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Abstract 

This  paper examines the topological properties of protein  disulfide  bonding  patterns.  First,  a description of these 
patterns in terms of partially directed graphs is developed. The topologically distinct disulfide bonding  patterns 
available to a  polypeptide  chain  containing n disulfide bonds are enumerated, and their symmetry and reducibil- 
ity properties are examined. The theoretical probabilities are calculated that a randomly chosen pattern of n bonds 
will have any  combination of symmetry and reducibility properties, given that all patterns have equal  probability 
of being chosen. Next, the National Biomedical Research Foundation protein sequence and Brookhaven National 
Laboratories protein structure (PDB)  databases are examined, and  the occurrences of disulfide bonding  patterns 
in them are determined.  The frequencies of symmetric and/or reducible patterns are  found  to exceed theoretical 
predictions based on equiprobable pattern selection. Kauzmann’s model, in which disulfide bonds form during 
random encounters as  the chain assumes random coil conformations,  finds that bonds are more likely to  form 
with near neighbor cysteines than with remote cysteines. The observed frequencies of occurrence of disulfide pat- 
terns are  found here to be virtually uncorrelated with the predictions of this  alternative random bonding model. 
These results strongly suggest that disulfide bond pattern  formation is not the result of random  factors,  but in- 
stead is a directed process. 

Finally, the  PDB  structure  database is examined to determine the extrinsic topologies of polypeptides contain- 
ing disulfide bonds. A complete survey of all structures in the  database  found  no instances in which two  loops 
formed by disulfide  bonds within the same polypeptide  chain are topologically linked. Similarly, no instances are 
found in which two  loops present on different  polypeptide  chains in a  structure are catenated. Further,  no exam- 
ples of topologically knotted  loops  occur.  In contrast, pseudolinking has been found  to be a relatively frequent 
event. These results show a  complete  avoidance of nontrivial  topological entanglements that is unlikely to be the 
result of chance events. A hypothesis is presented to account for some of these observations. 

Keywords: covalent bond topology;  entanglements;  knots;  protein  structure 

Topology is the branch of mathematics that studies those 
properties of shape that remain invariant under continu- 
ous  deformations. Topological properties naturally sub- 
divide into two types - those that derive from the intrinsic 
structure of the object under study, and those that relate 
to how that structure is embedded  in space. For example, 
a closed circle has a  different intrinsic topological struc- 
ture  than  a finite line segment. One can convert a circle 
into  a line  segment only by introducing a  cut, which  is a 
discontinuous deformation. As these two structures have 
different intrinsic topologies, one naturally might  expect 
them also t o  have different ranges of possible realizations 
in space. All embeddings of a finite linear segment in 
three-dimensional space are topologically equivalent in 
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the sense that any one can be converted to any other by 
a continuous deformation.  In  particular,  a segment can- 
not be  topologically knotted, because any candidate knot 
can be undone without recourse to cutting. One need only 
pass the ends of the segment  back through whatever  loops 
have  been formed, which is a continuous deformation. It 
follows that all geometric shapes having the topological 
structure of finite line segments are topologically equiv- 
alent,  both intrinsically and in all spatial embeddings. In 
contrast,  a closed circular curve can be knotted. Differ- 
ent knot types cannot be interconverted  without introduc- 
ing transient cuts. Two circular curves having distinct 
knot types differ only in the way they are embedded in 
space. Both have the same intrinsic topology, that of a 
closed  circle. 

The pattern of covalent connections among amino acid 
residues imparts topological structure to a polypeptide 
chain. (Small loops, such as those occurring in aromatic 
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rings, fused rings, and similar local structures,  commonly 
are disregarded because their topologies show no variabil- 
ity.) Although  a  polypeptide  chain is synthesized as a lin- 
ear polymer, it need not always  have the trivial  intrinsic 
topology  of a line segment. The  formation of covalent  di- 
sulfide  bonds between cysteine residues within a  polypep- 
tide  chain  produces  circular  loops of covalent  bonds 
(Thornton, 1981). These covalent self-associations impart 
nontrivial intrinsic topology to  the polypeptide. Molecules 
containing  such  covalent  loops  also  may  have  nontrivial 
embedded  topologies. Possible examples include  knotted 
loops,  interlinked  pairs  of  loops on  the  same polymeric 
backbone,  catenanes between loops on different  back- 
bones,  as well as  other  forms of entanglement  (Crippen, 
1974, 1975). As  this  paper  treats  only  topological  prop- 
erties, loop penetrations that  are  not topological  in  char- 
acter  are  not  considered,  although these  also  may  be 
important in  practice  (Connolly  et al., 1980; Klapper & 
Klapper, 1980). 

The topological state of a molecule constrains its geom- 
etry in specific and  potentially  important ways (Meiro- 
vitch & Scheraga,  1981a,b;  Kikuchi  et  al., 1986, 1989). A 
protein  can  fold  only  into  those  conformations  that  are 
consistent with its  topology.  This  limits  the  portion of 
conformation space that a molecule  containing  disulfide 
bonds may sample. The change  in  entropy  consequent on 
this  restriction  can  stabilize the  conformation,  as  demon- 
strated by the increase  in denaturation  temperature  ob- 
served when a disulfide bond in  introduced  (Johnson 
et al., 1978). Moreover, the folding  pathway of a protein 
may involve the transient or permanent  formation of spe- 
cific disulfide  bonds that  constrain  the molecule in  a way 
that  directs  it  toward  its  correct  final  conformation 
(Creighton & Goldenberg, 1984; Scheraga et al., 1984; 
Weissman & Kim, 1991). 

Disulfide bonding patterns and intrinsic topologies 

Consider  the distinct disulfide bonding  patterns (i.e., states 
of  connectivity)  available to a  polypeptide  containing M 
cysteine residues. The  backbone  of  this polymeric  chain 
consists of the sequence of residues covalently  connected 
through peptide bonds, which are  oriented in the N -+ C 
direction.  Covalent  disulfide  bonds  may  form between 
pairs of cysteines, with any single cysteine residue partic- 
ipating in at most one  such  bond. These  disulfide bonds 
possess a chemical  symmetry that  does  not  endow  them 
with a natural  orientation. 

A disulfide bonding  pattern has the  mathematical struc- 
ture of a  partially  directed graph.  The vertices of this 
graph  are  the  C-  and N-termini of the  chain, plus  each of 
the cysteine residues that participates  in  a  disulfide bond. 
The edges of this  graph  are  the covalent  connections be- 
tween these vertices. The  polypeptide  backbone of the 
molecule is comprised of directed edges, each oriented ac- 
cording to its N -+ C chemical  direction,  forming a 

unique,  directed,  unbranched  tree  that  spans every ver- 
tex. Because disulfide bonds  are  unoriented,  the edges 
corresponding to them  are  undirected.  The  end vertices 
have order  one,  and all others  have  order  three. (The or- 
der of a  vertex,  also called its valence by graph  theorists, 
is the  number of edges that  are connected to it.) The three 
edges impinging on  an interior vertex have  distinct  prop- 
erties: one edge is directed  into  the vertex, one is directed 
away  from  the vertex, and  the edge  corresponding  to  the 
disulfide  bond is undirected.  This  formulation  differs 
from earlier graph-theoretic  treatments of disulfide bond- 
ing patterns in that here the direction corresponding to the 
chemical  orientation of the polymeric  backbone is in- 
cluded.  Earlier  approaches used undirected  graphs only 
(Walba, 1985; Mao, 1989). 

Disulfide  bonding  patterns  may  be  depicted by draw- 
ing the polymer  backbone  as a straight  line,  oriented  left 
to right  in the N -+ C  direction, with the disulfide  bonds 
shown  as  interconnections between the vertices corre- 
sponding to  the pairs of cysteine residues involved. When 
not  indicated by arrows,  the  backbone  orientation always 
is chosen to be left to right as described.  When necessary 
the vertices may  be  numbered  in  the  order  they  are  en- 
countered as  the  backbone is traversed in  the  direction as- 
signed by its orientation.  For example, the  three  different 
patterns  containing  two  disulfide  bonds are shown in Fig- 
ure  1. Because we are  concerned with topological prop- 
erties  relating to connectivity, not  at present  with  metric 
properties,  the  numbers  of  residues  in  each  part of the 
polymer  chain are  not relevant. 

An alternative  representation of a pattern labels the  di- 
sulfide bonds alphabetically  in the  order they are first en- 
countered,  starting  from  the N-terminus. The  pair of 
cysteines connected by a particular  bond  are given its al- 
phabetic  label.  An  n-bond  pattern is specified by giving 
the sequence of letters  associated with the  bonded cys- 
teines, as they are encountered when the  chain is traversed 

A n 
1 2  3 4  5 6  

BI 
ci 

1 2  3 4  5 6  

1 2  3 4  5 6  

Fig. 1. The  three  different  disulfide  bond  patterns  in  polypeptides  con- 
taining  two  such  bonds. All three  patterns  are  symmetric,  whereas  only 
pattern A is reducible. 
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starting from the N-terminus. Thus, each pattern contain- 
ing n disulfide bonds determines a sequence of length 2n 
whose entries are  the first n letters of the  alphabet, each 
of which appears twice, with new letters appearing in al- 
phabetic order. In this notation the three two-bond disul- 
fide patterns  are aabb,  abab, and abba. 

In this paper the pattern associated with a state of disul- 
fide bonding of a polypeptide chain is a partially directed 
graph of the type shown in Figure 1 ,  having a unique di- 
rected spanning tree corresponding to the backbone. The 
graph associated with the pattern is the simple collection 
of  edges and vertices shown, with no  orientation and no 
distinction between different types of edges. 

Two patterns have the same topological structure if one 
can be transformed into  the other by a continuous defor- 
mation. This transition must preserve the directed nature 
of the polypeptide  chain connections. Therefore its action 
on the directed backbone spanning tree is unique. In  par- 
ticular, it associates corresponding vertices in the  order 
they are encountered along the  chain.  It maps directed 
edges to their corresponding directed  edges, and disulfide 
bonds to disulfide bonds. It follows that two patterns are 
topologically equivalent exactly  when all their disulfide 
bonds connect corresponding pairs of vertices. That is, 
only identical patterns are topologically equivalent. Two 
patterns are topologically distinct if no continuous trans- 
formation between them exists. This means that their in- 
terconversion  requires  the formation,  disruption  or 
rearrangement of disulfide bonds. Distinct patterns  are 
always topologically nonequivalent. 

It is important  to  note  that the topological properties 
of patterns are not the same as the topological properties 
of their underlying graphs. Two graphs have the same in- 
trinsic topology (i.e., are isomorphic) when there is a way 
of numbering the vertices of each so that corresponding 
edges join pairs of  vertices having the same numbers in 
both graphs (Roberts, 1984). In graphs the numbering of 
vertices may  be chosen arbitrarily  and is not determined 
by a directed spanning tree (i.e., polypeptide backbone), 
as was the case for patterns.  Thus, two topologically dis- 
tinct patterns may  have isomorphic underlying graphs. For 
example, two graphs  that are mirror images are isomor- 
phic, although asymmetric patterns in which the disulfide 
bonds occur in mirror image order are not topologically 
equivalent because the  mirror image mapping does not 
preserve the backbone  orientation.  Another example of 
distinct patterns having isomorphic graphs is shown in 
Figure 2 .  

Disulfide bonding patterns have  specific attributes that 
could be important  for protein structure. One such prop- 
erty is symmetry. A  pattern is symmetric if it and its 
mirror image both have the same disulfide bonding con- 
nections. Alternatively, the  pattern is symmetric if its al- 
phabetic representation reads the same when labels are 
assigned  in the N + C direction as when they are assigned 
in the opposite direction. For example, all of the two- 

bond patterns are symmetric, although patterns with three 
or more disulfide bonds may  be asymmetric, as is the case 
for  both  patterns shown in Figure 2. The second impor- 
tant property is reducibility. A reducible pattern is one in 
which a single cut somewhere  along the backbone can sep- 
arate  the  pattern  into two nontrivial subpatterns.  That 
is, some disulfide bonds occur entirely to the left of the 
cut point and  others entirely to the right, but  no disul- 
fide bonds span  the cut point.  The  pattern in Figure 1A 
comprised of two disjoint loops is reducible,  whereas both 
of the other  patterns  are irreducible. A third intrinsic 
topological property of a disulfide  bonding pattern is non- 
planarity. A  pattern is nonplanar if its graph cannot be 
drawn in a plane in a way  in  which no edges cross (Crip- 
pen, 1974). A pattern is nonplanar exactly  when  it contains 
the (sub-)pattern abcdbcda. (This topological definition 
of nonplanarity differs from  that used by Kikuchi et al. 
[1986, 19891.) 

In the following sections formulas are derived  express- 
ing the numbers of distinct  (hence  topologically  nonequiv- 
alent) disulfide bond patterns, as well as the numbers of 
these that have all combinations of symmetry and reduc- 
ibility properties. Intrinsic nonplanarity will not be con- 
sidered in detail here, as it is  less  likely to be of practical 
importance in protein structure. 

1 2 3 4 5 6 7 8 9 1 0  lEELL 
1 2 3 4 5 6 7 8 9 1 0  

1 2 6 5 7 8 4 3 9 1 0  
Fig. 2. An example of  two different patterns whose underlying graphs 
are isomorphic.  The  top graph is the original pattern, where all edges 
now are regarded as undirected. If the vertices of this graph are visited 
along the path shown in the middle graph, and then this path is drawn 
as  a straight line, the graph at the bottom results. Here the vertices re- 
tain their original numbering for clarity. 
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The number of disulfide bonding patterns 

Consider a polypeptide  chain  containing M cysteine res- 
idues  in which n disulfide bonds  are  formed, so M r  2n. 
The  number  of ways of choosing the  2n cysteines par- 
ticipating  in  the  disulfide  bonding is ,,,,(& = M !  / (2n)  ! 
( M -  2n)  ! . Now suppose  that  the participating cysteines 
have  been  specified. The  number  of  distinct  patterns 
containing n disulfide  bonds  may  be  found by the follow- 
ing procedure  (Cantor & Schimmel, 1980). Consider  the 
participating cysteine nearest the N-terminus.  There are 
2n - 1 other cysteines to  which it  may  be  attached by 
a  disulfide bond. Specify to which of these that  bond is 
made.  This leaves 2n - 2 cysteines whose  disulfide  con- 
nections  remain to  be determined.  Of  these,  choose  the 
unattached cysteine closest to  the N-terminus.  There are 
2n - 3 possible choices for which other cysteine forms  the 
disulfide  bond with this  one.  Specify to which of  these 
candidates that  bond is to be  made.  Continue  this process 
until all 2n cysteines have been connected. At  the first step 
there were 2n - 1  choices, at  the second 2n - 3 ,  at  the 
third  2n - 5 ,  etc. The  total number of choices is the  prod- 
uct of all the  odd  numbers  from 1 to  2n: 

n (2n) ! 
i= I 2"n! 

P ( n )  = n (2i  - 1) = -. 

These  equations give the  number  of  different  patterns 
containing n disulfide bonds.  The  factorial  form  of this 
expression was first  presented by Kauzmann (1959). As 
noted  above,  all of these possibilities are topologically 
distinct as  patterns,  although  some  of  their  underlying 
graphs  may be  isomorphic. 

The  number  of  arrangements  of n disulfide  bonds 
among  Mcysteine residues on a  polypeptide  chain  there- 
fore is 

M !  
2"n! ( M  - 2n)  ! ' 

a ( M , n )  = M C 2 n P ( n )  = M r  2n. 

