Identification, classification, and analysis of beta-bulges in proteins

A.W. EDITH CHAN,^{1,2} E. GAIL HUTCHINSON,¹ DANIEL HARRIS,¹ AND JANET M. THORNTON¹

¹ Biomolecular Structure and Modelling Unit, Department of Biochemistry and Molecular Biology, University College, Gower Street, London WC1E 6BT, United Kingdom

² Italfarmaco-Research Center, via dei Lavoratori 54, Milan 22092, Italy

(RECEIVED February 24, 1993; ACCEPTED July 21, 1993)

Abstract

A β -bulge is a region of irregularity in a β -sheet involving two β -strands. It usually involves two or more residues in the bulged strand opposite to a single residue on the adjacent strand. These irregularities in β -sheets were identified and classified automatically, extending the definition of β -bulges given by Richardson et al. (Richardson, J.S., Getzoff, E.D., & Richardson, D.C., 1978, *Proc. Natl. Acad. Sci. USA 75*, 2574–2578). A set of 182 protein chains (170 proteins) was used, and a total of 362 bulges were extracted. Five types of β -bulges were found: classic, G1, wide, bent, and special. Their characteristic amino acid preferences were found for most classes of bulges. Basically, bulges occur frequently in proteins; on average there are more than two bulges per protein. In general, β -bulges produce two main changes in the structure of a β -sheet: (1) disrupt the normal alternation of side-chain direction; (2) accentuate the twist of the sheet, altering the direction of the surrounding strands.

Keywords: β -bulges; classification; proteins; protein structure

Beta-pleated sheets, being one of the two major structural elements found in globular proteins, are formed from two or more β -strands aligned side-by-side and hydrogen bonded. In each strand, the polypeptide chain is in an almost fully extended conformation, with typical ϕ , ψ torsion angles of -122° and 143° , respectively (Richardson et al., 1978). The hydrogen bonds between adjacent strands are formed between the main-chain CO and NH groups.

The regular arrangements of the strands in β -sheets can be distorted by " β -bulges," which have been classified as follows: classic, G1, wide, parallel, and some pseudobulges (Richardson et al., 1978; Richardson, 1981). This classification was based largely on an examination of protein backbone drawings in the *Atlas of Molecular Structure on Microfiche* (Feldmann, 1976) and the hydrogen-bonding diagrams in published reports of solved X-ray structures. A β -bulge is defined as the region between two consecutive β -type hydrogen bonds, which include two residues on one strand opposite a single residue on the other strand. β -Bulges, like β -turns, affect the directionality of β strands, but in much less drastic a manner. The bulge is caused by the extra residues on the bulged strand, which increase the backbone length, thus causing the strand to bulge out of the plane of the sheet. At the same time, the twist of the sheet is slightly accentuated.

In this paper we present a systematic study and classification of β -bulges and aim to explain how and why the bulges are formed. All bulges are identified automatically using a computer program. Many more X-ray crystal structures have become available since the original classification was made. As a result, some new classes are introduced to add to the original bulge definitions.

Analysis

Before defining β -bulges, let us describe β -sheets in more detail. Adjacent β -strands can either run in the same direction (parallel β -sheet) or in opposite directions (antiparallel β -sheet). Their side chains extend above and below the sheet, with the C_{α} - C_{β} bond of each residue being approximately perpendicular to the plane of the sheet. The direction of these side chains alternates as one goes along

Reprint requests to: Janet M. Thornton, Biomolecular Structure and Modelling Unit, Biochemistry and Molecular Biology Department, University College, Gower Street, London WC1E 6BT, United Kingdom.

Beta-bulges: Classification and analysis

a strand but is in register on adjacent strands. The strands in a β -sheet are connected by hydrogen bonds.

Kabsch and Sander (1983) defined residues i and j, which form the appropriate hydrogen bonds between adjacent strands (or are covalently bonded to residues that form the required hydrogen bonds), and have termed this a bridge. There are two types of bridges: parallel and antiparallel. Their hydrogen-bonding patterns are depicted in Figure 1.

In antiparallel β -sheet, the hydrogen-bonding pattern between a given pair of strands has alternately wide and narrow spacing. This is because the hydrogen bonds from a given strand alternate between the two strands either side of it as one moves from one residue position to the next. Thus, for example, all the even-numbered residues will have hydrogen bonds from their CO and NH groups to one adjacent strand, while the odd-numbered residues will bond in the opposite direction to the other adjacent strand. In parallel β -sheet, on the other hand, the hydrogen bonds between the bridges are evenly spaced, going across the sheet at an angle to the strands.

For each protein, the main-chain hydrogen-bonding strengths and torsion angles were calculated using a program called SSTRUC (D.K. Smith, unpubl.). The patterns of hydrogen bonds were used to assign secondary structures using a modified implementation of the Kabsch and Sander (1983) algorithm, whereby a residue that lies at either end of a secondary structure is included if it has one "correct" hydrogen bond. In a β -bulge, the two residues on the bulged side are labeled "1" and "2", whereas the residue on the opposite strand is labeled "X" (Richardson et al., 1978). Here, the original definition of β -bulge has been extended to any irregularity in the hydrogenbonding pattern of a β -sheet, where the regular pattern is disrupted by at most one extra residue on one strand and at most four extra residues on the other strand. The irregularities were classified into: classic, wide, bent, and special bulge types in parallel and antiparallel β -sheets. However, even this extended definition does not include cases where a bulge occurs outside the definition of β -sheet. Nevertheless, we have chosen to restrict the definition to cases within the β -sheets only.

The bulges were first classified by the number of extra residues in each strand. Then we determined whether they belonged to antiparallel or parallel β -sheets. Finally, the hydrogen-bonding pattern in the bulge residues was compared with the patterns illustrated in Figures 2-4. In addition, for classic bulges; the ϕ , ψ angles of residue 1 must fall into an $\alpha_{\rm R}$ conformation.

The following examples illustrate the classification process for bulges in antiparallel β -sheets. If there is one extra residue on one strand between the two (perfect) bridges, but none on the adjacent one, then the bulge can be defined as classic or wide by the specific hydrogen-bonding patterns illustrated in Figure 2. If there is one extra residue on each strand (at the same location), then it is a bent bulge. Special bulges are defined to have between two and four extra residues on one strand.

Because residue 1 in a G1 bulge does not form part of a bridge, a different algorithm has been developed to search for the G1 bulges. First, we have excluded all the classic bulges because both G1 and classic bulges have identical hydrogen-bond patterns. Then we searched for all examples that match the hydrogen patterns illustrated for G1G

Fig. 1. Description of antiparallel and parallel β -sheet, with illustration of Kabsch and Sander's (1983) definition for bridge.

Fig. 2. Hydrogen-bonding diagrams for β -bulges in antiparallel β -sheets. The name of each subclass is listed underneath each figure. The number in parentheses denotes the total number of bulges found in that class. Arrows indicate an NH to CO hydrogen bond. Rectangles represent residues in β -strands, and ellipsoids correspond to any residue not in a β -strand. The conformation of each residue is indicated inside each box. Residues involved in the bulge are labeled as X, 1, and 2. The "+" and "-" signs indicate the orientations of the side chains into and out of the paper. G is glycine.

Fig. 3. Hydrogen-bond diagrams for β -bulges in parallel β -sheets.

and G1T in Figure 2, with the additional condition that residues X and 2 must form part of a bridge, but allowing residue 1 to have any conformation.

The hydrogen-bonding patterns were visualized schematically using diagrams produced by the HERA program (Hutchinson & Thornton, 1990), and the proteins themselves were examined visually using the QUANTA[™] computer graphics program.

Results and discussion

Classification of β -bulges

Table 1 lists the numbers of β -bulges in each of the five main classes and their subclasses. Our data set included 362 bulges from 170 proteins (Table 2). This represents an average of greater than two bulges per protein in the data set. Most examples involve antiparallel strands, with fewer than 10% of β -bulges being between parallel strands even though the ratio of antiparallel to parallel β -sheets is 4.5 to 1 in our data set. Hence, β -bulges are more common in antiparallel sheets. All classes except the G1 were found in both parallel and antiparallel β -sheets, whereas the G1 class was found only at the edges of antiparallel β -sheets.

Almost all bulges occur at the edge of a sheet, with the bulged strand being the outermost one. The distortion produced by the bulge is most pronounced in the special, bent, and G1 bulges, and least pronounced in the classic and wide bulges. These distortions are demonstrated in Figure 5 and kinemages. The common structural effect of

Fig. 4. Hydrogen-bond diagrams for special β -bulges in β -sheets. Residues involved in the bulge are labeled X, 1, 2, 3, and 4.

a β -bulge is to introduce a twist into the β -strand. The local twist is around 35° and 45° for a classic and a bent bulge, respectively. In a regular β -strand, the twist angle is around 10°.

The ϕ , ψ torsion angles for residues 1 and 2 in the bulge are always irregular; the other residues in the strands remain in the β conformation. Table 3 summarizes the average ϕ , ψ torsion angles observed at positions 1, 2, and X

Table 1. Total numbers of bulges extracted

	Antipara	allel	Paral	Total	
Classic	······				187
	C+	150	PC	18	
	C-	15			
	Irregular	4			
Gl					114
	G1G	50			
	GIT	33			
	G1A	25			
	GIAT	6			
Wide					36
	β - α_L	19	PW	6	
	α_{L} - $\bar{\beta}$	11			
Bent					
	A-bent	6	P-bent	4	10
Special					15
	Gx	3			
	S3	4	SP3	1	
	S4	4			
	sw	1	SPW	2	
Total		331		31	362

for each of the different β -bulge types. Figure 6 shows the Ramachandran plots for these three positions in the most commonly occurring bulge types in antiparallel β -sheets: classic, wide, and G1. From these plots, the characteristic ϕ , ψ angles of each bulge could be easily identified. The different types of β -bulges will now be described in detail.

Classic bulges (antiparallel)

The most common bulge is the classic-type, which occurs both in parallel and antiparallel β -sheet. In antiparallel β -sheet, they are found between narrowly spaced pairs of hydrogen bonds. The 187 classic bulges identified, including parallel and antiparallel examples, represent 51% of the total number of bulges. In antiparallel β -sheet, there are two subclasses: C+ and C-, which differ only by one hydrogen bond. The C+ subclass appears more frequently (150 examples) and has NH(1) and NH(2) both hydrogen bonded to CO(X), and NH(X) bonded to CO(2) (Fig. 2; Kinemage 1). Thus the CO(X) accepts two hydrogen bonds. However, the strength of the NH(2) to CO(X) hydrogen bond (Kabsch & Sander, 1983) $(-1.4 \pm$ 0.6 kcal/mol) is weaker than that of the other two bonds. which have approx. equal strengths (around -2.4 ± 0.8 kcal/mol). These hydrogen bonds are just as strong as the narrow hydrogen bonds in undistorted antiparallel β -sheets, which have an average energy of -2.3 ± 0.8 kcal/mol. The second subclass, the C- (15 examples), lacks the weak NH(2) to CO(X) bond. The absence of this bond is compensated by one of the other two bonds being strengthened.

In general, both C+ and C- types behave similarly. Residue 1 adopts an approximate α_R helical conformation with ϕ around -96° and ψ around -31°. Residues 2 and X are in β conformation. The net effect of this is that the side chain of residue 1 is brought onto the same side of the β -sheet as both residues 2 and X. Hence, all three residues have their side chains pointing in the same direction.

Table 4 shows the amino acid preferences for each of the three positions. Position 2 favors small amino acids such as glycine, alanine, and serine, whereas position 1 favors large hydrophobic amino acids such as isoleucine, valine, and leucine. Position X has a preference for tryptophan, valine, arginine, and isoleucine. These preferences seem to indicate that a small residue is required at position 2 in order to minimize repulsive interactions between its side chain and those of the large hydrophobic residues at positions 1 and X. The preferred residues at position 1 and X are classical amino acids required for β -conformation, with the exception of tryptophan and arginine, which occur frequently at position X. There are eight cases where tryptophan is at position X, and of these, four occur in the immunoglobulin family (Brookhaven codes for the entries are 2RHE, 2FB4, 1CD4, 1CD8). There are nine examples of arginine in position X. In five of these cases, arginine uses its side chain to form a saltbridge with another bulged residue (either position 1 or 2).

Four examples fitted into neither the C+ nor the Csubclasses and have been classified as irregular. One was in Rubisco (9RUB; Lundqvist & Schneider, 1991), where the hydrogen bonds are from NH(X) to CO(2), NH(X) to CO(1), and NH(1) to CO(X). The other three examples (in human class 1 histocompatibility antigen [3HLA], immunoglobulin FC [1FC2], and barnase [1RNB]) all have glycine at position 1. Their hydrogen-bonding pattern is exactly that of a classic bulge, but their ϕ , ψ angles are all positive, in the $\alpha_{\rm L}$ conformation.

G1 class (antiparallel)

The next most common class is the G1 type (117 examples; 33% of total, see Table 1), which occurs only in antiparallel β -sheets. Position 1 adopts α_L conformation. Residues 2 and X are both in β conformation but with ϕ centered at -90° (compared to the more usual -122°) and ψ centered at 150° (compared to the more usual 143°). They have greater distortions in their ϕ and ψ torsion angles than the classic bulges (see Table 3). In our study, the G1 class contains four subclasses, as follows: G1G, glycine at position 1; G1T, glycine at position 1 and a Type I' or Type II β -turn between position 2 and another residue, with glycine at position i + 2 of the turn; G1A, any amino acid (excluding glycine) at position 1; g1AT, any amino acid (excluding glycine) at position 1, plus turn as in G1T.

Table 2.	Bulges extracted	from the	data set	(these date	ı also	appear	on the	Diskette	Appendix)
							_		

				•							
PDB	1	2	x	PDB	1	2	x	PDB	1	2	X
Classic – C+											
1BBP(A)	L106	S107	I115	1PII	S432	Q433	1436	2RHE	L48	I49	W 36
1BBP(A)	V 30	A31	V134	1PRC(H)	A165	Ğ 166	V 157	2SGA	G45	F46	L53
1BMV(1)	A106	C 107	L95	1PRC(H)	L6	A 7	L10	2SGA	L210	G211	L199
1BMV(1)	M 11	A12	V162	1PRC(H)	R 181	¥182	W172	2SGA	S214	G215	F227
1C2R(A)	127	V 28	I 19	1PRC(H)	T 169	D 170	E184	2SGA	T163	G164	0182
ICD4	136	L37	W28	1PSG	D195	S196	T262	2SGA	T89	G90	1105
1CD8	L49	L50	W35	1PSG	1204	A205	I197	2SNS	I15	K 16	K 24
1COB(A)	L142	A143	V117	1RBP	A130	D 131	L122	2STV	L128	K129	W 89
1COX	T251	E252	T264	1RBP	M 27	A28	V136	2STV	V68	S69	V191
1COX	V 275	A276	Q267	1RBP	Q38	D39	R6 0	2TRX(A)	A87	A88	L80
1CTF	K59	A60	Ē116	1RBP	Ř 121	L122	D 131	2TS1	N14	O 15	T219
1CTF	L94	K95	V56	1RBP	V107	D 108	V116	2TSC(A)	A148	F 149	¥164
1F3G	K 147	E148	K 167	1RNB(A) ^a	G53	D54	E73	3B5C`´	176	G77	V29
1F3G	V119	1120	M59	IRNB(A)	I109	R 110	196	3BCL	A272	G273	B 276
1F3G	V163	I 164	122	1RVE(A)	C21	G22	I24	3BCL	B 200	S201	R 214
1FBP(A)	V16 0	A161	I 138	1SNV Í	L231	G232	S243	3BCL	S316	¥317	L355
IFBP(A)	V 196	D 197	C183	1SNV	V227	A228	I219	3BCL	S323	S324	K331
1FC2(D) ^a	G371	F372	F404	ITGS(I)	051	K52	C24	3DFR	I 13	G14	T126
IFC2(D)	G385	O 386	S383	ITNF(A)	L93	1.94	180	3DFR	V139	S140	V157
1FKF	F36	D 37	G28	ITRB	E208	E209	R221	3FGF	E58	E59	V62
1FKF	17	S 8	R 71	ITRB	N85	K 86	N97	3GAP(A)	Ĩ.61	S62	V49
1FKF	L104	K 105	V23	ITRB	T218	G 219	T211	3GRS	K 252	E253	S264
1FNR	L43	L44	V61	1VSG(A)	E117	S118	S121	3GRS	V431	G432	V422
IFXI(A)	V52	S53	V86	IVSG(A)	¥214	V215	M210	3HLA(B) ^a	G29	F30	F62
1GCR	D38	S39	K2	2AZA(A)	181	A 82	L50	3LZM	L33	T 34	¥25
1GCR	G165	S166	¥134	2CA2	191	092	V 121	4DFR(A)	¥136	F 137	1155
1GCR	H122	S123	¥93	2CA2	1.57	Ř 58	E69	4ENL	\$3	K4	T24
IGCR	L127	E128	R 89	2ER7(E)	F275	G276	F284	4ENL	V 153	L154	F 169
IGCR	N33	S 34	¥6	2ER7(E)	K105	K 106	S81	4PTP	F41	C42	L33
IGCR	R 76	\$77	¥45	2FB4(H)	V48	A49	W 36	4PTP	147	N48	W51
IGD1(O)	V168	R 169	E245	2GLS(A)	\$145	G146	\$143	4PTP	0210	G211	V199
IGP1(A)	V172	R173	L164	2HIP(A)	V41	042	W45	4PTP	\$214	W215	V227
1HGE(A)	N248	C249	R201	21 TN(A)	1.33	T 34	H35	4PTP	S86	K87	K 107
THOE	R 68	¥69	V36	2LTN(A)	V147	N148	1139	4SGB(I)	A45	¥46	¥16
IHOE	¥56	G 57	S21	2LTN(B)	138	\$39	T68	45GB(I)	123	C24	¥15
1LDM	\$298	N299	V291	2MEV(1)	143	G44	V238	SCPA	138	G39	147
ILFG	E648	C649	N414	2MEV(3)	L192	T193	K123	5TMN(E)	L202	R 203	1188
iLFG	1305	G306	V81	2MEV(3)	1.77	A78	V189	7API(B)	L383	F384	M374
ILFG	1.247	A248	A 94	2000	\$51	H52	C24	7RSA	D121	A122	1107
ILFG	L591	A 592	A437	2PAB(A)	E89	H 90	V 94	7RSA	V 118	H119	A109
iLFG	¥410	L411	V 599	2PAB(A)	F44	A45	V32	8ADH	E74	875	R 37
ilFG	V7 7	A78	V255	2PLV(1)	V 87	T 88	¥259	8ADH	V 41	A42	A70
INSB(A)	A 94	1.95	1444	2PLV(2)	1.234	A235	A121	8DFR	116	G17	T146
INSB(A)	G246	1247	S243	2PLV(3)	182	L83	V192	9API(A)	S330	K331	E354
INSB(A)	H172	M173	L155	2PMG(B)	V533	M534	1500	9API(A)	V181	F182	A355
INSB(A)	1261	K262	K254	2POR	1257	D258	1254	9PAP	D 108	G109	V210
INSB(A)	M399	V400	M376	2POR	L271	G272	A275	9PAP	D 158	H159	L134
INSB(A)	T210	D211	I203	2REB	1228	G229	E241	9PAP	V164	G165	L172
INSB(A)	W176	S177	V192	2REB	1298	G299	¥291	9RNT	A87	G 88	V79
IOVA(A)	L383	F384	1374	2REB	V238	G239	V231	9RUB ^a	A 580	¥579	K490
10VA(A)	V210	T211	E214	2REB	V247	K248	R222	9RUB(B)	¥71	E72	K 81
1PHH	R214	S215	R 218								
a : a											
Classic – C –	1/20	CT 0	CTA		33/407	37400	D.407		DIAC	N107	DOG
IACX	V /8	G/9	G70	INSB(A)	W407	¥408	E42/	2FB4(H)	D100	¥107	K 98
IALD	KIIO	GIII	0125		L139	G140	1155	2FB4(H)	K 43	G44 E10	A40 B47
ICOB(A)	L82	G83	F43	IRVE(A)	L10/	G108	1189	2HIP(A)	G38 E222	E39	K4/
IF3G	G68	K 69	578	2CA2	K45	P46	G82	2MEV(1)	F 222	G223	
INSB(A)	S396	G397	L378	2ER7	1205	\$206	1195	9KUB(B)	H123	D 124	A20
G1G											
1ACX	G75	T 76	T72	1PRC(H)	G73	G74	L70	3FGF	G38	R39	H35
IAKE(A)	G130	R131	H126	1PSG	G244	E245	N241	3FGF	G 80	R 81	K 77
IBMV(I)	G 37	G38	D33	1RBP	Ğ127	T128	N124	3LZM	G23	Y24	D2 0
1C2R(A)	G24	T25	A21	1RBP	G51	052	D48	4ENL	G15	N16	D 12
ICOX	G272	N273	D269	1SNV	G224	R 225	D221	4ICD	G272	K273	N268
ICOX	G395	K396	N391	1TGS(I)	G28	129	G25	4SGB(I)	G20	A21	S17
1F3G	G 84	V85	S81	IUBO	G10	K 11	T7	5CPA	G44	R 45	S41
IFBP(A)	G 191	E192	D 187	2CYP	G228	¥229	S225	5PTI	G28	L29	N24
IFC2D	G402	S403	D399	2ER7(E)	G78	S79	¥75	5TMN(E)	G15	D 16	G12
IFKF	G33	K 34	L30	2FB4(H)	G179	L180	Q176	8ACN	G492	K493	G489
1FNR	G125	E126	N122	2FXB	G31	I32	D 28	8ACN	G720	T721	H717
IGLY	G407	D 408	D 403	2LIV	G338	T339	H335	8RXN(A)	G10	Y 11	C 6
1GP1(A)	G169	V 170	G166	2PAB(A)	G22	S23	D 18	9WGA(A)	G108	F109	S105
IHRH(A)	G462	R 463	T459	2POR	G38	L39	T35	9WGA(A)	G151	S152	S148
ILAP	G323	K324	A320	2TSC(A)	G106	R 107	T 103	9WGA(A)	G22	¥23	S19
1LFG	G578	K579	C575	3BLM	G54	K55	D 50	9WGA(A)	G65	H66	S62
IPRC(H)	G162	V163	A159	3FGF	G29	F30	C25				
II KC(II)	0104	105	ALS!	5101	627	¥ 30	025				

(continued)

PDB	1	2	x	PDB	1	2	X	PDB	1	2	х
G1T ICOB(A) IF3G IF3G IFKF IFKF IFNR	G112 G110 G116 G19 G69 G142	R113 Q111 D117 Q20 Q70 A143	1147 167 A61 L50 L103 C42	1PAZ 1PCY 1PCY 1PRC(H) 1SNV 1TNF(A)	G28 G24 G67 G154 G216 G129	D29 E25 E68 L155 R217 D130	V68 L74 N31 V168 V230 V50	2PMG(B) 2SAR(A) 2SGA 2SGA 2SGA 2SGA 2STV	G300 G34 G133 G19 G196 G169	F301 V35 Q134 E29 G197 A170	G297 E54 V162 L44 T213 D92
IHGE(A) 1HOE 1LAP 1LAP 1MSB(A)	G240 G51 G315 G49 G202	D241 Q52 D316 K50 L203	N170 N25 V328 G68 V199	2AZA(A) 2CA2 2CPP 2LIV 2PMG(B)	G90 G171 G315 G243 G297	E91 K172 D316 L244 K298	H35 N61 L301 W334 F301	3BLM 3GAP(A) 4PTP 4PTP 8ADH	G114 G67 G133 G196 G86	K115 D68 T134 G197 D87	197 142 1162 V213 V73
G1A 1CSE(I) 1HRH(A) ILAP ILDM ILFG ILZI IOVA(A) IPSG IRNB(A)	N61 K451 N81 C265 N234 R50 N380 D281 W94	V62 L452 W82 R266 T235 S51 A381 S282 L95	N57 N447 D77 L292 C231 N46 H376 D279 S91	1TNF(A) 2CYP 211B 2LTN(A) 2OVO 2PAB(A) 2PAB(A) 2REB	N46 N219 N129 N171 N28 D39 N27 F255	Q47 N220 M130 V172 K29 T40 V28 K256	R44 N216 A28 N167 G25 A36 T49 V246	2RHE 3FGF 3FGF 3HLA(B) 7AP1(B) 8ACN 8ATC(B) 9RNT	D97 N102 N71 W60 K380 Q611 E142 N84	E98 Y103 R72 S61 S381 E612 K143 Q85	N93 E99 G67 S57 E376 N607 C138 N81
G1AT 1CD4 1GP1(A)	Q165 F160	K 166 E161	Q163 N40	1VSG(A) 2MEV(3)	1140 D184	G141 G185	V143 V82	2SGA 8DFR	S174 D145	G175 T146	¥171 G17
Wide (antipari IACE IBBP(A) ICTF IFBP(A) IFNR IHGE(A) ILAP INSB(A) INSB(A)	allel) L31 C43 E96 P119 G149 Q132 G56 E116 E275	G32 G44 G97 L120 P150 N133 L57 P117 C276	N98 H61 D55 T134 V76 L154 P62 A55 C215	1PSG 1RBP 1RNH 1RVE(A) 2ER7(E) 2ER7(E) 2FB4(H) 2MEV(1) 2MEV(1) 2MEV(3)	T97 N40 G165 T205 T97 K148 N244 P194	N98 141 R41 V166 S206 G98 D149 M245 L195	T88 G59 P19 Y137 T195 T88 S182 C125 G122	2PLV(2) 2PLV(2) 2SGA 2SGA 2STV 3GRS 5HVP(A) 8ACN 8ATC(B)	C257 P236 L165 Y178 S34 P280 D60 E553 D19	C258 L237 N166 G179 G35 D281 Q61 D554 H20	S388 G120 I181 T168 D185 E262 T74 T698 L58
PC 1ALD 1CSE(E) 1GD1(0) 1LAP 1RVE(A) 2GBP	E120 173 V44 V27 1252 Y128 O175	G74 V45 V28 T253 I129 L176	G28 L90 V3 C303 K86 F143	2PLV(I) 2LIV 2TS1 2YHX 2YHX 4DFR(A) 4FNL	V 169 C186 I204 S183 V93 I291	V170 R187 K205 V184 I94 V292	F130 1141 T32 H387 L133 I41 I243	4MDH(A) 5CPA 8ACN 8ACN 8ACN 8ACN 8ADH	L46 F189 G656 I350 I557 I346	N47 K65 K190 R657 R351 L558 T347	D57 I35 A61 W630 T440 V631 P369
PW 1HGE(A) 2GLS(A)	T276 L332	C277 A333	N53 S342	2PLV(2) 2TSC(A)	A29 G197	N30 D198	A490 S160	8ATC(A) 8DFR	A127 D110	G128 M111	R105 N48
A-bent 1PAZ 2MEV(3)	M16 A102	N9 M221		2PLV(1) 2PLV(2)	T126 Y100	C270 G262		2PLV(3) 2TSC(A)	T108 G31	L224 G204	
P-bent ICOX IOVA(A)	N283 R345	P 13 E195		ITRB	D 106	K 7		2TSC(A)	G204	R 166	
S2 1GCR	G13	H 14	E 7	1GCR	G52	H53	E 46	1GCR	G141	R 142	E135
				x	1		2	3	4		
	Speci 1A 1F 1H 1M 1N 1N 1N 1P	al CE BP(A) (GE(A) (SB(A) SB(A) SB(A) SG	SPW SP3 S4 S3 S3 S4 S4 S3	T110 C92 S145 A215 H113 G300 L84	D19 G1 N1: N1 H1: S40 T67	90 11 37 15 33 11	P191 K112 A138 H116 Y134 M402 S68	K192 Y113 C139 E117 A135 K403 O69	T193 K140 E404		
	1R 1V 2E 2P 3L	VE(A) SG(A) R7(E) MG(B) ZM	53 54 54 5PW 5W	G190 G5 V84 G59 I27	G17 D18 L66 G88 R14	78 32 3	D179 N183 S67 Q89 L15	L180 D184 G68 N90 K16	A185 A69 G91 I17		

^a Irregular bulges.

A 2SGA

B 2ER7

Fig. 5. Stereo pictures of (A) classic (2SGA; Sielecki et al., 1979), (B) wide (2ER7; Veerapandian et al., 1991), and (C) bent (1PAZ; Petratos et al., 1987) bulges. Only main-chain atoms are shown, with $C\alpha$ positions given by the white spheres. Residues 1, 2, and X are marked in each case at the $C\alpha$ position. Hydrogen bonds are indicated by dotted lines in the right-hand stereo picture. The illustrations were produced using the MOLSCRIPT program (Kraulis, 1991).

C IPAZ

hydrogen bond is absent in these bulges. The plane of the turn and its hydrogen bond is almost perpendicular to the plane of the G1 bulge. A wide range of G1 bulges, along with β -turns, has already been studied by Milner-White (1987) because G1 bulges are usually associated with regions containing a β -hairpin turn (Sibanda & Thornton, 1985; Fujinaga & James, 1987; Sibanda et al., 1989). Milner-White proposed that G1 bulges be treated as a new sort of loop-turn. This combined structure has a consistent handedness that is constrained by the requirements of the three hydrogen bonds (see Kinemage 5). Also, ev-

The only six examples of the G1AT subclass differ quite considerably from one another in conformation; therefore, no attempt was made to classify them further.

The hydrogen-bonding pattern for G1 bulges is similar to that of the classic bulges, except that residue 1 is always at the beginning of the β -strand (or at the end of a loop). The subclasses G1T and G1AT differ from the other G1 subclasses by virtue of the Type I' or Type II turn involving the residue at position 2. The turn uses up one of that residue's available hydrogen bonds, namely that from the NH(2) group; hence, the NH(2) to CO(X)

	1		2		Х		
	φ	ψ	φ	ψ	φ	Ý	
			Antiparallel β -sheet				
Classic							
C+	-96.0 (32.4)	-31.3 (19.8)	-159.6 (25.5)	163.9 (78.7)	-114.0 (20.0)	128.3 (12.1)	
C-	-110.5 (8.4)	-22.1 (47.0)	-200.5 (73.4)	160.4 (18.4)	-100.8 (29.9)	134.1 (23.8)	
Gl	. ,	• •					
G1G	82.0 (39.0)	13.8 (26.7)	-96.3 (31.6)	146.3 (15.0)	-85.3 (16.7)	154.3 (27.5)	
G1T	85.1 (37.3)	-10.6 (32.0)	-77.5 (18.6)	149.7 (17.0)	-82.2 (18.5)	127.9 (23.4)	
GIA	64.9 (10.6)	26.6 (17.3)	-109.9 (29.4)	150.0 (11.6)	-94.0 (16.8)	145.4 (39.9)	
Wide							
β-αι	-106.9 (15.5)	154.7 (11.7)	58.2 (9.5)	44.6 (12.1)	-110.1 (23.1)	136.9 (10.0)	
$\alpha_L - \beta$	44.3 (18.9)	47.7 (18.2)	-73.7 (14.1)	138.0 (9.5)	-156.5 (19.8)	159.9 (15.0)	
			Parallel β -sheet				
РС	-84.3 (13.6)	117.4 (16.6)	-95.0 (21.0)	-23.0 (16.2)	-120.7 (20.5)	148.4 (19.3)	
PW	-97.8 (8.2)	8.2 (96.1)	181.4 (75.6)	163.8 (21.3)	-102.9 (25.4)	99.7 (72.4)	

Table 3. ϕ , ψ angles for different classes of bulges^{a,b}

^a Each number represents the average value of the angles in a set of β -bulges.

^b Number in parentheses denotes standard deviation.

		P_{β}^{b}	1		2		Х	
Amino acid	hdª		F _{aai/bulge}	N _{aai}	F _{aai/bulge}	N _{aai}	F _{aai/bulge}	N _{aai}
I	0.73	1.60	1.60	21	0.23	3	1.60	21
F	0.61	1.28	0.50	4	0.75	6	0.38	3
v	0.54	1.65	1.72	31	0.17	3	1.89	34
L	0.53	1.22	1.96	27	0.65	9	0.94	13
W	0.37	1.19	0.41	1	0.41	1	3.29	8
М	0.26	1.67	0.88	3	0.58	2	1.46	5
Α	0.25	0.97	0.89	9	2.26	23	0.79	8
G	0.16	0.81	0.20	2	2.74	28	0.10	1
С	0.04	1.30	0.28	1	1.13	4	0.85	3
Y	0.02	1.29	0.44	3	0.59	4	1.32	9
Р	-0.07	0.62	0.00	0	0.00	0	0.00	0
Т	-0.18	1.20	0.56	6	0.46	5	0.74	8
S	-0.26	0.72	1.17	11	2.02	19	0.64	6
Н	-0.40	0.71	0.64	2	1.28	4	0.32	1
Ε	-0.62	0.26	1.15	7	1.15	7	1.15	7
N	-0.64	0.65	0.88	4	0.66	3	0.44	2
Q	-0.69	1.23	0.74	3	0.98	4	0.49	2
D	-0.72	0.80	0.87	5	1.39	8	0.17	1
К	-1.10	0.74	0.50	4	1.50	12	1.00	9
R	-1.80	0.90	0.90	5	0.90	5	1.61	9

Table 4. Frequency of occurrence for the classic antiparallel bulges

^a The scale of hydrophobicity was taken from Eisenberg et al. (1982). ^b P_{β} is the propensity of a residue forming a β -structure (Chou & Fasman, 1974). The normalized frequency of occurrence for a particular amino acid inside a bulge ($F_{aai/bulge}$) was calculated by the following formula:

$$F_{aai/bulge} = (N_{aai}/N_{tot})/F_{aai/\beta},$$

where N_{aai} = total number of amino acid *i* found in the bulge region (i.e., position 1, 2, or X) from a particular class of β -bulge, N_{tot} = total number of a particular class of β -bulge, and $F_{aai/\beta}$ = percentage frequency of occurrence of amino acid *i* in β -sheet in this data set.

Fig. 6. Ramachandran plot of residues 1, 2, and X for classic, wide $(\alpha_L \beta)$ and G1 bulges in antiparallel β -sheets.

ery one of the G1G examples is a bulged hairpin, with position 1 being located at either X + 3 (38 cases) or X + 4(12 cases) along the chain (see Kinemage 4). This hairpin loop structure is very common (Sibanda & Thornton, 1985) and presumably represents a particularly stable conformation.

The first thing to note is that proline is entirely absent from G1 bulges. By far the most favored amino acid at position 1 is glycine (see Table 5). This is easily explained: in all G1 bulges, the residue at position 1 adopts an α_L conformation and this is best achieved by having a glycine residue at this position. Thus, the examples in the G1G and G1T subclasses (which are defined as those having glycine at position 1) outnumber the G1A and G1AT examples.

Bulges that do not have glycine at position 1 (i.e., subclasses G1A and G1AT) tend to favor asparagine instead. Asparagine has less main-chain flexibility than glycine, which is reflected in the statistics for the ϕ torsion angles at position 1 for these subclasses. For the G1G bulges, the mean value is around $82 \pm 39^{\circ}$, whereas in the G1A bulges it is $65 \pm 11^{\circ}$.

Position 2 favors charged groups, whereas position X favors asparagine or aspartic acid (see Table 5). We have looked at the side-chain hydrogen bonding in those bulges with a charged group at position 2. Fifty percent of them have their side chains hydrogen-bonded to the bulge residues at position X (which favors Asp or Asn). Forty percent have their side chains hydrogen-bonded to a residue around the bulged region, and the remaining 10% are hydrogen-bonded to some other residue in the protein. In G1A and G1AT bulges, the side chain of residue 1 is on the opposite side of the β -sheet from the side chains of positions 2 and X.

Wide class (antiparallel)

Wide bulges in antiparallel β -sheets are defined as those occurring between the widely spaced pairs of hydrogen bonds. This class can be subdivided into the β - α_L and α_L - β subclasses, describing the conformations of the residues at position 1 and 2. Because these residues are not involved in any main-chain bonding with other residues, they can adopt either the β or α_L conformations. The β - α_L -bulge is the more common of the two subclasses.

Because the residue at X is already involved in hydrogen bonding to another strand, it is not available to hydrogen bond with one of the reversed residues. The orientation of the side chains depends on the subclass (see Kinemage 2).

Given that there are only 30 examples of wide bulges, it is difficult to draw conclusions about the preferences of amino acids for positions 1, 2, and X. There are, however, some general rules. At position 2 (in the α_L conformation), no hydrophobic group is observed, and glycine,

			1 2			Х		
Amino acid	hd ^a	$P_{eta}{}^{\mathrm{b}}$	$F_{\mathrm{aa}i/\mathrm{bulge}}$	N _{aai}	$F_{\mathrm{aa}i/\mathrm{bulge}}$	N _{aai}	$F_{\mathrm{aa}i/\mathrm{bulge}}$	N _{aai}
I	0.73	1.60	0.00	0	0.21	2	0.53	5
F	0.61	1.28	0.17	1	0.52	3	0.17	1
v	0.54	1.65	0.00	0	0.54	7	0.76	10
L	0.53	1.22	0.00	0	0.80	8	0.80	8
w	0.37	1.19	1.13	2	0.57	1	0.57	1
Μ	0.26	1.67	0.00	0	0.40	1	0.00	0
Α	0.25	0.97	0.00	0	0.54	4	0.81	6
G	0.16	0.81	11.30	84	0.54	4	1.08	8
С	0.04	1.30	0.39	1	0.00	0	2.34	6
Y	0.02	1.29	0.00	0	1.01	5	0.20	1
Р	-0.07	0.62	0.00	0	0.00	0	0.00	0
Т	-0.18	1.20	0.00	0	1.02	8	0.90	7
S	-0.26	0.72	0.00	0	1.17	8	1.61	11
н	-0.40	0.71	0.00	0	0.44	1	2.65	6
E	-0.62	0.26	0.23	1	2,03	9	0.68	3
N	-0.64	0.65	3.95	13	0.91	3	5.47	18
Q	-0.69	1.23	0.34	1	3.04	9	0.34	1
D	-0.72	0.80	0.71	3	2.38	10	3.57	15
K	-1.10	0.74	0.34	2	2.59	15	0.17	1
R	-1.80	0.90	0.25	1	2.71	11	0.25	1

Table 5. Frequency of occurrence for the G1 bulges (GIG + GIA + GIT)

^a The scale of hydrophobicity was taken from Eisenberg et al. (1982).

^b P_{β} is the propensity of a residue forming a β -structure (Chou & Fasman, 1974).

asparagine, and aspartic acid occur most frequently. This is due to the ϕ , ψ angle preferences for these amino acids. Position 1 favors proline, aspartic acid, and glutamic acid, whereas position X has a high occurrence of threonine.

Parallel bulges: PC and PW

Bulges are less common in parallel β -sheets than in antiparallel ones. Two subclasses are defined for them: parallel classic (PC) and parallel wide (PW).

In the PC subclass, the residue at position 2 is hydrogen bonded to residue X, with NH(2) bonded to CO(X), and is in the α_R conformation. Both residues 1 and X remain in the β conformation, but with the ϕ angles clustered at approx. -84° . The distortion of residue 2 into the $\alpha_{\rm R}$ conformation disrupts the usual side-chain alternation and results in residues 1 and 2 pointing in opposite directions. It also causes a shift in the bonding pattern of the residues preceding the one at position 2 and places two residues opposite one (see Fig. 3). In this subclass, all positions favor hydrophobic residues, but because there are only 18 examples, it is not possible to draw general conclusions about the amino acid preferences for these bulges. The PW subclass is similar to the antiparallel wide class in that it involves no hydrogen bonding between the residues of the bulge (see position 2 of PW in Fig. 3). Residues 2 and X are in the β conformation, whereas the ϕ torsion angle of residue 1 is around $-98 \pm 8^{\circ}$, and its ψ

torsion angle varies between -120° and 120° . The net result is that if ψ has a negative value, then all three side chains are on the same side. When ψ has a positive value, side chains of 1 and X are on the same side opposite to that of 2. Figure 3 illustrates the first case. Only six examples of the PW subclass were found in the data set.

Bent-type

"Bent" bulges do not occur frequently in β -sheets. However, the distortion affects the β -sheet in guite a drastic manner. These bulges have an extra residue in each strand of the β -ladder (Figs. 2, 3). We have called these two residues 1 and 2. There is no X position in this class. In the antiparallel examples (Fig. 2; Kinemage 3), residue 1 donates a hydrogen bond to residue 2 of the opposite strand (NH(1) to CO(2)). There are three cases where NH(1) is also hydrogen-bonded to the residue preceding residue 2. The conformations of residues 1 and 2 are either $\alpha_L - \alpha_R$ or $\alpha_{\rm R}$ - $\alpha_{\rm L}$. In the cases of parallel sheets (Fig. 3), the normal hydrogen-bonding pattern is interrupted and the main-chain conformation of both "inserted" residues is $\alpha_{\rm R}$. This special combination of angles gives a bend or a curve to the β -ladder. Instead of one residue bulging out as in classic bulges, the whole ladder forms a hump. The twist angle at the bulged residue is 45° and is slightly larger than that observed in a classic bulge.

Special bulges

A total of six different kinds of special bulges were found in antiparallel and parallel sheets, although all of these are rare. One of them, labeled as "Gx", is the same as those found by Richardson et al. (1978). The others are labeled by a prefix "S", and their hydrogen-bonding diagrams are shown in Figure 4. Basically these bulges are very similar to the classic ones in both kinds of β -sheets, except that there are more extra residues in the bulged strand. The S3- and S4-types in the antiparallel sheets have three and four residues involved in the bulged region, respectively. The SW-type is similar to the antiparallel wide-type, but with two more residues involved at the bulge region. In these cases, the bulge region is very large and all these special bulges occur at the edges of β -sheets. The side chains of the bulge residues are more or less on the same side of the β -sheet. The main-chain conformations of the bulged residues are very irregular. For example, in mannose-binding protein (1MSB; Weis, 1991), the ϕ , ψ angles for position 1 are -120° and 10° , respectively, and residue 2 is in the $\alpha_{\rm L}$ conformation. In another example, influenza virus neuraminidase (1NSB; Burmeister, 1992), the ϕ , ψ angles for position 1 are -90° and 13°, respectively, and position 2 is again $\alpha_{\rm L}$. Another type Gx bulge was only found in γ -crystallin (1GCR; Wistow et al., 1983). It can be viewed as two extra residues opposite one extra on the other strand (see Fig. 4), with a specific hydrogen bond from NH(X) to CO(2).

In parallel sheets, SP3 is similar to PC and SPW is similar to PW. As in the cases of antiparallel sheets, their ϕ , ψ angles are very irregular. For example, in acetylcholinesterase (1ACE; Sussman et al., 1991), the angles are as follows: X = (-51°, 135°), 1 = (-84°, 99°), 2 = (-59°, -12°), 3 = (-92°, 0°), 4 = (-148°, 75°).

Interconversion of classic and wide bulges

In principle, a classic bulge can interchange with a wide one by changing the conformation of one residue from $\alpha_{\rm R}$ to $\alpha_{\rm L}$. The local twist produced by both types is very similar, and they superimpose well (Fig. 7; Kinemage 6). Residue 1 in the classic bulge is equivalent to residue 2 in the wide-type (Fig. 8). The classic bulge has an additional hydrogen bond between the residue marked A in Figure 8 and the shaded residue. If this hydrogen bond exists, and the shaded residue is in α_R conformation, a classic bulge is formed. Alternatively, if the hydrogen bond is not formed, and the shaded residue has an α_L conformation, then a wide bulge is formed. Because most amino acids prefer an α_R to an α_L conformation, classic bulges are more likely to be formed, as can be seen from the relative numbers of the two bulge types in our data set. However, as discussed earlier, residues that can adopt the $\alpha_{\rm L}$ conformation (e.g., glycine, asparagine, and aspartic acid) are favored at position 2 of a wide bulge, and so the

Fig. 7. Stereo pictures showing superimposed a classic (thick bonds and black non- $C\alpha$ main-chain atoms) and a wide (thin bonds and gray non- $C\alpha$ main-chain atoms) bulges. Both bulges are taken from 2SGA (Sielecki et al., 1979). Hydrogen bonds for the wide bulge are indicated by dashed lines in the right-hand picture, whereas those for the classic bulge are indicated by dotted lines.

sequence at this position may determine the type of bulge formed.

Proline in β -bulges

It has been speculated that proline may be involved in the formation of β -bulges because it has no free NH group and therefore cannot be a hydrogen-bond donor. It therefore may distort a β -ladder. However, proline is only occasionally observed in β -bulges. In this data set, only 10 proteins have a proline residue in the bulge region, with eight of them found in the wide bulges. Even in wide bulges, proline can only occur in the position where it does not need to adopt the α_L conformation (see Fig. 9). The inability of proline to donate a hydrogen bond prevents its occurrence at positions 1, 2, or X in a C+ bulge. However, we have found eight proteins where proline immediately precedes position 1 in these bulges, which could be interpreted as one factor in bulge formation. The inability of proline to take part in the formation of a narrow hydrogen-bonding residue pair in antiparallel β -strands may cause subsequent residues in the strand to form a bulge.

Role of β -bulges

The effect of bulges on the directions of β -strands and the orientation of side chains can affect the positioning of crucial residues in a protein. Thus, bulges are thought to play an important biological role in proteins. In superoxide dismutase, for example, the strategic placement of two bulges at the end of each loop allows the two loops to peel away from the β -barrel and enclose the active site (Getzoff et al., 1989). The bulges in human lactoferrin were thought to be a common mode of entry to and exit

Fig. 8. Relationship between the classic and wide bulges in antiparallel sheets. Each circle denotes a residue.

from a β -sheet (Anderson et al., 1989), whereas in β - and α -crystallin, bulges at the ends of the *d* strands accentuate the local twist of the sheets and allow the strands to turn abruptly (Lapatto et al., 1991).

Because of these important functional roles, it is thought that β -bulges must be well conserved (Bajaj & Blundell, 1984; Chothia, 1984). This has been found in dihydrofolate reductase, where two bulges involved in positioning active-site residues are conserved across several species (Howell et al., 1990). The wide β -bulge found in the common cold virus, human rhinovirus 14, is conserved in amino acid composition from one viral capsid protein to another (Arnold & Rossmann, 1990). An alternative possible role for β -bulges is to accommodate insertions or deletions in β -strands, while preserving the hydrogen-bonding pattern in the remainder of the strand. In order to understand more about the function of β -bulges, we have looked at the immunoglobulins and aspartic proteinase¹ families,

¹ Immunoglobulins studied: 2RHE, 4FAB, 2HFL, 2IGF, 2MCP, 1REI, 2FB4, 1CD4, 1CD8; aspartic proteinases studied: 3APP, 2ER7, 4CMS, 5PEP.

Fig. 9. Proline as a favorable element in wide bulges but not in classic bulges. The dashed arrow denotes a possible hydrogen bond that could form (for a non-Pro residue) in the absence of a β -bulge.

for which a reasonable number of crystal structures are known.

 β -Bulges in the immunoglobulin family are quite well conserved. A C+ bulge was found in all nine proteins studied (Fig. 10). The sequence of the bulge is also conserved: residue X is always tryptophan, whereas residues 1 and 2 are hydrophobic groups (isoleucine or leucine). A wide bulge is also found in all proteins except CD4, and the sequence of this bulge is also conserved. These two bulges are believed to be involved in the dimerization of the two domains of the immunoglobulin family because the bulges give a twist to the corresponding β -strand (Chothia et al., 1985; Jones et al., 1992). All these proteins dimerize except CD4, and the absence of the wide bulge in CD4 may be responsible for its inability to do so.

Figure 11 shows the alignment of the four aspartic proteinases. A special β -bulge is found in all these proteins, but the subclass is not the same in each case. Pepsin (5PEP; Cooper et al., 1990) and chymosin (4CMS; Newman et al., 1991) have an SP3 bulge, whereas endothiapepsin (2ER7; Veerapandian et al., 1991) and penicillopepsin (3APP; James & Sielecki, 1983) have an SP4 bulge. The change in bulge type seems to accommodate the extra residue (glycine) in 2ER7 and 3APP. A wide bulge is conserved in another region of each of these proteins, though the residues involved are different in each case.

```
C+ Bulge:
            х
                        12
2RHE 37 NSVIWYQQVPGKAPKLLIYYN
4FAB 36 TYLRWYLQKPGQSPKVLIYKV
2HFL 30 NYMYWYQQKSGTSPKRWIYDT
2IGF 31 TYLEWYLQKPGQSPKLLIYKV
2MCP 37 NFLAWYQQKPGQPPKLLIYGA
1REI 31 KYLNWYQQTPGKAPKLLIYEA
2FB4 30 STVNWYQQLPGMAPKLLIYRD
1CD4 24 IOFHWKNSN
                     QIKILGNQ
1CD8 33
          CSWLFQPRGASPTFLLYLS
Wide Bulge: X
                           12
2RHE 84 EADYYCAAWNDSLDEPGFGGGTKLTVLG
4FAB 88 LGVYFCSQSTH
                     VPWTFGGGGTKLEIKR
2HFL 82 AAEYYCQQWG
                     RNPTFGGGTKLEIKR
21GF 83 LGVYYCFQGSH
                     VPPTFGGGTKLEIKR
2MCP 80 LAVYYCQNDHS
                     YPLTFGAGTKLEIKR
1REI 83 IATYYCQQYQS
                     LPYTFGQGTKLQIT
2FB4 82 ETDYYCAAWDVSLNAYVFGTGTKVTVLG
1CD4 79 SDTYICEVED
                         OKEEVQLLVFG
1CD8 88 NEGYYFCSALSNSIMYFSHFVPVFLPA
```

Fig. 10. Alignment of regions of the nine members of the immunoglobulin family showing classic and wide bulges. All sequences were from the light chain. Only the first residue is numbered. Bold type denotes bulges. Special bulge:

position	n		1.2	34	bulge-type
3APP	58	NPS	ATGKE LS	GYTWSISY	SP4
2ER7	57	TPSK	STTAKL LS	GATWSISY	SP4
4CMS	57	DPRK	SSTFQN LG	K PLSIHY	SP3
5PEP	57	NPDD	sstfea ts	QELSITY	SP3
Wide bul	lge	:			
positior	ı			х	12
3APP	76	GDGS	SASGNVFTI	D S VTVGGVT.	a hg qavqaa
2ER7	76	GDGS	SSSGDVYTI) T VSVGGLT	V TG QAVESA
4CMS	76	GT G	SMQGILGYI	OTVTVSNIV	DIQQTVGLS
5PEP	76	GT G	SMTGILGYI	D T VQVGGIS	D TNQ IFGLS

Fig. 11. Alignment of regions of the four members of the aspartic proteinase family, showing special and classic bulges. Bold type represents the β -bulge. Only the first residue is numbered.

This brief analysis of two protein families shows examples of at least two possible roles for β -bulges in proteins (Richardson et al., 1978). Some bulges, which are important for the function of the protein, are very well conserved. Other bulges seem to play the role of accommodating insertions of a small number of residues within β -strands.

Conclusions

We have developed a program that can automatically extract and classify β -bulges according to their conformation and hydrogen-bonding patterns. Bulges occur frequently in proteins; on average there are more than two bulges per protein. This, together with the observation that hydrogen-bond energies in classic bulges and undistorted antiparallel β -sheets are very similar, suggests that a bulge must be a relatively low-energy conformation. This may be supported by a recent experimental study in which isolated tripeptides were found to adopt backbone torsion angles consistent with a classic β -bulge (Parthasarathy et al., 1993). The amino acid preferences for the β -bulges, summarized in Table 6, should be useful in assigning residues to electron-density maps and in modeling by homology.

Table 6. Amino acid preferences for β -bulges

Class	1	2	x
C+	Ile, Val, Leu	Gly, Ala, Ser	Trp, Val, Arg, Ile
Gl	Gly, Asn	Arg, Lys, Asp, Glu, Gln	Asn, Asp, His, Cys, Ser
Wide (anti)	Pro, Asp, Glu	Gln, Asn, Asp	Thr

In general, β -bulges produce two main changes in the structure of a β -sheet: (1) disrupt the normal alternation of side-chain direction; (2) accentuate the twist of the sheet, altering the direction of the surrounding strands. In some cases, these effects are clearly important for the function of the protein, and the bulges are conserved within a protein family. Other bulges occur when additional residues are inserted in a β -strand. However, there clearly is no simple reason for the occurrence of a bulge; rather, formation of bulges is the result of a complex interplay of sequential and environmental factors.

Data

For this study, a set of 182 protein chains (170 proteins) was extracted from the April 1992 release (including the prereleases) of the Brookhaven Protein Data Bank (Bernstein et al., 1977). The protein chains were selected such that no two have a sequence homology greater than 35%. The method used was that of Orengo et al. (1993), in which the proteins were first sorted by resolution and clustered into families using a pairwise homology matrix. The four-letter Brookhaven codes for the 182 protein chains in the data set are listed below, with the chain identity in parentheses (Brookhaven codes and protein names appear on the Diskette Appendix):

1ABP, 1ACE, 1ACX, 1AKE(A), 1ALD, 1AMT(A), 1BBP(A), 1BMV(1), 1CD4, 1C2R(A), 1CD8, 1COB(A), 1COL(A), 1COX, 1CRN, 1CSE(E,I), 1CTF, 1CY3, 1ECD, 1F3G, 1FBP(A), 1FC2(D), 1FKF, 1FIA(A), 1FNR, 1FXI(A), 1GCR, 1GD1(O), 1GLY, 1GMF(A), 1GOX, 1GP1(A), 1GST(A), 1HDD(C), 1HGE(A,B), 1HOE, 1HRH(A), 1ITH(A), 1LAP, 1LDM, 1LFG, 1LMB(A), 1LZ1, 1MBA, 1MBD, 1MSB(A), 1NSB(A), 10VA(A), 1PAZ, 1PCY, 1PFK(B), 1PGD, 1PHH, 1PII, 1PPT, 1PRC(C,H,L), 1PSG, 1PYP, 1R69, 1RBP, 1RHD, 1RNB(A), 1RNH, 1ROP(A), 1RVE(A), 1SDH(A), 1SNV, 1TAB(I), 1TGL, 1TGS(I), 1THB(A), 1TNF(A), 1TPK(A), 1TRB, 1UBQ, 1UTG, 1VSG(A), 1WSY(A), 256B(A), 2AZA(A), 2CA2, 2CCY(A), 2CDV, 2CI2(I), 2CPP, 2CSC, 2CYP, 2ER7(E), 2FB4(H), 2FCR, 2FXB, 2GBP, 2GLS(A), 2GN5, 2HIP(A), 2HMZ, 2I1B, 2LH3, 2LIV, 2LTN(A,B), 2MEV(1,3,4), 2OVO, 2PAB(A), 2PLV(1,2,3,4), 2PMG(B), 2POR, 2REB, 2RHE, 2RSP(A), 2SAR(A), 2SCP(A), 2SGA, 2SIC(I), 2SNS, 2STV, 2TIM(A), 2TMV(P), 2TRX(A), 2TS1, 2TSC(A), 2WRP(R), 2YHX, 2ZTA(B), 3B5C, 3BCL, 3BLM, 3CHY, 3DFR, 3EBX, 3FGF, 3GAP(A), 3GRS, 3HLA(B), 3LZM, 3PGK, 3PGM, 3SDP(A), 451C, 4BP2, 4CPV, 4DFR(A), 4ENL, 4FD1, 4FXN, 4ICB, 4ICD, 4INS(B,C), 4MDH(A), 4PTP, 4SGB(I), 5CPA, 5CYT(R), 5HVP(A), 5PTI, 5TMN(E), 5TNC, 6RLX(A), 6XIA, 7API(B), 7RSA, 8ACN, 8ADH, 8ATC(A,B), 8DFR, 8RXN(A), 9API(A), 9PAP, 9RNT, 9RUB(B), 9WGA(A).

Acknowledgments

Italfarmaco partially supported this work and financed A.W.E.C. during her stay in London. We thank R.A. Laskowski for help and comments. We acknowledge financial support from SERC (E.G.H.).

References

- Anderson, B.F., Baker, H.M., Norris, G.E., Rice, D.W., & Baker, E.N. (1989). Structure of human lactoferrin: Crystallographic structure analysis and refinement. J. Mol. Biol. 209, 711-734.
- Arnold, E. & Rossmann, M.G. (1990). Analysis of the structure of a common cold virus, human rhinovirus 14, refined at a resolution of 3.0 Å. J. Mol. Biol. 211, 763-801.
- Bajaj, M. & Blundell, T.L. (1984). Evolution and the tertiary structure of proteins. Annu. Rev. Biophys. Bioeng. 13, 453-492.
- Bernstein, F.C., Koetzle, T.F., Williams, G.J.B., Meyer, E.F., Brice, M.D., Rodgers, J.R., Kennard, O., Shimanouchi, T., & Tasumi, M. (1977). The Protein Data Bank: A computer based archival file for macromolecular structure. J. Mol. Biol. 112, 535-542.
- Burmeister, W.P., Ruigrok, R.W.H., & Cusack, S. (1992). The 2.2 Å resolution crystal structure of influenza B neuraminidase and its complex with sialic acid. *EMBO J.* 11, 49-56.
- Chothia, C. (1984). Principles that determine the structure of proteins. Annu. Rev. Biochem. 53, 537-572.
- Chothia, C., Novotny, J., Bruccoleri, R., & Karplus, M. (1985). Domain association on immunoglobulin molecules – The packing of variable domains. J. Mol. Biol. 186, 651-663.
- Chou, P.Y. & Fasman, G.D. (1974). Conformational parameters for amino acids in helical, β -sheet and random coil regions calculated from proteins. *Biochemistry 13*, 211-222.
- Cooper, J.B., Khan, G., Taylor, G., Tickle, I.J., & Blundell, T.L. (1990). X-ray analyses of aspartic proteinases. 2. 3-Dimensional structure of the hexagonal crystal form of porcine pepsin at 2.3 Å resolution. J. Mol. Biol. 214, 199-222.
- Eisenberg, D., Weiss, R.M., Terwilliger, T.C., & Wilcox, W. (1982). Hydrophobic moments and protein structure. Faraday Symp. Chem. Soc. 17, 109-120.
- Feldmann, R.J. (1976). Atlas of Macromolecular Structure on Microfiche. Tracor-Jitco, Rockville, Maryland.
- Fujinaga, M. & James, M.N.G. (1987). Rat submaxillary gland serine protease, tonin structure solution and refinement at 1.8 Å resolution. J. Mol. Biol. 195, 373-396.
- Getzoff, E.D., Tainer, J.A., Stempien, M.M., Bell, G.L., & Hallewell, R.A. (1989). Evolution of CuZn superoxide dismutase and the Greek key β -barrel structure motif. *Proteins Struct. Funct. Genet. 5*, 322-336.
- Howell, E.E., Booth, C., Farnum, M., Kraut, J., & Warren, M.S. (1990). A second-site mutation at phenylalanine-137 that increases catalytic efficiency in the mutant aspartate-27, refined at a resolution of 3.0 Å. *Biochemistry 29*, 8561-8569.
- Hutchinson, E.G. & Thornton, J.M. (1990). HERA-A program to draw schematic diagrams of protein secondary structure. *Proteins* Struct. Funct. Genet. 8, 203-212.
- James, M.N.G. & Sielecki, A.R. (1983). The structure and refinement of penicillopepsin at 1.8 Å resolution. J. Mol. Biol. 163, 299-361.
- Jones, E.Y., Davis, S.J., Williams, A.F., Harlos, K., & Stuart, D.I. (1992). Crystal structure at 2.8 Å resolution of a soluble form of the cell adhesion molecule CD2. *Nature 360*, 232-239.
- Kabsch, W. & Sander, C. (1983). Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. *Biopolymers 22*, 2577-2637.
- Kraulis, P.J. (1991). MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946-950.
- Lapatto, R., Bax, N.B., Driessen, H., Lindley, P.F., Blundell, T.L., & Slingsby, C. (1991). High resolution structure of an oligometric eye lens β-crystallin. J. Mol. Biol. 222, 1067-1083.
- Lundqvist, T. & Schneider, G. (1991). Crystal-structure of activated ribulose-1,5-bisphosphate carboxylase complexed with its substrate, ribulose-1,5-bisphosphate. J. Biol. Chem. 266, 12604-12611.

- Milner-White, E.J. (1987). Beta-bulges within loops as recurring features of protein structures. Biochim. Biophys. Acta 911, 261-265.
- Newman, M., Safro, M., Frazao, C., Kahn, G., Zdanov, A., Tickle, I.J., Blundell, T.L., & Andreeva, N. (1991). X-ray analyses of aspartic proteinases 4. Structure and refinement at 2.2 Å resolution of bovine chymosin. J. Mol. Biol. 221, 1295-1309.
- Orengo, C.A., Flores, T.P., Taylor, W.R., & Thornton, J.M. (1993). Identification and classification of protein fold families. *Protein Eng.* 6, 485-500.
- Parthasarathy, R., Go, K., & Chaturvedi, S. (1993). Helix-forming tendencies of amino acids depend on their sequence contexts: Tripeptides AFG and FAG show incipient β -bulge formation in their crystal structures. *Biopolymers* 33, 163–171.
- Petratos, K., Banner, D.W., Beppu, T.A., Wilson, K.S., & Tsernoglou, D. (1987). The crystal structure of pseudoazurin from *Alcaligenes faecalis* S-6 determined at 2.9 Å resolution. *FEBS Lett.* 218, 209-214.
- Richardson, J.S. (1981). The anatomy and taxonomy of protein structure. Adv. Protein Chem. 34, 167-339.
- Richardson, J.S., Getzoff, E.D., & Richardson, D.C. (1978). The β-bulge: A common small unit of nonrepetitive protein structure. *Proc. Natl. Acad. Sci. USA* 75, 2574-2578.
- Sibanda, B.L., Blundell, T.L., & Thornton, J.M. (1989). Conformation of beta-hairpins in protein structures – A systematic classification

with applications to modelling by homology, electron-density fitting and protein engineering. J. Mol. Biol. 206, 759-777.

- Sibanda, B.L. & Thornton, J.M. (1985). Beta-hairpin families in globular proteins. Nature 316, 170-174.
- Sielecki, A.R., Hendrickson, W.A., Broughton, C.G., Delbaere, L.T.J., Brayer, G.D., & James, M.N.G. (1979). Protein structure refinement: *Streptomyces griseus* serine protease A at 1.8 Å resolution. *J. Mol. Biol.* 134, 781-804.
- Sussman, J.L., Harel, M., Frolow, F., Oefner, C., Goldman, A., Toker, L., & Silman, I. (1991). Atomic-structure of acetylcholinesterase from *Torpedo californica* – A prototypic acetylcholine-binding protein. *Science* 253, 872–879.
- Veerapandian, B., Cooper, J.B., Sali, A., & Blundell, T.L. (1991). X-ray analyses of aspartic proteinases. 3. 3-Dimensional structure of endothiapepsin complexed with a transition-state isostere inhibitor of renin at 1.6 Å resolution. J. Mol. Biol. 216, 1017-1029.
- Weis, W.I., Kahn, R., Fourme, R., Drickamer, K., & Hendrickson, W.A. (1991). Structure of the calcium dependent lectin domain from a rat mannose binding protein determined by MAD phasing. *Science* 254, 1608-1615.
- Wistow, G., Turnell, B., Summers, L., Slingsby, C., Moss, D., Miller, L., Lindley, P., & Blundell, T. (1983). X-ray analysis of the eye lens protein γ2 crystallin at 1.9 Å resolution. J. Mol. Biol. 170, 175–202.