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Abstract 

A method of optimally superimposing n coordinate sets on each other by rigid body transformations, which  min- 
imizes the sum of all n ( n  - 1)/2 pairwise residuals, is presented. In the solution phase the work load is approxi- 
mately linear on n,  is independent of the size of the structures, is independent  of their initial orientations, and 
terminates in one cycle if n = 2 or if the coordinate sets are exactly superposable, and otherwise takes  a number 
of cycles dependent  only on genuine shape differences. Enantiomorphism, if present, is detected, in  which case 
the  option exists to reverse or not to reverse the chirality of relevant coordinate sets. The method also offers  a 
rational  approach to the problem of multiple minima and has successfully identified four distinct minima in such 
a case. Source code, which  is arranged to enable the study of the disposition of domains in multidomain  struc- 
tures, is available from  the  author. 
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With  the  development  of  NMR and molecular  dynamics 
techniques it  is becoming increasingly common  to wish to 
compare  a  number  of  actual or putative  structures by su- 
perimposing  their  coordinates using rigid-body transfor- 
mations  (translation  and  strain-free  rotation)  and  to 
measure  the  root  mean  square (rms) coordinate  differ- 
ences that  result. 

The superposition of one  structure on one  other is a 
problem to which many  solutions have been offered, such 
as  those of McLachlan (1972, 1979, 1982), Kabsch (1976, 
1978), Diamond (1976, 1988), Lesk (1986), and Kearsley 
(1989), but  the  optimal  superposition  of ensembles of 
structures  has  only recently received similar attention. 
The  situation is complicated by the  fact  that if structure 
A is superimposed on  structure C, and  structure B is su- 
perimposed on structure C, then,  in  general,  structure  A 
is not  optimally  superimposed on  structure B. In these 
circumstances  the  superposition  of  A on B is only opti- 
mal if two  of  the  three  structures  are identical  in  shape. 

If the  sum of the  squares of the  coordinate differences 
between  A and B is designated EaB, and if it is wished 
t o  compare n structures  by  superposition,  there  are 
n (n - 1 )/2 interactions such as EAB, and  the method de- 
scribed  in  this  paper  minimizes the  sum  of all of these  in 
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a process that  (apart  from  initialization) is of order n, 
rather  than n2, and places all n structures on  an exactly 
equivalent  footing, except that  the first  structure  has  the 
most  influence on  the  orientation of the  entire ensemble 
after all relationships within the ensemble are determined. 

No “average”  structure of any kind is involved at  any 
stage.  Average  structures are best avoided  because  two 
identical  structures  in  different  orientations  have  an av- 
erage  structure  that is not exactly superposable on either. 

The  method  proposed here allows each  structure to be 
optimally  superimposed on all other  structures  in  the  en- 
semble, even if they are  no longer  in  their  original  orien- 
tations, using a one-step  method which does  not  require 
reference to  the  coordinates except in  the initialization 
phase.  Iteration is only  required to cycle over the various 
structures,  bringing  each  in  turn to its best relationship 
with  all ( n  - 1)  others in the ensemble  simultaneously. 

The alternative  approach of reorienting all n structures 
simultaneously  has been adopted by Kearsley (1990). His 
method entails an optimization  in 4n dimensions,  for 
which the Hessian  matrix, H, may  be large. The objec- 
tive  function is not a quadratic  function  of  the  un- 
knowns, so that  iteration is a feature of his method  also, 
as  many  as 50 cycles being required  in  some cases.  Like 
the  method described  below,  it uses unit  vectors  in four 
dimensions  (quarternions) to define  the  rotations,  but 
their  unit  character is only  maintained by the  application 
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of a penalty  function.  In  contrast,  the  method described 
here uses no matrices larger than 4 x 4 (although their to- 
tal  storage  requirements are  the  same  as  for H), the vari- 
ables  involved  are  intrinsically  normalized,  and, in 
current experience, convergence has always been achieved 
within nine cycles  even in the most adverse circumstances. 