This  expression was derived by Sela and  Lifson (1959). 
Hereafter we will not consider cysteines that  do not  par- 
ticipate  in  disulfide  bonds. 

(In  mathematics, an algebraic structure  can  be given to 
the set of patterns by defining a multiplication  operation 
on them.  However,  it is not  known whether the resulting 
construct, called the full connection  monoid on 2n  points 
[Kaufmann & Vogel, 19921,  is relevant to protein structure.) 

The number of symmetric  patterns 

The  patterns involving n disulfide bonds  may  be classi- 
fied  according to  whether or  not they possess symmetry. 
This  attribute  may reflect  (or  dictate) a folding  pattern 

having  approximately  symmetric  regions  or  other  regu- 
larities. Numbering the  2n  bonded cysteines starting at  the 
N-terminus, a pattern is symmetric if, whenever cysteines 
i a n d j  are  bonded,  then so are cysteines 2n - i + 1 and 
2n - j  + 1. We note  that this  symmetry  relates  only to  the 
topological pattern of disulfide  bonding, not  to metric 
properties  such  as  the  lengths  of  the  polypeptide  chain 
spanned by the  bonds. 

The  number S (  n )  of symmetric  disulfide  bonding  pat- 
terns  may  be  found  as follows. All patterns  containing 
either one or two disulfide bonds  are symmetric, so S( 1) = 
1 and  S(2) = 3. For  the general  case, we first  enumerate 
those symmetric  patterns  in which a disulfide bond  con- 
nects the  first cysteine to  the last (i.e., 2nth) cysteine, as 
shown  in  Figure  3A.  This is a symmetric  arrangement  of 
that  bond.  There remain n - 1  other  bonds to specify. For 
the entire pattern to be symmetric, these other  bonds must 
be arranged in a symmetric manner. As there are S (  n - 1) 
ways in which this  can  be  done, this gives the  number  of 
symmetric patterns of this  first  type.  Alternatively,  sup- 
pose the  pattern has a disulfide  bond  connecting the first 
cysteine to  the j t h  cysteine, j # 2n.  There  are  (2n - 2) 
choices for  the cysteine to  which this connection is made: 
only  1  and  2n  are excluded. For  the  entire  pattern  to be 
symmetric, the  2nth cysteine must  be  connected to  the 
2n - j  + 1st cysteine, as shown  in  Figure 3B. Also, the re- 
maining ( n  - 2) disulfide bonds must  be  arranged  in  a 
symmetric manner, which can be done in S (  n - 2) ways. 
Hence the  total  number of symmetric patterns of this type 
is (2n - 2)S(n - 2). Putting these  results  together, the 

A 1 
1 2n 

B - 
1 j 2n-j+l 2n 

or 

I 

1 2n-j+l j 2n 

Fig. 3. The two cases encountered in the derivation of the recursion re- 
lation for S(n), as described in the  text. In the first case (A) a disulfide 
bond joins the first and last (2nth) cysteines, whereas in the second case 
(B) the first cysteine bonds to some cysteine other than the last. The 
disulfide bond shown in the first case is symmetric. However, in the sec- 
ond case the symmetry condition requires the presence of a  mirror im- 
age disulfide bond  as  shown. 



Disulfide bonding in  proteins 45 

total number of symmetric disulfide bonding patterns is 
shown to obey the following recursion relation: 

S(1 )  = 1 ,  

S (2 )  = 3, 

S ( n )  = S ( n  - 1 )  + 2 ( n  - 1)S (n  - 2) ,  n 2 3.  (3) 

This recursion relation may  be  solved explicitly, yielding 
the following closed form expression: 

(Here ;Pj = i ! / ( i  -j)! is the  permutation of i objects 
taken j at a time, which is the number of different ways 
of choosingj objects, in order  and without replacement, 
from  a collection of i objects. Throughout this paper 
square brackets in equations  denote  the greatest integer 
function.) 

The  number of reducible patterns 

A disulfide bonding pattern is reducible if it consists of 
two nonoverlapping, nontrivial subpatterns.  In  other 
words, if there is a site on  the polypeptide backbone 
where a single cut will decompose the  pattern  into two 
subpatterns, then the  pattern is reducible. 

Recursion relations enumerating the reducible and ir- 
reducible patterns  are derived as follows. A pattern con- 
taining n disulfide bonds is reducible exactly when it has 
at least one  interior  cut  point, as described above. Tra- 
versing the sequence starting  from  the N-terminus, sup- 
pose the first such cut point that is encountered has i 
disulfide bonds on its N-terminal side and n - i bonds on 
its C-terminal side, 1 5 i c n. Then the subpattern con- 
sisting of the i bonds on the N-terminal side must be ir- 
reducible, because this is the first cut site encountered. 
The  subpattern comprised of the n - i bonds on the C- 
terminal side of the cut can have any form, reducible or 
irreducible. So there are P (  n - i) choices for this pattern. 
Therefore  the number of ways in which an n bond pat- 
tern can be chosen whose first cut site occurs as stated is 
the  product I (  i ) P ( n  - i ) ,  where I ( i )  denotes the num- 
ber of irreducible patterns with i bonds. For a  pattern to 
be reducible it must have a cut point of this type at some 
position for which 1 s i 5 n - 1, so the total number R( n) 
of reducible patterns is the sum 

I(n) = P ( n )  - R ( n ) .  

A similar calculation derives the recursion relation giv- 
ing the number S r ( n )  of n-bond patterns  that  are  both 
symmetric and reducible. Again, suppose the first cut 
point occurs after i bonds, so the number of choices for 
the  subpattern of these initial bonds is I (  i ) .  Because the 
complete pattern is symmetric  as well as reducible, the last 
i bonds must  be the mirror images  of the first ones. It fol- 
lows that n 1 2i, and that  the  subpattern of the middle 
n - 2i  bonds, if any, is all that remains to be determined. 
For the  entire  pattern to be symmetric, the subpattern of 
the middle n - 2i bonds must  be symmetric. Hence there 
are S (  n - 2i) choices for this structure. It follows that the 
number of symmetric,  reducible patterns in  which the first 
cut occurs after i bonds is the product I ( i ) S ( n  - 2i),  so 
the  total number of patterns that  are both symmetric and 
reducible is 

i= 1 

The above results determine the number A (n) of non- 
symmetric patterns on n disulfide bonds to be 

A ( n )  = P ( n )  - S ( n ) .  (7) 

Similarly, the number of patterns that  are symmetric and 
irreducible is 

S ; ( n )  = S ( n )  - S r ( n ) .  (8) 

The number of nonsymmetric, reducible patterns is 

and  the  number of patterns  that  are  both nonsymmetric 
and irreducible is 

Table 1 displays the numbers of patterns P (  n )  contain- 
ing n disulfide bonds, 1 s n s 12, together with the num- 
bers of these patterns  that  are symmetric, reducible, or 
both.  From these values the numbers of patterns with  all 
other combinations of symmetry and reducibility prop- 
erties  may  be  calculated  according to the above equations. 

Table 2 shows the fractions of patterns with  given  sym- 
metry and reducibility properties for the cases 1 s n I 12. 
These are  the probabilities that  a randomly chosen pat- 
tern of n disulfide bonds has the given attribute(s),  pro- 
vided  every pattern is equally  likely to be  chosen. One sees 
that  the  fractions of patterns  that  are asymmetric or ir- 
reducible or both grow with n, while the  fractions with 
all other  combinations of attributes decrease. The  prob- 
ability of symmetry decreases rapidly as n grows, while 
the probability of reducibility decreases more slowly. 
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Table 1. Number P(n) of patterns of n disurfde bonds, 
together  with the numbers of these patterns possessing 
spec$ic symmetry and  reducibility  properties" 

n p ( n )  S ( n )  R ( n )  S,(nf 

"_____._____ _I__". ____.__ 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

1 
3 

15 
105 
945 

10,395 
135,135 

2,027,025 
34,459,425 

654,729,075 
13,749,310,575 

316,234,143,225 

1 
3 
7 

25 
81 

33  1 
1,303 
5,937 

26,785 
133,651 
669,351 

3,609,673 

0 
1 
5 

31 
239 

2,233 
24,725 

3 18,63 1 
4,707,359 

78,691,633 
1,471,482,725 

30,469,552,111 

0 
1 
1 
5 
9 

41 
105 
485 

1,609 
7,777 

3 1,425 
160,965 

a These quantities were calculated using the methods described in the 
_ _ _ ~ - ~  

text. 

Observed  protein topologies 

In this  section we describe the results of database surveys 
evaluating the intrinsic and embedded topological prop- 
erties of known polypeptide disulfide bonding patterns. 
The intrinsic  topologies are given  by the corresponding di- 
sulfide bonding patterns, whereas the embedded topolog- 
ical properties considered include knotting of loops and 
interlinking of pairs of loops. Intrinsic topologies are de- 
termined by disulfide bond connections alone, whereas 
the evaluation of embedded topologies requires knowl- 
edge of the structure of the protein. 

Table 2. Fractions of n-bond patterns having  specific 
symmetry and  reducibility properties" 

n &(n) P r ( n )  P s r ( n )  p,,(n) Pa;(n) 
" 

. _ I _ ~  

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

1  .000000 
1  .000000 
0.466667 
0.238095 
0.085714 
0.031842 
0.009642 
0.002929 
0.000777 
0.000204 
0.000049 
0 . ~ 1 1  

0.000000 
0.333333 
0.333333 
0.295238 
0.252910 
0.214815 
0.182965 
0.157191 
0.136606 
0.120190 
0.107022 
0.096351 

0.000000 
0.333333 
0.066667 
0.047619 
0.009524 
0.003944 
0.000777 
0.000239 
0.000047 
0.000012 
0.000002 
0 . ~ 1  

0.000000 
0.000000 
0.266667 
0.247619 
0.243386 
0.210871 
0.182188 
0.156952 
0.136559 
0.120178 
0.107020 
0.096351 

0.000000 
0.000000 
0.266667 
0.514286 
0.670899 
0.757287 
0.808170 
0.840119 
0.862664 
0.879618 
0.892931 
0.903638 

_____._____~____ 

a In terms of the quantities calculated in Equations 1-10, these frac- 
tins are: p , ( n )  = S(n)/P(n), p,(n) = R(n)/P(n), p,,(n) = 
S~(n)/~(n),p,~(n) =A,(n)/P(n), andp,(n) = A i ( n ) / P ( n ) .  These 
fractions  also give the  probability that a  randomly selected pattern has 
the corresponding set of attributes, provided all  patterns have equal 
probabilities of selection. Here the subscripts stands for symmetric, a 
for asymmetric, r for reducible, and i for irreducible. 

Intrinsic topologies- Disulfide bond  patterns 

Information regarding known disulfide bond patterns in 
proteins has  been  culled from two databases. The Brook- 
haven National Laboratories protein structural database 
(PDB) contains atomic coordinates for the structures of 
approximately 600 molecules  (Berstein  et al., 1977). Most 
of  these structures have  been found by crystallography, 
although some are theoretical  predictions. In several  cases 
a single database entry contains information  on multiple 
subunits of the molecule, or  on an additional molecule 
such as a bound inhibitor. A total of  259 protein molecules 
in the  structural  database were found to have disulfide 
bonds. This total includes duplicate entries, successive  re- 
finements of the same  molecule, and entries for identical 
molecules from closely related species.  Some structures 
are reported only for fragments of  molecules or  for mol- 
ecules that have been altered by mutations affecting the 
number of  cysteines  present.  In  developing the population 
of observed structures examined here, theoretically pre- 
dicted structures, mutated molecules, and fragments were 
removed from  further consideration, as  the  information 
in the database does not specify the disulfide  bonding pat- 
tern of the actual complete  molecule in these  cases.  When 
duplicate and closely related entries also are deleted, a 
population of  62  distinct,  complete  polypeptide  molecules 
containing  disulfide  bonds  remains  (listed  in the kinemage 
file). The numbers of occurrences in this database of  each 
type  of  observed  disulfide  bonding pattern are given  in the 
fourth column of Table 3 below. 

The National Biomedical  Research Foundation (NBRF) 
protein sequence database (Barker et al., 1986) contains 
many thousands of entries,  only  some of  which report di- 
sulfide bonding information. However, the absence of 
this information  for a given  molecule does not necessar- 
ily imply that it lacks disulfide bonds. In  the small num- 
ber  of  cases  where disulfide bonding is reported,  the 
accuracy of the  pattern is not always known. Some en- 
tries rate bonds as certain, probable, or possible,  whereas 
others give alternative  possible  disulfide  bonding patterns. 
In some  cases  bonding patterns have  been inferred by ho- 
mology  with other molecules. The disulfide bonding in- 
formation derived from  this  database, although more 
plentiful than  that  found  from the PDB structure  data- 
base, must be regarded as being  less reliable. 

A total  of 455 complete polypeptide chains in  the 
NBRF sequence database were found to have intrachain 
disulfide bonds. This figure excludes fragmentary mole- 
cules and cases  where considerable uncertainty regarding 
the disulfide  connections was reported. Deletion  of  repeat 
entries and closely related molecules resulted in a popu- 
lation of 186 distinct polypeptides containing disulfide 
bonds. Column 3 of Table 3 reports  the occurrences of 
each type of  observed pattern in this population. 

When the populations culled from the structure and se- 
quence databases were amalgamated and duplicate  entries 
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were deleted, an aggregate population of 208 distinct 
polypeptides containing disulfide bonds resulted. All oc- 
currences of each type of disulfide bonding pattern in this 
aggregate population were determined. The results are 
given  in column 5 of Table 3. Column 2 in this table gives 
the reducibility and symmetry  properties of  each  observed 
pattern. 

Table 4 shows the observed frequencies of disulfide 
bonding patterns having  specific  reducibility and symme- 
try  attributes.  The number of distinct occurrences of a 
given pattern is evaluated from  the  data of Table 3, sep- 
arately for each database and also for the aggregate pop- 
ulation. Also shown is the theoretical probability of each 
type of attribute, calculated using the expressions in the 
previous sections, assuming that each pattern of n bonds 
has equal probability of forming. These data show that, 
in cases where more  than  three disulfide  bonds are 
present, symmetric patterns occur with frequencies that 
greatly exceed  what  would  be predicted from  random, 
equiprobable bonding. When n 1 6 ,  this frequency is an 
order of magnitude greater than  random. This disparity 
is greatest for patterns that are both symmetric and reduc- 
ible, which are overrepresented for all values of n. When 
n I 6 ,  the prevalence  of this type of pattern is two orders 
of magnitude greater than would  arise  with random bond- 
ing. In  contrast,  patterns  that  are irreducible are under- 
represented at all values of n. As shown in Table 2, the 
probabilities of a randomly chosen pattern being asym- 
metric and/or irreducible all grow with n, whereas the 
probabilities of  every other type of pattern decrease. 
However, the observed  frequencies of asymmetric and/or 
irreducible patterns are much smaller than would  be pre- 
dicted if all patterns were equally likely to be chosen. 
These results  clearly  show that disulfide bonding patterns 
do not arise by random, equiprobable selection among all 
possibilities. 

Table 5 shows the observed frequencies of occurrence 
of irreducible subpatterns as components of larger, reduc- 
ible patterns. These data  are derived from the aggregate 
population culled from  both databases. It demonstrates 
that reducible structures arise predominantly through the 
catenation of short, irreducible subpatterns. Only three 
occurrences are seen  of irreducible components  contain- 
ing more than three disulfide bonds, whereas 8 of the 10 
possible  irreducible three-bond patterns occur. Moreover, 
the data in Tables 3 and 4 show that polypeptide chains 
containing large numbers of disulfide bonds are found to 
occur predominantly, indeed for n > 8 exclusively,  in re- 
ducible patterns. This  suggests that such proteins are con- 
structed from repeated iterations of subpatterns chosen 
from a small number of alternatives having few disulfide 
bonds. 

The  data presented above  demonstrate  that  equiprob- 
able random choice is  unlikely to account for the observed 
distribution of disulfide bonding patterns. An alternative 
random bonding hypothesis has been formulated by 

Kauzmann (1 959). He calculated theoretical frequencies 
of patterns, assuming bond  formation occurred as  cys- 
teine pairs encounter each other during random coil fluc- 
tuations of a polymer chain containing equally spaced 
cysteines. According to the statistical theory of random 
coil polymers, the number of available configurations is 
reduced when a connection is made between two sites on 
the chain (viz.  by a disulfide bond) that constrains the in- 
tervening segment to form  a  loop. Moreover, the num- 
ber of available configurations becomes smaller as the 
separation along the chain between the connected  sites in- 
creases. Accordingly, cysteine pairs that  are near on the 
chain are more likely to encounter and bond than  are re- 
mote ones. Therefore  the  distribution of patterns com- 
puted using this statistical-mechanical approach favors 
isolated bonds between neighboring cysteines. Figure 4 
plots the theoretical probabilities of formation  for all 
three-bond patterns as calculated by Kauzmann against 
the observed  frequencies found here. Points plotted  as  cir- 
cles  give the data for all three-bond patterns, whereas 
points plotted as stars  are  for irreducible three-bond pat- 
terns that appear as components of larger, reducible pat- 
terns. In this diagram an observation that agrees  with 
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Fig. 4. Predicted  and observed frequencies of all three-bond patterns 
are plotted. The  theoretically  predicted  calculations  assume  Kauzmann’s 
random  bonding  scheme, as described  in  the  text.  The  observed  frequen- 
cies are  derived from the data presented  in Tables 3 and 4. The  circles 
plot all three-bond patterns, and the stars  are for three-bond subpat- 
terns  that  occur as irreducible components of larger  reducible  patterns. 
In  the  three cases where points superimposed, a small offset was intro- 
duced to show them both. Here a case where  theory and observation 
agree  would  appear as a point  falling on the  diagonal line. One sees that 
the observed frequencies  are  virtually  uncorrelated  with  the  predictions 
from this model. 
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Table 3. Numbers o f  occurrences of all  intrachain  disulfide  bonding patterns in the NBRF and PDB databases, 
and in the composite  population  derived from botha 

n Pattern Attributes NBRF PDB Composite 

1 aa 

2 aabb 
abab 
abba 

3 aabbcc 
ababcc 
abcabc 
abacbc 
abccba 
abbacc 
aabccb 
abcacb 
abbcac 
abcbac 
abccab 
abaccb 
abcbca 
aabcbc 
abbcca 

4 

5 

6 

aabbccdd 
aabccdbd 
aabcddbc 
abbacddc 
ababcdcd 
aabcdbdc 
abcdcdba 
ababccdd 
abcddabc 
abcddcab 
abcddcba 
abcadbcd 
abcdbcda 
abcbdcda 
aabcbcdd 
abbccadd 

aabbccddee 
ababccddee 
aabbcddece 
abbcaddece 
abccdbeead 
abccdebead 
abbacddece 
aabccbdeed 
abaccbddee 
abcdbedcea 
abcdadebce 
abbaccddee 
abcbdeecda 
abcdedabce 
abbcdaeedc 

aabbccddeeff 
abacddbefcfe 
abbccadeeffd 
abbacdceedff 
abcbcadefefd 
abbcdaeefdfc 
abbccddeeffa 
abcbcadeefdf 
ababccddeeff 

51 

19 
8 
5 

11 
4 
4 
1 
1 
3 
1 
2 
1 
3 
3 
2 
2 
1 
0 

1 
3 
1 
1 
2 
1 
2 
1 
1 
1 
1 
1 
1 
1 
1 
0 

4 
1 
1 
2 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
0 

1 
1 
1 
1 
1 
1 
1 
1 
1 

20 

8 
1 
0 

4 
1 
1 
0 
1 
0 
1 
1 
1 
2 
0 
0 
1 
3 
0 

1 
1 
0 
0 
0 
0 
2 
1 
1 
0 
0 
0 
1 
0 
0 
1 

0 
0 
0 
1 
0 
0 
1 
0 
1 
0 
0 
0 
0 
0 
1 

0 
0 
0 
0 
0 
1 
0 
0 
0 

_____ 
66 

20 
8 
5 

11 
4 
4 
1 
1 
3 
1 
2 
1 
4 
3 
2 
2 
3 
0 

1 
3 
1 
1 
2 
1 
2 
1 
1 
1 
1 
1 
1 
1 
1 
1 

4 
1 
1 
2 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

1 
1 
1 
1 
1 
1 
1 
1 
1 

(continued) 
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Table 3. Continued 

n Pattern Attributes NBRF  PDB  Composite 

I aabcdcdbefgfge a, r 1 0 1 
abcbdefgfgecad a, i 1 1 1 

abccdadeeffggb a, I 1 0 1 

abcdcefagfgedb a, i 1 1 I 
abcddbefeggfca a, i 1 0 1 

8 aabbccddeeffgghh s, r 1 0 1 
aabcddebeffgghhc a, r 1 0 1 
abbccdeffgghheda a, i 0 1 1 

