Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1992 May;1(5):641–653. doi: 10.1002/pro.5560010510

Thermodynamics of melittin tetramerization determined by circular dichroism and implications for protein folding.

W Wilcox 1, D Eisenberg 1
PMCID: PMC2142234  PMID: 1304363

Abstract

The tetramerization of melittin, a 26-amino acid peptide from Apis mellifera bee venom, has been studied as a model for protein folding. Melittin converts from a monomeric random coil to an alpha-helical tetramer as the pH is raised from 4.0 to 9.5, as ionic strength is increased, as temperature is raised or lowered from about 37 degrees C, or as phosphate is added. The thermodynamics of this tetramerization (termed "folding") are explored using circular dichroism. The melittin tetramer has two pKa values of 7.5 and 8.5 corresponding to protonation of the N-terminus and Lys 23, respectively. pKa values calculated with the program DelPhi (Gilson, M.K., Sharp, K.A., & Honig, B.H., 1987, J. Comp. Chem. 9, 327-335; Gilson, M.K. & Honig, B.H., 1988a, Proteins 3, 32-52; Gilson, M.K. & Honig, B.H., 1988b, Proteins 4, 7-18) agree with experimental titration data. Greater electrostatic repulsion of these protonated groups destabilizes the tetramer by 3.6 kcal/mol at pH 4.0 compared to pH 9.5. Increasing the concentration of NaCl in the solution from 0 to 0.5 M stabilizes the tetramer by 5-6 kcal/mol at pH 4.0. The effect of NaCl is modeled with a ligand-binding approach. The melittin tetramer is found to have a temperature of maximum stability ranging from 35.5 to 43 degrees C depending on the pH, unfolding above and below that temperature. delta Cp0 for folding ranges from -0.085 to -0.102 cal g-1 K-1, comparable to that of other small globular proteins (Privalov, P.L., 1979, Adv. Protein Chem. 33, 167-241). delta H0 and delta S0 are found to decrease with temperature, presumably due to the hydrophobic effect (Kauzmann, W., 1959, Adv. Protein Chem. 14, 1-63). Phosphate is found to perturb the equilibrium substantially with a maximal effect at 150 mM, stabilizing the tetramer at pH 7.4 and 25 degrees C by 4.6 kcal/mol. The enthalpy change due to addition of phosphate (-7.5 kcal/mol at 25 degrees C) can be accounted for by simple dielectric screening. Both circular dichroism and crystallographic results suggest that phosphate may bind Lys 23 at the ends of the elongated tetramer. These detailed measurements give insight into the relative importance of various forces for the stability of melittin in the folded form and may provide an experimental standard for future tests of computational energetics on this simple protein system.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson D., Terwilliger T. C., Wickner W., Eisenberg D. Melittin forms crystals which are suitable for high resolution X-ray structural analysis and which reveal a molecular 2-fold axis of symmetry. J Biol Chem. 1980 Mar 25;255(6):2578–2582. [PubMed] [Google Scholar]
  2. Bazzo R., Tappin M. J., Pastore A., Harvey T. S., Carver J. A., Campbell I. D. The structure of melittin. A 1H-NMR study in methanol. Eur J Biochem. 1988 Apr 5;173(1):139–146. doi: 10.1111/j.1432-1033.1988.tb13977.x. [DOI] [PubMed] [Google Scholar]
  3. Becktel W. J., Schellman J. A. Protein stability curves. Biopolymers. 1987 Nov;26(11):1859–1877. doi: 10.1002/bip.360261104. [DOI] [PubMed] [Google Scholar]
  4. Bello J., Bello H. R., Granados E. Conformation and aggregation of melittin: dependence on pH and concentration. Biochemistry. 1982 Feb 2;21(3):461–465. doi: 10.1021/bi00532a007. [DOI] [PubMed] [Google Scholar]
  5. Brown L. R., Lauterwein J., Wüthrich K. High-resolution 1H-NMR studies of self-aggregation of melittin in aqueous solution. Biochim Biophys Acta. 1980 Apr 25;622(2):231–244. doi: 10.1016/0005-2795(80)90034-3. [DOI] [PubMed] [Google Scholar]
  6. Chen Y. H., Yang J. T., Chau K. H. Determination of the helix and beta form of proteins in aqueous solution by circular dichroism. Biochemistry. 1974 Jul 30;13(16):3350–3359. doi: 10.1021/bi00713a027. [DOI] [PubMed] [Google Scholar]