More  recently, Shapiro et al. (1992) have  developed  a 
method  comparable to  the present one in that it adjusts 
one  orientation  at a time  in an iterative  fashion,  but 
working with 3 x 3 orthogonal matrices as  independent 
variables.  They  also  address the  question  of  the unique- 
ness  of the  solution  obtained  and show that  the minimum 
residual  reached by their  method is so close to  the  theo- 
retical limit that it is almost  certain  that no minimum ex- 
ists that is lower than  the minimum  found.  This  question 
of uniqueness is also  addressed in the Multiple  solutions 
and  the global  minimum  section  in  this  paper, wherein a 
means of characterizing the  problem  and of locating  al- 
ternative  solutions is offered. As is typical of techniques 
using 3 x 3 orthogonal  matrices, matrices with negative 
determinants  may  arise  in  some  circumstances,  and  spe- 
cial attention is required to ensure  that  unwanted rever- 
sals of chirality do not  occur. By contrast,  the  method 
described below is immune to these  effects  because the 
structure of the matrices involved ensures that negative 
determinants  can never arise. 

Theory 

The  treatment is based on a four-dimensional  column 
vector 

in which I ,  m, and n are  the direction cosines of an axis 
of rotation,  and 8 is an angle through which a rotation 
is being made.  The sign convention  for 8 is such that, 
when viewed along  the  rotation axis from  the origin to- 
ward the  point lmn, an object is rotated clockwise for 
positive 0 for a fixed right-handed  axial  system.  It is evi- 
dent  that a p vector completely specifies a rotation,  and 
it provides  a very much more  powerful  means of dealing 
with combinations of rotations  and with the  interactions, 
E, than does  the  more  conventional  representation of ro- 
tations in  terms of the 3 x 3 orthogonal matrices which 
effect coordinate  transformations. 

p is always  a  unit  vector  in the sense that 

p T p  = h2 + p 2  + v 2  + u2 = 1 ,  (2) 

and it also  has  the  property 

p " -  P7 (3) 

where the equivalence sign is used to express the  fact  that 
p and - p  give rise to  the  same  orientation. They  may be 
thought of as generating  rotations through angles 6' and 
6' - 2a, respectively, i.e.,  to represent the  short  and  the 
long way round  to a new orientation. p ,  the inverse of p,  
is given by negating 8, 

-h 

p =  1 _ 1 ,  

and  an inversion operation I may be defined by 

in which I is the 3 x 3 identity  (and  later,  also, the 4 x 4 
identity)  in  terms  of which 

p = Ip, (6) 

and by Equation 3 it  follows that 

The vector p may also be expanded into  a 4 x 4 matrix, 
written [ p ]  , defined by 

Such  matrices have a  number of important  properties, 
among  them  that 

i.e., [ p ]  is orthogonal,  and 

so that  the  transpose of [ p ]  relates to the inverse rotation, 
as is the case with the  more familiar  coordinate  transfor- 
mations. [ p ]  always  has a positive  determinant. 

In  an earlier  paper  (Diamond, 1988) it  was shown that 
if rotation 1 is followed by rotation 2, then  the p vector 
corresponding to  the  product  rotation is given by 
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in which h is a three-dimensional vector consisting of the 
first  three  components  of p. This is equivalent to 

and since 

in which po is the identity rotation given by 

l o l '  
C'J 

it follows that 

which, for n rotations  compounded, generalizes to  

(which is Equation 46 of Diamond [ 19881, wherein the sym- 
bol T was used for [p]).  Equation 15 says that  the  prod- 
uct rotation vector, p,  is the  fourth  column  of  the matrix 
product [p2] [p l ] .  Evaluation of this product shows it to 
be  structured  in  the  same way as  Equation 8, so that we 
may  generalize Equation 16 to  

Diamond (1988) showed that  the weighted sum  of 
squares  of  coordinate  differences between a vector set X 
and a rotated vector set R x ,  is given by 

in which Eo is the  value  associated with X and  the  unro- 
tated x, i.e., for R = I, P is a real symmetric  4 x 4 ma- 
trix  bilinear on X and  on x, and p is the  rotation vector 
specifying the  rotation effected by the  orthogonal 3 X 3 
matrix R. The  importance of this  equation is that it pro- 
vides an analytical  link  between E and  any  rotation  one 
may wish to specify, and gives  access to  the value of E be- 
fore  any  coordinates  are  transformed.  In  particular, it is 
clear that E is minimized if p is the  top eigenvector of P. 
Equation 18 holds whatever choice of origin is made,  but 

the lowest E values arise if each  structure is referred to 
its  centroid  as  origin. 

In  the  context of the present work Equation 18  will  be 
generalized to  

for  the  pair of structures A and B, pA is the  rotation  to 
be  applied to  structure A and P A B  is as defined in Dia- 
mond (1988), XA corresponding to x and XB to X. As 
pointed  out in Diamond (1988), interchanging x and X 
negates the last  row and last  column of P, i.e., 

in  terms of which E A B  may  alternatively  be written 

so that P B A  may  be used to control  the  rotation  of B 
onto A in  the  same way that P A B  may control  the  rota- 
tion of A onto B. 

Suppose  that  structure A  has  already  been  rotated by 
pA and it is required to  find  a rotation pB that will opti- 
mally rotate  the  unrotated B structure  onto  the rotated A 
structure,  then  the  rotation pB of  structure B, followed 
by the  rotation PA of  both  structures,  would  rotate  the 
unrotated B structure  onto  the  unrotated A  structure. 
Therefore  in these circumstances [jA]pB must be the  top 
eigenvector  of P B A ,  i.e., we require to  maximize 

and pB must therefore be the  top eigenvector of 

Thus it  is possible to direct  the  orientation of structure B 
to fit  structure A, even if structure A is not in  its  origi- 
nal  orientation, still without  referring to the  coordinates. 

In  order to minimize E,,, (=EA E,,, EAB) it is worth 
noting that, in the case  of  three  structures, if A is first  ro- 
tated to minimize E A B  + E A C ,  then  the  rotated  structure 
A is in  some sense intermediate  between B and C. If B is 
then  rotated  to  minimize EBA + E B C ,  structure B will 
then be intermediate between the  rotated A and  the  unro- 
tated C. If A, B, and C initially have widely differing  ori- 
entations,  then  this process condenses the  orientations to 
closely similar  ones more slowly than if each structure is 
superimposed on a chosen member of the ensemble on the 
first cycle, with each being optimally  superimposed on all 
others  simultaneously in  second and  subsequent cycles. 

An optimization  algorithm  for an ensemble,  having 
this characteristic, is illustrated below for  the case of four 
structures;  its  generalization to larger  numbers being ob- 
vious. We begin by calculating  all n ( n  - 1 ) /2 matrices 
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PAB and  their  complements PBA, this  being the  only 
stage  at which the  coordinates need to  be  consulted. 
These  matrices are themselves arranged in an  array: 

We begin by finding  the  four eigenvalues of PZI using 
the  methods of Householder (Wilkinson, 1960) and  Ortega 
(1960) coded by D.W. Matula. These are designated pl 
to p4 in descending order,  and we evaluate 

in which Emin is the  minimum residual attainable in  ro- 
tating  structure 2 onto structure 1 and EAi,, is the mini- 
mum  attainable by rotation  of  structure 2 onto  structure 
1 inverted through  the origin  (Diamond, 1990, Equation 
10). Hence, if the  right-hand  side of Equation 25 is neg- 
ative, an  enantiomorphous relationship has been detected 
between structures 1 and 2. Several options  are  then 
open, such as 

1 .  Disregard the  fact and obtain  the best superposition 

2. Reverse the  hand  of  structure 2 before  proceeding. 
of structures of opposite  hand. 

This  may  be  done by replacing EOl2 by 

(Diamond, 1990) and  then negating every P matrix 
with a 2 in  either  subscript. 

3. Remove  structure 2 from  the ensemble. 

Assuming option 1 or 2 is taken, PZ1 is then solved for 
p2, the  top eigenvector  of P2, ,  using the  method  of 
Wilkinson (1958). All other  structures  must  now recog- 
nize that  structure 2 is a moved  target, so that all  matri- 
ces in the second  column of the  array  of P matrices  must 
now be transformed  according  to expression 23. 

P3I and  then P41 are similarly  processed, after which 
the  array  has become 

At this  stage every structure has been individually ro- 
tated  onto  structure 1 .  If the  structures  are identical ex- 
cept  for  their  initial  orientations  the  problem is now 
solved,  as  may  be revealed by Equation 19 evaluating to 
zero for each interaction with structure 1 .  If shape  differ- 
ences exist among  the  structures,  the  problem is not yet 
solved and  further work is needed,  as follows. 

Each  of  the  transformed  matrices on the  top row of 27 
gives the residual  as  between the  unrotated  structure 1 
and each of the  other  rotated  structures  as a  function of 
any  rotation now to be  applied to structure 1 .  Therefore 
the  rotation  to be applied to  structure 1 to minimize the 
sum of its  residuals with all the  other  rotated  structures 
is the  top eigenvector of I l l  where 

This  generates a p l  by which the first  column of 27 may 
be transformed. 

A new vector p2 is then  formed  as  the top eigenvector 
of 

after which the second  column  of the  array  of P matri- 
ces is replaced. The new p2 vector found  at  this  stage is 
still a rotation  from  the original  orientation  of  structure 
2, to superimpose 2 on all the  other  structures  in  their 
current  orientations.  Hence  the new p2 replaces the old 
p2 and is not  to be concatenated  with  it.  This,  inciden- 
tally, minimizes the  accumulation  of  round-off  error. 

The process of using row  sums to  determine p vectors 
followed by changes to corresponding  columns  may  be 
pursued to convergence, which is normally very rapid. 

The scheme  outlined  above  began by individually op- 
timizing each  structure  against  structure 1 .  It follows that 
when the  top row is processed for  the first  time  there is 
no rotation  of  structure I required,  i.e., 

That this is computationally  the case is a strong check on 
both  the algebra and  the coding. p I  may not be the iden- 
tity on subsequent cycles, however, and would not  be  the 
identity if the  step of rotating  each  structure individually 
onto  structure 1 to begin with were omitted. 

On completion,  the  quantities 

give the  total  squared  errors  as between structure A and 
all other  members of the ensemble and serve to detect 
outliers  of  different  shape. 
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The  corresponding  rotation  matrices, R, by which the 
coordinates  must be transformed  for each structure  are 
then given by 

Note  that  the  determinant of RA is the  square  of  that 
of [PA] I and is therefore  always positive. 

Multiple solutions and the global minimum 

Shapiro  et  al. (1992) have drawn  attention  to  the nonlin- 
ear  character  of  the multiple  superposition  problem  and 
the implication this carries  that  there  may be several min- 
ima of E,, in  the  space of the  rotational variables and they 
have developed a  criterion to establish that  the minimum 
found in  their  process is indeed the  global  minimum. 

In  the present context, it is clear that each EAB is a 
quadratic  function of pA in  which the coefficients are 
themselves quadratic  functions  of  the elements of p ~ ,  
and  that  the converse is also  true.  This means that  the 
minimum of E with respect to  any  one  rotation,  under 
constancy of the  others, is always unique or a continuum, 
but leaves open  the  question of whether  alternative  com- 
binations  of p vectors  may  also  be  stable under  the  opti- 
mizing scheme given above,  because the II matrices that 
have to be  solved are  quadratic  functions of the  current 
orientation  vectors. 

In order  to search  for  alternative  minima,  and to de- 
velop  some  insight into  the  character of the  problem,  the 
approach  adopted here is to change the  combinations  of 
rotations  found  in ways that  alter  the  orientations 
grossly, while at  the  same  time altering E as  little  as pos- 
sible, and  then  to initialize the  iterative  phase of the  op- 
timization to such a situation. 

Consider  again the case of one  structure being rotated 
onto  one  other,  and let the  rotating  structure have  three 
orientations, an initial  orientation,  and  two  others desig- 
nated C; and (, with associated p vectors pg and pr .  Let 
the corresponding P matrix be diagonalized by an orthog- 
onal  matrix A such that 

and let the  columns  of A be  designated a,  . . . a4. Then 
resolve pt and pr onto these  eigenvectors  according to  

then necessarily 

By Equation 17 the  rotation  from  to { is given by 

= [ail [ajI'C;C;j. 

Now suppose  that E is the best superposition, so that 
pE is the  top eigenvector  of P, i.e., tT  = (1,0,0,0), and 
let T T  = (a,@,O,O) then 

; = I  j = l  

(37) 

in which [a l ]   [a l ITis  the  identity,  and [a2]  [allT is a [ . ]  
matrix  having  zeros on  the diagonal,  because ara,  = 0, 
and  therefore  corresponds  to a rotation of 180". Com- 
parison with Equation 8 shows that 

a = cos- 8s-r 
2 

By Equation 18 

Thus,  the  rotation E -+ {corresponds  to a rotation of 
2 arctan(@, CY) away  from  the  orientation of best fit, 
about  an axis that  incurs least penalty,  because p1 - pJ 
is  least  when J = 2. 

It is clear,  therefore,  that widely differing  solutions 
may  be  expected to arise if two or more  of  the matrices 
P A B  have  small  differences between their  first and sec- 
ond eigenvalues. This possibility is illustrated in  Figure 1, 
in which Figure l a  shows three cubes, identical except for 
the labeling of their vertices, which specify which corners 
are  to be  brought  together by superposition.  Cube B has 
its  floor  coinciding  with that  of  A,  but its ceiling is ro- 
tated 180" about  the z axis  relative to  that of A. This 
means  that EAB is independent of any  rotation of cube  A 
or cube B about  the z axis, and  that  the eigenvalues of 
PAB are  equal in  pairs.  Similarly, EAC is independent of 
rotations  about y ,  and E B C  is independent  of a certain 
compound  rotation.  Thus, all three P matrices and their 
complements  are degenerate, but  the fl matrices that arise 
are well conditioned,  two distinct solutions being obtain- 
able,  shown  in  Figure lb,c.  The two  solutions  found  in- 
volve rotating B and C about z and y respectively, two 
combinations  of such  rotations being found  that satisfy 
the  requirements of the BC interaction  also. 

An  algorithm has  been  developed,  based on these ob- 
servations, which is an extension to  the algorithm  de- 
scribed in  the  Theory  section, which is executed  first  in 
any case. During  the processing  of the  first  column,  the 
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& 90" 
I 

A B C 
Fig. 1. a (top row):  Three  structures in their  initial  orientations  for 
which E,,, is 28/2, where /is  the length  of  the  cube  edge. b, c (second, 
third rows): Two distinct optimal  superpositions  for  each of which E,,, 
is 24/2. This  confirms  that  optimal  superpositions  are  not necessarily 
unique.  Both  solutions  are  found  automatically  by  the  algorithm pro- 
posed,  and  a  four-solution  case  has  also  been  solved.  The  numbers  in- 
dicate  which  corners  are  to  be  superimposed  on  which. 

eigenvalue differences p 1  - p2  are recorded for each of 
the matrices PI1 and  sorted  into ascending order.  After 
the process of the  Theory section  has  terminated, it is 
then  reentered and  the processing of the  first  column, 
which initializes the iterative  phase  of the  work, is then 
done using the second eigenvector of selected structures, 
so that  the  iteration begins with  certain  structures  ro- 
tated 180" about their least effective axis relative to struc- 
ture 1. The  software  permits  the user to declare  how 
many  structures, t ,  may  be  turned  in  this way, and lower 
and  upper limits on  the  number  of these that  may be 
turned  simultaneously. The number of such trials is then 
Z y = , t ! / ( ( r !  ( t  - r )  ! ), the t structures  having  smallest 
(pl  - p 2 )  being used.  This approach  finds  both  the so- 
lutions  shown  in  Figure l, and  finds  four distinct solu- 
tions if a fourth  cube is included that is similarly twisted 
about x.  

Whether or not  this process is the best that may  be de- 
vised, it is clear that this  organization of the  problem  in 
terms of P and II matrices  provides  a  convenient  frame- 
work for experimentation with alternatives, for example, 
by using eigenvalues of the final II matrices to select can- 
didates  for reversal, or even exploring the consequences 
of initializing the iterative phase by maximally disturbing 
the system using  third or  fourth eigenvectors. 

The example given here, of course, is highly contrived, 
although it  serves to  illustrate  the  considerations  in- 
volved. The likelihood that  an ensemble of protein  struc- 
tures  may possess more  than  one  stable  minimal 
superposition seems remote,  although  structures  contain- 
ing helices possessing differing  numbers  of  turns  for  the 
same  number of residues would seem to be  candidates. 
Even in those circumstances, however, it  is difficult to see 
how any  third  structure might stabilize two or more min- 
ima, because twists about axes  normal  to  the helix axis 
are  not a realistic possibility. 

Root mean square deviations 

There  are several possible  measures that may  be used to 
measure the closeness of  fit  obtained  in  multiple  super- 
positions.  One  that is commonly used is to  perform 
n ( n  - 1)/2 independent pairwise superpositions  and  to 
evaluate 

for m atoms  and n structures,  each EiB being  deter- 
mined  in  the  absence  of all ( n  - 2 )  other  structures  (i.e., 
by  using P matrices rather  than n). This is necessarily the 
smallest such  measure because EiB is, by definition,  the 
best possible fit of A on B, and  can  therefore only be  de- 
graded if the fit of A on B is compromised by the require- 
ments of the  other  structures,  but it does  not  correspond 
to a superposition,  because  many  different  orientations 
are associated with each  structure. Ro may be  obtained 
in the present  context as 

p l A B  being the  top eigenvalue  of PAB. 
The residual adopted here is 

in which alA is the  top eigenvalue of I I A .  R I  differs  from 
Ro because of the difference between the  sum of the top 
eigenvalues of  matrices, and  the  top eigenvalue of the 
matrix  sum. A large  value of R ,  - Ro may be an indica- 
tion  that  the  minimum  residual, R I ,  found is not  the 
global  minimum, and would suggest that  the  methods of 
the Multiple  solutions  and  the  global  minimum  section 
might  be  invoked.  However,  multiple  minima  can exist 
when I?, = Ro, as  shown  above. 

If an average structure is calculated from  the super- 
posed  structures  then an rms  difference  from  the  mean 
structure is given by 



Multiple  simultaneous  superpositions 1285 

(43) 

No comparable residual derived from Ro can  be given 
because  in that context the  ith  atom of thejth  structure 
does  not  have a  defined  position.  The j t h  structure is 
present  in  many orientations,  an  arbitrary  number of 
which are  unrotated  and  the  remainder  of which are 
matched to  unrotated  structures whose  orientations  are 
themselves arbitrary. 

Multidornain cases 

The  method described  above  has been implemented  in 
software  that permits an  arbitrary number of structures, 
each possessing the  same  arbitrary  number  of  domains, 
to be  superimposed  using  each domain in turn  to  control 
the superposition. The domains  must possess equal  num- 
bers of atoms  from  structure  to  structure (with an  estab- 
lished correspondence)  but with variable  numbers  from 
domain  to  domain. This  generates  a set of p vectors, 
psD, referring to  the  rotation applied to  structure S to 
rotate it from  its initial  orientation to its  superposed one 
when ail  structures  are  superposed by reference to  do- 
main D. 

Any  structure, So, may  be  nominated  as  the  structure 
which, on  output, is to  retain  its  initial  orientation,  the 
rotation vectors delivered being 

(44) 

If So is declared to be  zero  then [pool is set equal to  the 
rotation which rotates  the superposed ensemble (all struc- 
tures,  one  domain)  from  the  orientation given by the su- 
perposing  algorithm  to  an  orientation in  which the 
principal  axes of inertia of the  superposed ensemble are 
aligned on  the axes  of the  coordinate system. Equation 
44 then gives the  individual  orientations  for each of the 
structures on this  principal  axial  system. This axial sys- 
tem is found by including the matrices PAA associated 
with the  diagonal of expression 24 when that  array is es- 
tablished,  because  the  upper left 3 X 3 partition  of each 
PAA is minus  two times the inertia  tensor  for  the  structural 
element A, in its original  orientation.  When  the  superpo- 
sition is completed,  each  inertia  tensor is transformed  in 
accordance with the  rotation  found  for  the relevant struc- 
ture,  the resulting  tensors are  added  together to  give the 
inertia  tensor  for  the  superposed ensemble, and POD is 
then  the  rotation which diagonalizes  this  tensor sum. 
This facility provides for  the  automatic  orientation  of re- 
sults when initial orientations are  random, so that,  for ex- 
ample, if the superposition is based on a selected helix or 
a heme group  as controlling domain,  then setting So = 0 
causes the helix to  align its longest  dimension  along x or 
the heme group  to lie in the xy plane. 

As  noted  above,  the best superpositions  are achieved 
if each structural element to be  superposed  is  first  re- 

ferred to  its  centroid  as  origin, so that  the  position vec- 
tor XsD of the  centroid  of  domain D of structure S in 
its  original coordinate system must  be  found  for each S 
and D as a preliminary. Then, in the  coordinate system 
of  the  output,  the  translation  from  the  centroid of do- 
main Dl of  structure S1 to  the  centroid of domain D2 of 
structure S2 when superposed by domain Do is 

in which R' is the 3 x 3 rotation  matrix given by Equa- 
tion 32 using the relevant primed rotation vector of Equa- 
tion 44. By setting Dl = Do the  distribution of locations 
of  the  centroid of domain D, (over all structures)  rela- 
tive to  the  domain Do may  be  observed,  and  domain D2 
may  be a single atom if it is required to  track  the displace- 
ment of individual atoms.  The case Dl = D2 # Do allows 
relative displacements of domains to  be  studied,  and  the 
completely  general  case  is  also  available. 

Also in  the  coordinate system of the  output,  the  ro- 
tation 

rotates  domain Dl of structure SI to match  domain Dl 
of structure S2 when all structures  are  superposed by ref- 
erence to domain Do, so that relative changes of orienta- 
tion may also be observed. The evaluation of Expressions 
45 and 46 is controlled by a  dialogue in which values of 
Do, etc.,  are  provided. 

Application 

The method  has been applied to  two  protein  structural 
problems of interest.  The  first of these  concerns a frag- 
ment from a  yeast  transcriptional  activator  protein, 
SWI5,  that has been extensively studied  in  this labora- 
tory.  The 70-residue, 1,173-atom  fragment  contains  two 
so-called  zinc-finger  motifs, the  first  of which spans  ap- 
proximately residues 1-37, and  the second of which spans 
approximately  residues 42-66. Each of these  motifs  rep- 
resents a relatively rigid structural unit  based around a 
tetrahedrally  coordinated zinc ion,  but  the linker between 
motifs  (residues 38-41) and  the  C-terminal tail  (residues 
67-70) are  apparently flexible in  solution.  These  proper- 
ties are reflected in the results of a set of 29 simulated an- 
nealing calculations based on NMR-derived distance and 
dihedral angle constraints  (Neuhaus et al., 1992), making 
these  structures  a  useful test bed for  the  superposition 
methods  developed  in  this  paper. If superposition of the 
structures is restricted to  the region of either one of the 
zinc-finger motifs, where the structures  are similar to one 
another, convergence  requires  only  three cycles, the last 
of  which  merely  establishes that  there is no  further 
progress to  be  made.  These  superpositions,  based on Ca 
atoms  alone,  are  illustrated in Figure 2, which includes 
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Fig. 2. Superposition (by Ca atoms only) of 29 SW15 structures derived 
from NMR, drawn  as Cor chain  traces.  In a the  superposition is by res- 
idues 1-37, and  in b by residues 42-66, the  residuals R,,  R , ,  and R2 be- 
ing 3.996,4.024,  and 2.796 A for a  and 1.333, 1.333, and 0.926 A forb .  

also vectors from  the (common)  centroid of the  superim- 
posed  domain  to  the individual  centroids of the  other  do- 
main, which serves to show the  great variability  of  this 
vector, but also that it is confined to rather less than  one 
hemisphere  of  possible  directions.  Equation 25 showed 
that  two  of  the  structures  in  Figure  2a were enan- 
tiomorphous to the first  structure in the list, but chirality 
reversal was not  permitted in  making  the  superposition, 
so that these  two  structures  had  rms  differences from  the 
remaining 28 structures  of  7.418  and  7.026 A ,  respec- 
tively. One  such pair is illustrated  in  Figure 3,  which 

Fig. 3. The  first 37 residues  of  two of the  structures  included  in  Fig- 
ure  2a,  whose  enantiomorphous  relationship  was  detected by Equation 
25. For  description see text. 

shows,  in  the lower part of the picture, two CY helices, 
both of them right  handed  and  consisting  of L amino 
acids.  The  near  end of the right  helix then  connects 
through  the  strand  on  the  left of the figure to its  N-ter- 
minus, which is in the distance at  the  top right of the pic- 
ture.  The  near end  of the left helix similarly  connects 
through  the  strand on the right to its  N-terminus in the 
distance at  the  top  left. Clearly,  a  complete  reflection 
from left to  right  of one of these  structures  would  have 
permitted  a closer fit,  at  the expense of including  a  left- 
handed helix and D amino acids.  Difference  vectors be- 
tween helices of opposite  hand need not exceed one helix 
diameter, which is much less than  the differences found 
here.  The essential  difference between this  pair  of  struc- 
tures is that  the gross  topology of the P-sheet region of 
the  structure  (upper  part of Figure 3) is inverted relative 
to  the  other.  Both  structures consist  entirely  of L amino 
acids, as a  consequence of the chirality  constraints active 
during  the simulated  annealing  calculations used to gen- 
erate  them,  and consequently the  a-helix in both  struc- 
tures is right  handed.  The local  inversion of the P-sheet 
in  this  case  arises  because  the  NMR  constraint list from 
which the  structures were calculated is, for technical rea- 
sons, deficient in entries  relevant to  the relative  disposi- 
tion  of  the sheet and  the helix. Such  problems of local 
mirror images in  sparsely  constrained regions of a struc- 
ture  determined by NMR are widespread (Pastore  et  al., 
1991). 

No  such cases were found in the second domain, Fig- 
ure 2b, where the  corresponding NMR constraint list con- 
tained  more  entries restricting the relative  disposition of 
the helix and  the sheet. 

Superpositions  based on  the  C-terminal  tail  alone, 
where the  conformations  are essentially random, have 
never required  more  than six cycles to  converge.  Super- 
position over all 70 residues is a  most  demanding test with 
this  protein,  because  the  random relative orientations of 
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the  two individually rigid zinc-finger motifs result in very 
large  residuals and a shallow  minimum.  Consequently, 
Ro is 10.185 A and R ,  is 10.736 A in  these  cases, and 
convergence is correspondingly slow, requiring up  to nine 
cycles, although  the result is stable  and completely  inde- 
pendent of which structure serves as  structure 1. Some 45 
additional  optimizations were also done in  each of which 
2 structures  out of the 10 for which ( p l  - p 2 )  is least 
were initialized back to front, all of which l e d  to  the same 
minimum, suggesting that  the minimum  found is unique. 
Many enantiomorphous relationships were detected (but 
not  altered) when  all 70 residues were superposed  to- 
gether. 

The method  has  also  been  applied to  the  same five 
structures  that were studied by Shapiro et al. (1992). The 
methods of the  Multiple  solutions  and  the  global mini- 
mum section were used with I = 1, u = t = 4, so that all 
possible  combinations  of  turned  structures were used in 
the  initialization. Every  case  produced the  same result 
with Ro = 2.0466 A ,  R 1  = 2.0470 A ,  R2 = 1.2947 A ,  
which supports  the  conclusion  of  Shapiro  et  al. (1992) 
that  no  alternative  solution exists. 
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