Abstract
Equilibrium denaturation of dimeric mouse beta-nerve growth factor (beta-NGF) has been studied by monitoring changes in the protein's spectroscopic characteristics. Denaturation of beta-NGF in guanidine hydrochloride and urea resulted in an altered intrinsic fluorescence emission spectrum, fluorescence depolarization, and diminished negative circular dichroism. Native-like spectroscopic properties and specific biological activity are restored when denaturant is diluted from unfolded samples, demonstrating that this process is fully reversible. However, refolding of denatured beta-NGF is dependent on the three disulfide bonds present in the native protein and does not readily occur when the disulfide bonds are reduced. Graphical analysis and nonlinear least-squares fitting of beta-NGF denaturation data demonstrate that denaturation is dependent on the concentration of beta-NGF and is consistent with a two-state model involving native dimer and denatured monomer (N2 = 2D). The conformational stability of mouse beta-NGF calculated according to this model is 19.3 +/- 1.1 kcal/mol in 100 mM sodium phosphate at pH 7. Increasing the hydrogen ion concentration resulted in a 25% decrease in beta-NGF stability at pH 4 relative to pH 7.
Full Text
The Full Text of this article is available as a PDF (936.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Angeletti R. H., Hermodson M. A., Bradshaw R. A. Amino acid sequences of mouse 2.5S nerve growth factor. II. Isolation and characterization of the thermolytic and peptic peptides and the complete covalent structure. Biochemistry. 1973 Jan 2;12(1):100–115. doi: 10.1021/bi00725a018. [DOI] [PubMed] [Google Scholar]
- Angeletti R. H., Mercanti D., Bradshaw R. A. Amino acid sequences of mouse 2.5S nerve growth factor. I. Isolation and characterization of the soluble tryptic and chymotryptic peptides. Biochemistry. 1973 Jan 2;12(1):90–100. doi: 10.1021/bi00725a017. [DOI] [PubMed] [Google Scholar]
- Angeletti R. H. The role of the tryptophan residues in the activity of the nerve growth factor. Biochim Biophys Acta. 1970 Sep 29;214(3):478–482. doi: 10.1016/0005-2795(70)90307-7. [DOI] [PubMed] [Google Scholar]
- Bothwell M. A., Shooter E. M. Dissociation equilibrium constant of beta nerve growth factor. J Biol Chem. 1977 Dec 10;252(23):8532–8536. [PubMed] [Google Scholar]
- Bowie J. U., Sauer R. T. Equilibrium dissociation and unfolding of the Arc repressor dimer. Biochemistry. 1989 Sep 5;28(18):7139–7143. doi: 10.1021/bi00444a001. [DOI] [PubMed] [Google Scholar]
- Cohen P., Sutter A., Landreth G., Zimmermann A., Shooter E. M. Oxidation of tryptophan-21 alters the biological activity and receptor binding characteristics of mouse nerve growth factor. J Biol Chem. 1980 Apr 10;255(7):2949–2954. [PubMed] [Google Scholar]
- Frazier W. A., Hogue-Angeletti R. A., Sherman R., Bradshaw R. A. Topography of mouse 2.5S nerve growth factor. Reactivity of tyrosine and tryptophan. Biochemistry. 1973 Aug 14;12(17):3281–3293. doi: 10.1021/bi00741a021. [DOI] [PubMed] [Google Scholar]
- Gittelman M. S., Matthews C. R. Folding and stability of trp aporepressor from Escherichia coli. Biochemistry. 1990 Jul 31;29(30):7011–7020. doi: 10.1021/bi00482a009. [DOI] [PubMed] [Google Scholar]
- Green L. A. A quantitative bioassay for nerve growth factor (NGF) activity employing a clonal pheochromocytoma cell line. Brain Res. 1977 Sep 16;133(2):350–353. doi: 10.1016/0006-8993(77)90770-3. [DOI] [PubMed] [Google Scholar]
- Greene L. A., Shooter E. M. The nerve growth factor: biochemistry, synthesis, and mechanism of action. Annu Rev Neurosci. 1980;3:353–402. doi: 10.1146/annurev.ne.03.030180.002033. [DOI] [PubMed] [Google Scholar]
- Herold M., Kirschner K. Reversible dissociation and unfolding of aspartate aminotransferase from Escherichia coli: characterization of a monomeric intermediate. Biochemistry. 1990 Feb 20;29(7):1907–1913. doi: 10.1021/bi00459a035. [DOI] [PubMed] [Google Scholar]
- Hohn A., Leibrock J., Bailey K., Barde Y. A. Identification and characterization of a novel member of the nerve growth factor/brain-derived neurotrophic factor family. Nature. 1990 Mar 22;344(6264):339–341. doi: 10.1038/344339a0. [DOI] [PubMed] [Google Scholar]
- Johnson W. C., Jr Circular dichroism and its empirical application to biopolymers. Methods Biochem Anal. 1985;31:61–163. doi: 10.1002/9780470110522.ch2. [DOI] [PubMed] [Google Scholar]
- Kitamura S., Sturtevant J. M. A scanning calorimetric study of the thermal denaturation of the lysozyme of phage T4 and the Arg 96----His mutant form thereof. Biochemistry. 1989 May 2;28(9):3788–3792. doi: 10.1021/bi00435a024. [DOI] [PubMed] [Google Scholar]
- Leibrock J., Lottspeich F., Hohn A., Hofer M., Hengerer B., Masiakowski P., Thoenen H., Barde Y. A. Molecular cloning and expression of brain-derived neurotrophic factor. Nature. 1989 Sep 14;341(6238):149–152. doi: 10.1038/341149a0. [DOI] [PubMed] [Google Scholar]
- Levi-Montalcini R., Calissano P. The nerve-growth factor. Sci Am. 1979 Jun;240(6):68–77. doi: 10.1038/scientificamerican0679-68. [DOI] [PubMed] [Google Scholar]
- Liang H., Terwilliger T. C. Reversible denaturation of the gene V protein of bacteriophage f1. Biochemistry. 1991 Mar 19;30(11):2772–2782. doi: 10.1021/bi00225a006. [DOI] [PubMed] [Google Scholar]
- Pace C. N. Conformational stability of globular proteins. Trends Biochem Sci. 1990 Jan;15(1):14–17. doi: 10.1016/0968-0004(90)90124-t. [DOI] [PubMed] [Google Scholar]
- Pace C. N. Determination and analysis of urea and guanidine hydrochloride denaturation curves. Methods Enzymol. 1986;131:266–280. doi: 10.1016/0076-6879(86)31045-0. [DOI] [PubMed] [Google Scholar]
- Shirley B. A., Stanssens P., Steyaert J., Pace C. N. Conformational stability and activity of ribonuclease T1 and mutants. Gln25----Lys, Glu58----Ala, and the double mutant. J Biol Chem. 1989 Jul 15;264(20):11621–11625. [PubMed] [Google Scholar]
- Smith A. P., Varon S., Shooter E. M. Multiple forms of the nerve growth factor protein and its subunits. Biochemistry. 1968 Sep;7(9):3259–3268. doi: 10.1021/bi00849a032. [DOI] [PubMed] [Google Scholar]
- Stach R. W., Wagner B. J., Stach B. M. A more rapid method for the isolation of the 7S nerve growth factor complex. Anal Biochem. 1977 Nov;83(1):26–32. doi: 10.1016/0003-2697(77)90505-x. [DOI] [PubMed] [Google Scholar]
- Thomson J. A., Shirley B. A., Grimsley G. R., Pace C. N. Conformational stability and mechanism of folding of ribonuclease T1. J Biol Chem. 1989 Jul 15;264(20):11614–11620. [PubMed] [Google Scholar]
- Weaver L. H., Gray T. M., Grütter M. G., Anderson D. E., Wozniak J. A., Dahlquist F. W., Matthews B. W. High-resolution structure of the temperature-sensitive mutant of phage lysozyme, Arg 96----His. Biochemistry. 1989 May 2;28(9):3793–3797. doi: 10.1021/bi00435a025. [DOI] [PubMed] [Google Scholar]
- Williams R., Gaber B., Gunning J. Raman spectroscopic determination of the secondary structure of crystalline nerve growth factor. J Biol Chem. 1982 Nov 25;257(22):13321–13323. [PubMed] [Google Scholar]
- Wlodawer A., Hodgson K. O., Shooter E. M. Crystallization of nerve growth factor from mouse submaxillary glands. Proc Natl Acad Sci U S A. 1975 Mar;72(3):777–779. doi: 10.1073/pnas.72.3.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Woodruff N. R., Neet K. E. Beta nerve growth factor binding to PC12 cells. Association kinetics and cooperative interactions. Biochemistry. 1986 Dec 2;25(24):7956–7966. doi: 10.1021/bi00372a026. [DOI] [PubMed] [Google Scholar]