  7. Creighton T. E. Pathways and mechanisms of protein folding. Adv Biophys. 1984;18:1–20. doi: 10.1016/0065-227x(84)90004-2. [DOI] [PubMed] [Google Scholar]
  8. Dill K. A., Alonso D. O., Hutchinson K. Thermal stabilities of globular proteins. Biochemistry. 1989 Jun 27;28(13):5439–5449. doi: 10.1021/bi00439a019. [DOI] [PubMed] [Google Scholar]
  9. Drake A. F., Hider R. C. The structure of melittin in lipid bilayer membranes. Biochim Biophys Acta. 1979 Aug 7;555(2):371–373. doi: 10.1016/0005-2736(79)90178-0. [DOI] [PubMed] [Google Scholar]
  10. Eisenberg D., Wilcox W., Eshita S. M., Pryciak P. M., Ho S. P., DeGrado W. F. The design, synthesis, and crystallization of an alpha-helical peptide. Proteins. 1986 Sep;1(1):16–22. doi: 10.1002/prot.340010105. [DOI] [PubMed] [Google Scholar]
  11. Faucon J. F., Dufourcq J., Lussan C. The self-association of melittin and its binding to lipids: an intrinsic fluorescence polarization study. FEBS Lett. 1979 Jun 1;102(1):187–190. doi: 10.1016/0014-5793(79)80956-4. [DOI] [PubMed] [Google Scholar]
  12. Filimonov V. V., Pfeil W., Tsalkova T. N., Privalov P. L. Thermodynamic investigations of proteins. IV. Calcium binding protein parvalbumin. Biophys Chem. 1978 May;8(2):117–122. doi: 10.1016/0301-4622(78)80003-9. [DOI] [PubMed] [Google Scholar]
  13. Gilson M. K., Honig B. H. Energetics of charge-charge interactions in proteins. Proteins. 1988;3(1):32–52. doi: 10.1002/prot.340030104. [DOI] [PubMed] [Google Scholar]
  14. Gilson M. K., Honig B. Calculation of the total electrostatic energy of a macromolecular system: solvation energies, binding energies, and conformational analysis. Proteins. 1988;4(1):7–18. doi: 10.1002/prot.340040104. [DOI] [PubMed] [Google Scholar]
  15. Go N. Theoretical studies of protein folding. Annu Rev Biophys Bioeng. 1983;12:183–210. doi: 10.1146/annurev.bb.12.060183.001151. [DOI] [PubMed] [Google Scholar]
  16. Greenfield N., Fasman G. D. Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry. 1969 Oct;8(10):4108–4116. doi: 10.1021/bi00838a031. [DOI] [PubMed] [Google Scholar]
  17. Habermann E., Jentsch J. Sequenzanalyse des Melittins aus den tryptischen und peptischen Spaltstücken. Hoppe Seylers Z Physiol Chem. 1967 Jan;348(1):37–50. [PubMed] [Google Scholar]
  18. Hol W. G. Effects of the alpha-helix dipole upon the functioning and structure of proteins and peptides. Adv Biophys. 1985;19:133–165. doi: 10.1016/0065-227x(85)90053-x. [DOI] [PubMed] [Google Scholar]
  19. Hol W. G. The role of the alpha-helix dipole in protein function and structure. Prog Biophys Mol Biol. 1985;45(3):149–195. doi: 10.1016/0079-6107(85)90001-x. [DOI] [PubMed] [Google Scholar]
  20. Horwitz J., Bullard B., Mercola D. Interaction of troponin subunits. The interaction between the inhibitory and tropomyosin-binding subunits. J Biol Chem. 1979 Jan 25;254(2):350–355. [PubMed] [Google Scholar]
  21. Jaenicke R. Folding and association of proteins. Prog Biophys Mol Biol. 1987;49(2-3):117–237. doi: 10.1016/0079-6107(87)90011-3. [DOI] [PubMed] [Google Scholar]
  22. KAUZMANN W. Some factors in the interpretation of protein denaturation. Adv Protein Chem. 1959;14:1–63. doi: 10.1016/s0065-3233(08)60608-7. [DOI] [PubMed] [Google Scholar]
  23. Kahn P. C. The interpretation of near-ultraviolet circular dichroism. Methods Enzymol. 1979;61:339–378. doi: 10.1016/0076-6879(79)61018-2. [DOI] [PubMed] [Google Scholar]
  24. Kuwajima K., Schmid F. X. Experimental studies of folding kinetics and structural dynamics of small proteins. Adv Biophys. 1984;18:43–74. doi: 10.1016/0065-227x(84)90006-6. [DOI] [PubMed] [Google Scholar]
  25. Labhardt A. M. Folding intermediates studied by circular dichroism. Methods Enzymol. 1986;131:126–135. doi: 10.1016/0076-6879(86)31038-3. [DOI] [PubMed] [Google Scholar]
  26. Lauterwein J., Brown L. R., Wüthrich K. High-resolution 1H-NMR studies of monomeric melittin in aqueous solution. Biochim Biophys Acta. 1980 Apr 25;622(2):219–230. doi: 10.1016/0005-2795(80)90033-1. [DOI] [PubMed] [Google Scholar]
  27. Linse S., Brodin P., Johansson C., Thulin E., Grundström T., Forsén S. The role of protein surface charges in ion binding. Nature. 1988 Oct 13;335(6191):651–652. doi: 10.1038/335651a0. [DOI] [PubMed] [Google Scholar]
  28. Matthew J. B., Gurd F. R., Garcia-Moreno B., Flanagan M. A., March K. L., Shire S. J. pH-dependent processes in proteins. CRC Crit Rev Biochem. 1985;18(2):91–197. doi: 10.3109/10409238509085133. [DOI] [PubMed] [Google Scholar]
  29. Myer Y. P., Bullock P. A. Cytochrome b562 from Escherichia coli: conformational, configurational, and spin-state characterization. Biochemistry. 1978 Sep 5;17(18):3723–3729. doi: 10.1021/bi00611a008. [DOI] [PubMed] [Google Scholar]
  30. Osborne J. C., Jr, Bronzert T. J., Brewer H. B., Jr Self-association of apo-C-I from the human high density lipoprotein complex. J Biol Chem. 1977 Aug 25;252(16):5756–5760. [PubMed] [Google Scholar]
  31. Podo F., Strom R., Crifò C., Zulauf M. Dependence of melittin structure on its interaction with multivalent anions and with model membrane systems. Int J Pept Protein Res. 1982 May;19(5):514–527. doi: 10.1111/j.1399-3011.1982.tb02637.x. [DOI] [PubMed] [Google Scholar]
  32. Privalov P. L. Cold denaturation of proteins. Crit Rev Biochem Mol Biol. 1990;25(4):281–305. doi: 10.3109/10409239009090612. [DOI] [PubMed] [Google Scholar]
  33. Privalov P. L., Potekhin S. A. Scanning microcalorimetry in studying temperature-induced changes in proteins. Methods Enzymol. 1986;131:4–51. doi: 10.1016/0076-6879(86)31033-4. [DOI] [PubMed] [Google Scholar]
  34. Privalov P. L. Stability of proteins: small globular proteins. Adv Protein Chem. 1979;33:167–241. doi: 10.1016/s0065-3233(08)60460-x. [DOI] [PubMed] [Google Scholar]
  35. Privalov P. L., Tiktopulo E. I., Venyaminov SYu, Griko YuV, Makhatadze G. I., Khechinashvili N. N. Heat capacity and conformation of proteins in the denatured state. J Mol Biol. 1989 Feb 20;205(4):737–750. doi: 10.1016/0022-2836(89)90318-5. [DOI] [PubMed] [Google Scholar]
  36. Quay S. C., Condie C. C. Conformational studies of aqueous melittin: thermodynamic parameters of the monomer-tetramer self-association reaction. Biochemistry. 1983 Feb 1;22(3):695–700. doi: 10.1021/bi00272a026. [DOI] [PubMed] [Google Scholar]
  37. Schellman J. A. The thermodynamic stability of proteins. Annu Rev Biophys Biophys Chem. 1987;16:115–137. doi: 10.1146/annurev.bb.16.060187.000555. [DOI] [PubMed] [Google Scholar]
  38. Shepherd G. W., Elliott W. B., Arbesman C. E. Fractionation of bee venom. I. Preparation and characterization of four antigenic components. Prep Biochem. 1974;4(1):71–88. doi: 10.1080/00327487408068187. [DOI] [PubMed] [Google Scholar]
  39. Talbot J. C., Dufourcq J., de Bony J., Faucon J. F., Lussan C. Conformational change and self association of monomeric melittin. FEBS Lett. 1979 Jun 1;102(1):191–193. doi: 10.1016/0014-5793(79)80957-6. [DOI] [PubMed] [Google Scholar]
  40. Talbot J. C., Lalanne J., Faucon J. F., Dufourcq J. Effect of the state of association of melittin and phospholipids on their reciprocal binding. Biochim Biophys Acta. 1982 Jul 14;689(1):106–112. doi: 10.1016/0005-2736(82)90194-8. [DOI] [PubMed] [Google Scholar]
  41. Tanford C. Protein denaturation. Adv Protein Chem. 1968;23:121–282. doi: 10.1016/s0065-3233(08)60401-5. [DOI] [PubMed] [Google Scholar]
  42. Terwilliger T. C., Eisenberg D. The structure of melittin. II. Interpretation of the structure. J Biol Chem. 1982 Jun 10;257(11):6016–6022. [PubMed] [Google Scholar]
  43. Terwilliger T. C., Weissman L., Eisenberg D. The structure of melittin in the form I crystals and its implication for melittin's lytic and surface activities. Biophys J. 1982 Jan;37(1):353–361. doi: 10.1016/S0006-3495(82)84683-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Voordouw G., Milo C., Roche R. S. Role of bound calcium ions in thermostable, proteolytic enzymes. Separation of intrinsic and calcium ion contributions to the kinetic thermal stability. Biochemistry. 1976 Aug 24;15(17):3716–3724. doi: 10.1021/bi00662a012. [DOI] [PubMed] [Google Scholar]
  45. Yunes R. A. A circular dichroism study of the structure of Apis mellifera melittin. Arch Biochem Biophys. 1982 Jul;216(2):559–565. doi: 10.1016/0003-9861(82)90245-4. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES