Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1992 Oct;1(10):1377–1386. doi: 10.1002/pro.5560011017

Total chemical synthesis, characterization, and immunological properties of an MHC class I model using the TASP concept for protein de novo design.

G Tuchscherer 1, C Servis 1, G Corradin 1, U Blum 1, J Rivier 1, M Mutter 1
PMCID: PMC2142092  PMID: 1303755

Abstract

The design, total chemical synthesis, and immunological properties of a four-alpha-helix bundle template-assembled synthetic protein (TASP) mimicking some of the structural features of the major histocompatibility complex (MHC) class I is described. In a first approach, the native sequence 58-74 of the alpha 1 heavy chain domain of HLA-A2 was modeled in order to increase helix stability and amphiphilicity of the 17-mer peptide, preserving the residues for potential T-cell receptor (TcR) binding properties. According to the TASP concept, these helical segments were covalently attached to a cyclic template molecule designed for the induction of a four-helix-bundle topology of the assembled peptide blocks. After extensive HPLC purification, stepwise solid-phase synthesis resulted in a TASP molecule of high chemical purity as demonstrated by analytical HPLC, mass spectrometry, and amino acid analysis. CD spectroscopic investigations are consistent with the onset of a partial alpha-helical conformation in aqueous buffer as well as in TFE. Antibodies raised directly against this four-alpha-helix bundle TASP molecule (without prior conjugation to a carrier molecule) were detected by ELISA. Flow cytometry studies showed that these antibodies recognize the native MHC class I molecule on the surface of HLA-A2-positive cells. The results indicate that the TASP approach represents a versatile tool for mimicking conformational epitopes.

Full Text

The Full Text of this article is available as a PDF (970.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander J., Payne J. A., Murray R., Frelinger J. A., Cresswell P. Differential transport requirements of HLA and H-2 class I glycoproteins. Immunogenetics. 1989;29(6):380–388. doi: 10.1007/BF00375866. [DOI] [PubMed] [Google Scholar]
  2. Bjorkman P. J., Saper M. A., Samraoui B., Bennett W. S., Strominger J. L., Wiley D. C. Structure of the human class I histocompatibility antigen, HLA-A2. Nature. 1987 Oct 8;329(6139):506–512. doi: 10.1038/329506a0. [DOI] [PubMed] [Google Scholar]
  3. Bjorkman P. J., Saper M. A., Samraoui B., Bennett W. S., Strominger J. L., Wiley D. C. The foreign antigen binding site and T cell recognition regions of class I histocompatibility antigens. Nature. 1987 Oct 8;329(6139):512–518. doi: 10.1038/329512a0. [DOI] [PubMed] [Google Scholar]
  4. Corradin G., Etlinger H. M., Chiller J. M. Lymphocyte specificity to protein antigens. I. Characterization of the antigen-induced in vitro T cell-dependent proliferative response with lymph node cells from primed mice. J Immunol. 1977 Sep;119(3):1048–1053. [PubMed] [Google Scholar]
  5. Demotz S., Lanzavecchia A., Eisel U., Niemann H., Widmann C., Corradin G. Delineation of several DR-restricted tetanus toxin T cell epitopes. J Immunol. 1989 Jan 15;142(2):394–402. [PubMed] [Google Scholar]
  6. Garrett T. P., Saper M. A., Bjorkman P. J., Strominger J. L., Wiley D. C. Specificity pockets for the side chains of peptide antigens in HLA-Aw68. Nature. 1989 Dec 7;342(6250):692–696. doi: 10.1038/342692a0. [DOI] [PubMed] [Google Scholar]
  7. Hahn K. W., Klis W. A., Stewart J. M. Design and synthesis of a peptide having chymotrypsin-like esterase activity. Science. 1990 Jun 22;248(4962):1544–1547. doi: 10.1126/science.2360048. [DOI] [PubMed] [Google Scholar]
  8. Kaumaya P. T., Berndt K. D., Heidorn D. B., Trewhella J., Kezdy F. J., Goldberg E. Synthesis and biophysical characterization of engineered topographic immunogenic determinants with alpha alpha topology. Biochemistry. 1990 Jan 9;29(1):13–23. doi: 10.1021/bi00453a002. [DOI] [PubMed] [Google Scholar]
  9. Kaumaya P. T., VanBuskirk A. M., Goldberg E., Pierce S. K. Design and immunological properties of topographic immunogenic determinants of a protein antigen (LDH-C4) as vaccines. J Biol Chem. 1992 Mar 25;267(9):6338–6346. [PubMed] [Google Scholar]
  10. Madden D. R., Gorga J. C., Strominger J. L., Wiley D. C. The structure of HLA-B27 reveals nonamer self-peptides bound in an extended conformation. Nature. 1991 Sep 26;353(6342):321–325. doi: 10.1038/353321a0. [DOI] [PubMed] [Google Scholar]
  11. McMichael A. J., Parham P., Rust N., Brodsky F. A monoclonal antibody that recognizes an antigenic determinant shared by HLA A2 and B17. Hum Immunol. 1980 Sep;1(2):121–129. doi: 10.1016/0198-8859(80)90099-3. [DOI] [PubMed] [Google Scholar]
  12. Milich D. R. Synthetic T and B cell recognition sites: implications for vaccine development. Adv Immunol. 1989;45:195–282. doi: 10.1016/s0065-2776(08)60694-x. [DOI] [PubMed] [Google Scholar]
  13. Mitchison N. A. The carrier effect in the secondary response to hapten-protein conjugates. I. Measurement of the effect with transferred cells and objections to the local environment hypothesis. Eur J Immunol. 1971 Jan;1(1):10–17. doi: 10.1002/eji.1830010103. [DOI] [PubMed] [Google Scholar]
  14. Montal M., Montal M. S., Tomich J. M. Synporins--synthetic proteins that emulate the pore structure of biological ionic channels. Proc Natl Acad Sci U S A. 1990 Sep;87(18):6929–6933. doi: 10.1073/pnas.87.18.6929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mutter M., Hersperger R., Gubernator K., Müller K. The construction of new proteins: V. A template-assembled synthetic protein (TASP) containing both a 4-helix bundle and beta-barrel-like structure. Proteins. 1989;5(1):13–21. doi: 10.1002/prot.340050104. [DOI] [PubMed] [Google Scholar]
  16. Mutter M. Nature's rules and chemist's tools: a way for creating novel proteins. Trends Biochem Sci. 1988 Jul;13(7):260–265. doi: 10.1016/0968-0004(88)90159-4. [DOI] [PubMed] [Google Scholar]
  17. Regan L., DeGrado W. F. Characterization of a helical protein designed from first principles. Science. 1988 Aug 19;241(4868):976–978. doi: 10.1126/science.3043666. [DOI] [PubMed] [Google Scholar]
  18. Richardson J. S., Richardson D. C. The de novo design of protein structures. Trends Biochem Sci. 1989 Jul;14(7):304–309. doi: 10.1016/0968-0004(89)90070-4. [DOI] [PubMed] [Google Scholar]
  19. Sasaki T., Kaiser E. T. Synthesis and structural stability of helichrome as an artificial hemeproteins. Biopolymers. 1990 Jan;29(1):79–88. doi: 10.1002/bip.360290112. [DOI] [PubMed] [Google Scholar]
  20. Schiffer M., Edmundson A. B. Use of helical wheels to represent the structures of proteins and to identify segments with helical potential. Biophys J. 1967 Mar;7(2):121–135. doi: 10.1016/S0006-3495(67)86579-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Shimojo N., Maloy W. L., Anderson R. W., Biddison W. E., Coligan J. E. Specificity of peptide binding by the HLA-A2.1 molecule. J Immunol. 1989 Nov 1;143(9):2939–2947. [PubMed] [Google Scholar]
  22. Tam J. P. Synthetic peptide vaccine design: synthesis and properties of a high-density multiple antigenic peptide system. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5409–5413. doi: 10.1073/pnas.85.15.5409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Walker L. E., Ketler T. A., Houghten R. A., Schulz G., Chersi A., Reisfeld R. A. Human major histocompatibility complex class I antigens: residues 61-83 of the HLA-B7 heavy chain specify an alloreactive site. Proc Natl Acad Sci U S A. 1985 Jan;82(2):539–542. doi: 10.1073/pnas.82.2.539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ways J. P., Rothbard J. B., Parham P. Amino acid residues 56 to 69 of HLA-A2 specify an antigenic determinant shared by HLA-A2 and HLA-B17. J Immunol. 1986 Jul 1;137(1):217–222. [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES