time t; the
bracket operator, �(�)	 
 1/S(�i�1

S )(�), represents averaging
over cell type within a given population; and the bar operator,
(�) 
 �nP(n, t�n0, t0)(�), is the ensemble average over the
population distribution of possible communities. Here,
P(n, t�n0, t0) is the probability that the colony has a population
n at time t, given that it initially started with population n0 at
time t0 � t. Experimentally, one can estimate P(n, t�n0, t0) by
performing multiple trials with the same initial condition.
Theoretically, however, the moments of P(n, t�n0, t0) required
to calculate �(t) can sometimes be calculated analytically,
even if the entire distribution itself cannot.

The relative variance, �(t), is in a convenient form, because it
can be separated into two terms that measure the variability due to
intracolony and cross-colony contributions. In particular, we write

��t� �
�ni

2	 � �ni	
2

��ni	�
2

Ç

 �I

�
�ni	

2 � ��ni	�
2

��ni	�
2

Ç

 �C

. [2]

The first term, �I, the intracolony variance, measures the mean
population variation, averaged over all trials. It is analogous to the
ensemble averaged Simpson concentration and plays a similar role:
It is 0 when the population is evenly distributed among phenotypes,
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Fig. 1. Variability in bistable cellular populations. (a) A two-phenotype
community. Each phenotype (green and red) has its own birth rate (�1, �2) and
death rate (�1, �2). They are able to switch from one phenotype to the other
with the transition rates �12 and �21. (b) Coefficient of variation (CV) versus
sample number. A two-phenotype community (illustrated by a) grows in a
microfluidic chemostat, which can contain a maximum of 200 cells. Green and
red curves are the CVs of phenotype 1 and 2 with the initial state 1:1,
respectively, whereas blue and magenta curves are for the initial state
100:100. Here, �1 � 1.0, �2 � 0.5, �1 � �2 � 0.01, and �12 � �21 � 0.01. Time is
in units corresponding to the number of deterministic generations of the
fastest growing phenotype. Each trial was simulated for six generations of the
faster growing phenotype (t � [0,6]).
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Fig. 2. An illustration of the ensemble population diversity. The initial state
1:1 is the same for each set of snapshots. Here, the colors represent distinct
phenotypes. Cells grow, divide, and die according to the dynamics shown in
Fig. 1. Four snapshots are taken at specific times for each trial.
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increases with the unevenness of population distribution, and
reaches its maximum when the entire population belongs to a single
phenotype [note that this is the opposite of the definition of species
diversity (34)]. The second term, �C, termed the cross-colony
variance, measures the population variation among colonies. It goes
to 0 when the overall population is the same from colony to colony
and becomes large when the variation in population size is large
among colonies. These two variances have some analogy to the
notations of intrinsic and extrinsic contributions to the noise in gene
expression (19). Here ‘‘intrinsic’’ refers to the intracolony variance,
whereas ‘‘extrinsic’’ refers to cross-colony variance. The generalized
relative variance is simply related to Simpson’s index when we
neglect population dispersion, i.e., when the distribution of popu-
lation size is a �-function. In such cases, �C � 0 and �I � (�ni

2	 �
�ni	2)/�ni	2 � S� � 1, where � is the Simpson concentration (34).

Unbounded Growth Environments. To examine the dynamics of the
generalized relative variance in more detail, we study the variability
of our simple model in two different environmental settings. We
first investigate the variation of populations growing in an ideal case
in which there are no constraints on nutrition or space. We use the
two-phenotype community as an example to explore the variation
as shown in Fig. 1. The population dynamics can be described by the
following master equation:

�

�t
P�n1, n2, t� � �1n1

�P�n1
�, n2, t� � �1n1

�P�n1
�, n2, t�

� �2n2
�P�n1, n2

�, t� � �2n2
�P�n1, n2

�, t�

� �12n2
�P�n1

�, n2
�, t� � �21n1

�P�n1
�, n2

�, t�

� ���1 � �1 � �21�n1 � ��2 � �2

� �12�n2P�n1, n2, t�, [3]

where �i and �i are the rates of birth and death for phenotype i
respectively, �ij is the transition rate from type j to type i, and
ni

� � ni � 1 for i � {1, 2}.
As it turns out, the expression for the relative variance, Eq. 1, can

be recast into a function of the first two moments of P(n, t) (see SI
Text). Therefore, it is only necessary to calculate these moments,
instead of P(n, t) itself. In most cases, exact equations describing the
evolution of the first two moments cannot be derived analytically
from the master equation. However, for our simple two-phenotype
model, they can be derived, and they furthermore decouple from all
higher moments. By constructing a vector consisting of the first and
second moments as M(t) � (n�1(t), n�2(t), n1

2(t), n2
2(t), n1n2(t))T, we

may write

d
dt

M� t� � Q�M� t� , [4]

where the matrix Q is given by

Q � �
�1 �12 0 0 0
�21 �2 0 0 0
	1 �12 2�1 0 2�12

�21 	2 0 2�2 2�21

� �21 � �12 �21 �12 �1 � �2

� [5]

and �1 � �1 � �1 � �21, �2 � �2 � �2 � �12, 	1 � �1 � �1 � �21

and 	2 � �2 � �2 � �12.
Exact expressions of the first moments, M(1)(t) � (n�1(t), n�2(t))T,

and second moments, M(2)(t) � (n1
2(t), n2

2(t), n1n2(t))T (detailed in
SI Text) allow us to study the temporal behavior of the relative
variance, which can be expressed as a function of M(t) as

��t� �
M1

�2� � M2
�2� � 2M3

�2�

�M1
�1� � M2

�1��2

�
�M1

�2� � M2
�2� � 2M3

�2�� � �M1
�1� � M2

�1��2

�M1
�1� � M2

�1��2 , [6]

where Mj
(i)(t) is the jth element of the ith moment at time t. This

variation expression is characterized by five exponents, (
, �, 
��,
2
, 2�), where 
 � 1/2(�1 � �2 � �), � � 1/2(�1 � �2 � �), and
� � �(�1 � �2)2 � 4�12�21. The exponent 
 is the largest eigen-
value that asymptotically approaches the Lyapunov exponent for
the deterministic exponential growth of the dynamic systems at the
long-time limit (21).

We also studied the propagation of the population variation in an
unbounded growth environment for different initial states (see SI
Text). The result shows that the population variability depends
highly on the initial conditions. The total variance approaches an
asymptotic value that depends on the initial conditions, even though
the rate constants remain the same. The long-time asymptotic
behavior of the population is dominated by the largest exponent, 2
,
and the individual contributions in that limit are

�I
� �

�C1 � F1�0��K11 � K21 � 2K31�

�1
2�1 �

s2 � s1 � �

2t12
�2

�C
� �

�C1 � F1�0��K11 � K21 � 2K31�

�1
2�1 �

s2 � s1 � �

2t12
�2 � 1,

[7]

where the detailed expressions of C1, F1(0), and Kij are given in
the SI Text.

Fig. 3 explicitly shows the effects of the initial states of a cell
population on the long-time limit of the relative variance. Fig. 3 Left
illustrates the dependence of the variance on its initial population.
From bottom to top, the four surfaces correspond to cross-colony
(�C), deterministic (�lim), intracolony (�I), and overall popula-
tion variance (�). Here, the variance �lim was calculated from the
corresponding mass action (mean-field) dynamics. This relative
variance, �lim, is not 0, even though there exists no stochasticity in
the equations. The reason is that our definition of the variance
requires only that the numbers of each phenotype differ for there
to be a nonzero variability. Fig. 3 Right shows a cross-section of the
individual contributions to the variability along the diagonal. As
shown in both Fig. 3 Left and Fig. 3 Right, smaller initial populations
result in larger final population variations. As the size of the initial
population increases, the asymptotic value of the overall variance
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Fig. 3. Asymptotic (t3�) relative variance with respect to different initial
distributions. (Left) The four surfaces correspond to cross-colony, determinis-
tic, intracolony, and total population variance, from bottom to top, respec-
tively. (Right) A cross-section of the variation indices along the line n1 (0) � n2

(0). The asymptotic variance differs from the deterministic prediction but
approaches it when the initial numbers of cells are large. Initial phenotypes
are assumed to be �-distributed, and parameters are the same as those in
Fig. 1b.
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decreases, limiting to the deterministic result, which is independent
of the initial conditions. The dependence of the overall variance on
the initial population is analogous to the variability seen in gene
regulatory networks. In those systems, the small numbers of mol-
ecules gives rise to variability in the concentrations of each reactant.
The magnitude of this type of variability depends highly on the total
number of molecules—small numbers lead to high variability,
whereas large numbers lead to low variability (41). Such history-
dependent variability has been shown to exist experimentally by
Fukami and Morin (42), who studied the diversity of growing
aquatic microbial communities with various histories. Fukami (43)
later showed that smaller ecosystems resulted in greater diversity,
just as our simple model predicts.

To test our analytical results, we performed numerical simu-
lations (Fig. 1a) using the Gillespie algorithm (36). We averaged
105 trials for each of several different initial conditions. The
results show that both the ensemble averaged means and vari-
ances of each phenotype agree well with those from analytical
solutions. Fig. 4 is a direct illustration of population variability
with sample trajectories. It is clearly shown that a community
with a small initial population has large variability that persists
indefinitely. Communities with larger initial populations have
less population variability. To better understand the physical
meaning of the variability, we also examined a completely
symmetric situation in which the growth, death, and transitions
rates were the same between the two phenotypes (see SI Text).

Bounded Growth Environments: Microfluidic Chemostats and Logistic
Growth. Realistic environments in which cellular populations grow
generally impose limitations on the cells because of finite nutrients
(as in flask cultures or agarose plates) and/or space [as in micro-
environments or microfluidic chips (44)]. These limitations can
have important consequences on the long-time limit of the popu-
lation dynamics, and we now examine two specific realizations of
bounded growth environments: an idealized microfluidic chemo-
stat model and a logistic growth model.

Ideally, growth in microfluidic chemostats will have an endless
supply of nutrients but a capped population. Once the overall

population has filled the chemostat, new growth pushes older cells
outside the boundaries of the chemostat, where they are flushed
away. On average, this means that for every cell grown above the
maximum, one cell will be randomly taken out of the population.

To examine the effects of this type of limited population growth,
we performed numerical simulations using the modified version of
the Gillespie algorithm. Fig. 5 a and b shows typical trajectories
from these simulations for populations with the initial conditions
(n1 (0), n2 (0)) � (1, 1) and (100, 100), respectively. Trajectories
from different runs are represented by different colors. Now, the
variance reaches a unique long-time limit, independent of the initial
conditions. However, the transient variability still depends highly on
the initial conditions and can persist for many generations. Also,
depending on the initial population size, the transient variability can
become quite large, especially when the initial population is small.
When the initial population is near the maximum allowed by the
chemostat (Nmax � 1,000, here) the transient variability is much
smaller.

Fig. 5c shows the dynamics of intracolony, cross-colony, and
overall variances in microfluidic chemostat environments. All of the
relative variances starting from different initial states converge to
the same asymptotic values. Moreover, cross-colony variations go to
0. This is consistent with the previous statement that cross-colony
variation goes to 0 when the population is the same from colony to
colony because the overall populations here are constrained to be
identical in chemostat environments.

For the relative variance of the chemostat environment, asymp-
totic expressions for both t3 0 and t3 � can be calculated, and
match well with simulations. For instance, the steady-state (t3 �)
distribution for the number of type 1 can be written as

P�n1� �

	
i�1

n1 
�12�Nmax � � i � 1� � �1� i � 1�� 1 �
i � 1
Nmax

�
�21i � �2i� 1 �

i
Nmax

�  P�0� ,

[8]

where P(0) is a constant determined by normalization. From this,
and a similar expression for P(n2), one can then derive a theoretical
estimate of the overall relative variance (see SI Text for details).

For short times, and particularly when the overall population is
still much smaller than Nmax, the population variability is very close
to the variability that would occur for the same colony under
unbounded growth conditions, as shown in Fig. 5d. Also shown are
the long-time limits of the intracolony and cross-colony contribu-
tions (Fig. 5d, dashed lines). Initially the variations for the chemo-
stat and the unbounded growth environment are identical, because
the initial population in the chemostat is small and the population
cap is not a factor. Once the chemostat culture has had time to grow,
however, the population maximum begins to affect the dynamics,
and the variability diverges from those in the unbounded growth
environment. Finally, the variance of the chemostat population
converges onto its steady-state value.

For populations of cells that are limited in their overall popula-
tion maximum (because of either nutrient or spatial limitations),
the final variability will eventually converge to a steady-state value.
However, the value of the final variability will depend on the type
of limitation placed upon the population. To illustrate this point, we
examined the same population of cells as above but now in a logistic
growth environment (45). In other words, we make the substitution
�i 3 �i

0[1 � (n1 � n2)/Nequ] for the growth rates, where �i
0 is the

maximum growth rate of phenotype i, and Nequ is the overall
population maximum. As we show in Fig. 5 e–h, the resulting logistic
growth variability is drastically different from that found in mi-
crofluidic chemostats. Although the transient variability (i.e., when
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Fig. 4. Simulation of cellular population dynamics. The upper left, upper
right, lower left and lower right images correspond to different initial con-
ditions [(n1 (0),n2 (0)) � (1, 1), (1, 10), (10, 1), and (100, 100)]. In each image, the
black bold solid and bold broken lines are the mean numbers of phenotypes
1 and 2 from analytical solutions. Each pair of a solid line and a broken line
with same color are the two trajectories of phenotypes 1 and 2, respectively,
from a single simulation. There are 14 pairs of trajectories shown in each
image.
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n1 � n2 �� Nequ) is still governed by the free growth limit, the
asymptotic values of the variability have changed.

This qualitative change in the asymptotic behavior of the vari-
ability can be understood by examining the dynamics of the system
once the population has reached the maximum. In the chemostat
environment, the overall population size ceases to increase, but the
cells themselves can still grow and divide (resulting in random cell
loss). This means that the final variability will depend on both the
growth and transition rates. In contrast, the logistic growth envi-
ronment essentially stops growth altogether once the population
has reached its maximum. There will still be some growth that
occurs to replace dying cells, but to first order this can be ignored
(see SI Text). Therefore, the asymptotic variability in the logistic
case will be determined only by the transition rates. In the case that
the transition rates are symmetric (i.e., �12 � �21) the population will
consist of Nequ/2 cells of each phenotype, meaning that the intra-
colony variability will go to 0 (as shown in Fig. 5 g and h).

Conclusions and Discussions
Using a two-phenotype community as a generic example, we
examined the propagation of population variations in different
environments and with different initial conditions. We found that
the initial state can greatly affect the overall variability of a
population, especially in unbounded growth environments. In gen-
eral, we found that the dependence of the relative variance on the
initial conditions persists indefinitely. When there exists a con-
straint on the overall number of cells, such as in microfluidic
chemostats and logistic growth environments, we found that the
overall variance converges to a unique fixed point, regardless of the
initial conditions.

Although any conceivable experimental situation must have
some limitations on the growth of cells, the transient variability
induced by the initial conditions can still play a major role.
Depending on the transition rates between phenotypes, the decay
time of the transient can be much longer than the rate of population

growth. This means that it is possible to have, for instance, a
chemostat that has become completely filled with cells yet has not
reached equilibrium in terms of its diversity. One may have to wait
an extremely long time for the steady state to be reached, and this
might not be practical.

These issues are particularly important when dealing with cellular
populations in microfluidic devices. Although many of these de-
vices are designed to work as chemostats, clogging and cellular
crowding are still common, and it is rare that healthy cellular growth
continues once the chamber has been filled. For this reason, it is
often preferable for experimenters to begin with just a few cells
(even as few as one), to maximize the amount of time available for
imaging. Therefore, the transient variability can be quite large in
these situations. Furthermore, because most experimental trials
using microfluidic devices end once the chamber has been filled, the
diversity of the population may never equilibrate. Therefore, care
must be taken when designing experiments to measure cellular
diversity so that the initial condition dependence of the variability
is taken into account.

To further complicate matters, the dynamics of the system at the
population maximum can have a large affect on the measured
variability. Depending on how much growth occurs at the popula-
tion maximum (to replace cells that have either died or been washed
away), the variability will change. As mentioned above, experiments
run in microfluidic devices tend to overgrow the imaging chamber,
even when they are designed to expel excess cells. In this situation,
the dynamics of the population may be a mixture of our idealized
chemostat and logistic growth environments—meaning that the
true growth characteristics of the population at its maximum will be
very complicated. Therefore, it may be preferable to start experi-
ments from an initial population of one cell, even though such
colonies have a large transient variability (see SI Text). If colonies
started from single cells can be grown for a sufficient amount of
time before the growth limitations begin to take effect, the mea-
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Fig. 5. Relative variances in chemostat and logistic environments. (a and b) Typical trajectories of cell populations obtained from Gillespie simulations. In a,
the initial state is n1 (0) � n2 (0) � 1, and in b, it is n1 (0) � n2 (0) � 100. The different colors of the curves represent trajectories from different runs. The maximum
population here is 1,000, and other parameters are the same as those in Fig. 1b. (c) The relative variances converge in chemostat environments. Green, magenta,
and black sets of curves correspond to intracolony, cross-colony, and overall variances, for different initial conditions [from top to bottom: (n1 (0),n2 (0) � (1, 1),
(3, 3), (10, 10), and (100, 100)]. After a transients decay, the cross-colony variance goes to 0, whereas the intracolony variance asymptotically approaches a fixed
point, regardless of initial condition. (d) Comparison of the relative variances in chemostat environments to those in unbounded growth environments. The solid
curves were from direct simulation of the system in Fig. 1b using the modified version of Gillespie’s algorithm for chemostat-like environments. The dotted lines
are the short time (t 0) limit predicted from the unbounded growth environment, and the dashed lines are the theoretically predicted long-time limits. The
corresponding results of the logistic growth are displayed in e–h. The coloring and the symbol scheme of the lines have the exactly same setup as those of the
chemostat case. Parameters are chosen: �1

0 � 1.0, �2
0 � 0.5, �12 � �21 � 0.01, �1

0 � �2 � 0.01, 1 � 2 � 1.0, and Nequ � 10,000. Again, the dynamics of the cell
numbers are shown in e and f, whereas the variances are shown in g and h for initial conditions (1, 1) and (100, 100), respectively.
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sured variability will be independent of the type of growth
limitation.

Materials and Methods
The stochastic simulations in this study were performed with the
Gillespie algorithm (36) and consisted of the six events shown in Eq.
2, where G and R represent the two different phenotypes (green and
red in Fig. 1).

GO¡
�1

2G GO¡
�1

A

RO¡
�2

2R RO¡
�2

A [9]

GO¡
�21

R RO¡
�12

G.

For simulations involving unbounded growth environments, the
populations were allowed to change freely. Simulations of popula-

tions in idealized chemostat environments were subjected to a
maximum population constraint, limiting the total number of cells
to Nmax. These simulations were run in the same manner as the
unbounded-growth environment simulations, except that each time
the total number of cells reached Nmax � 1, a single cell was
removed from the population. The type of cell removed was chosen
randomly, with the probability of a cell of type i being removed
given by ni/¥ini, where ni is the number of cells of type i. Simulations
of populations in logistic environments were performed in the same
manner as the unbounded growth environments except that growth
rates depended on present populations, i.e., growth rates can be
expressed by �i � �i

0 (1 � ¥iini/Nequ), where �i
0 and i are the

corresponding rate and relative weight, and Nequ is the overall
equilibrium population. Growth rates therefore are updated in the
simulation once the populations change. Simulations for each initial
condition were performed 105 times, and the populations of each
type were recorded after each trial. The various measures of
variability (CV and relative variance) were calculated according to
their definitions.
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