9 aabbcdedecfghghfii a, r 1 0 1 

11 aabcdcbdeffeghghijjikk a, r 1 0 1 

12 aabbcdedecfghghfijjikkll a, r 1 0 1 

14 [abab] s, r 1 0 1 

15 [abobl4cc[dedej3 a, r 1 0 1 

abbacdedecffghhgijklmnmnkoojli a, r 1 0 1 

16 [ abcabcdd] a, r 1 1 1 

17 abbacdcdefgfgheihijklkijmnonomppqq a, r 1 0 1 

aa [ bcbc] a, r 1 0 1 

[abab]2cc[defefd] 3ghhigi a, r I 0 1 

28 [abab114 s, r 1 0 1 

a The symmetry (s or a)  and reducibility (r or i )  properties of each observed pattern are given. 

theory yields a point that falls on the 45" diagonal line. 
One sees that  the fit between the observed data and  the 
predictions of this model is not good. Indeed, the plot- 
ted distribution of points shows virtually no  correlation 
with the diagonal line. Kauzmann also calculated that the 
structure containing 17 disulfide bonds in the  pattern 
aa[bcbcIs should occur with a frequency six orders of 
magnitude less than  that of the  pattern [aaIl7, in which 
all 17 disulfide bonds  are  disjoint. However, the  former 
pattern, deemed highly improbable in Kauzmann's anal- 
ysis, has been observed, whereas the latter  pattern has 
not. These results strongly suggest that  random  encoun- 
ters between  cysteines of  the type proposed by Kauzmann 
also are  not  the  determinants of complete disulfide bond 
patterns. 

A subsequent refinement of Kauzmann's model in- 
cludes the effects of internal constraints, such  as the pres- 
ence of previously formed disulfide bonds  (Chan & Dill, 
1990). By extending this approach to average over all or- 
ders of formation  one may be able to compute probabil- 
ities of patterns using a  random coil model in a way that 
accounts for conformational freedom. This refinement 
will  be considered elsewhere. 

Two alternative scenarios by which random processes 
might dictate disulfide bond  patterns have been shown 
here not to agree with observations. These are  the equi- 
probable  patterns model and  the  random  encounters 
model of Kauzmann (1959). This suggests that disulfide 

bond patterns do not arise through random events, a con- 
clusion also reached by Sela and  Lifson (1959). 

The results presented here regarding distributions of 
bonding patterns cannot be  analyzed for statistical signif- 
icance  because the sample of protein molecules  whose di- 
sulfide bond structures are known cannot be regarded as 
representative of all such structures. The  patterns in the 
NBRF sequence database  often have uncertainties asso- 
ciated with them and hence are not entirely reliable. Al- 
though  the  PDB  structure  database  contains more exact 
data, the sample  it  provides is small and inherently  biased 
by its limitation to crystallizable proteins. 

This sample contains a single occurrence of a topolog- 
ically nonplanar  pattern:  the scorpion neurotoxin pro- 
tein (1SN3) has the  pattern abcdbcda. This attribute had 
not been noted previously to occur in any known protein 
structure. 

Embedded topologies- Linkages 

A polypeptide chain containing two or more disulfide 
bonds in principle  can  assume conformations in which the 
resulting loops interlink. However, true topological link- 
ing is only possible if the disulfide bonds involved span 
disjoint portions of the polypeptide backbone. For exam- 
ple, only the reducible two-bonded pattern in Figure 1A 
above can experience topological linking. If the loops in- 
volved share a portion of the chain in common, as occurs 
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Table 4. Observed frequencies of n-bond patterns with 
specific symmetry (s or a) and reducibility (r or i) properties, 
as derived from the NBRF and PDB databases, and from 
the aggregation of both" 

Theory 

1 .o 
0.333333 
0.333333 
0.666667 

0.466667 
0.333333 
0.066667 
0.4 
0.266667 
0.266667 

0.238095 
0.295238 
0.047619 
0.190476 
0.2476  19 
0.514286 

0.085714 
0.252910 
0.009524 
0.076190 
0.243386 
0.670899 

0.03 1842 
0.214815 
0.003944 
0.027898 
0.210871 
0.757287 

<0.01 
<0.2 
<0.001 
<0.01 
<0.2 
>0.8 

~ _ _  
NBRF 

1 .o 
0.59375 
0.59375 
0.40625 

0.5641 
0.51282 
0.282051 
0.282051 
0.230769 
0.205128 

0.63 1579 
0.578947 
0.263  158 
0.368421 
0.315789 
0.052632 

0.277778 
0.555556 
0.222222 
0.055556 
0.333333 
0.388889 

0.444444 
0.666667 
0.333333 
0.111111 
0.333333 
0.222222 

0.166667 
0.777778 
0.166667 
0.0 
0.61  11  11 
0.277778 

PDB 
___ 
1 .o 
0.888889 
0.888889 
0.111111 

0.4375 
0.5625 
0.25 
0.1875 
0.3  125 
0.25 

0.625 
0.5 
0.125 
0.5 
0.375 
0.0 

0.0 
0.5 
0.0 
0.0 
0.5 
0.5 

0.0 
0.0 
0.0 
0.0 
0.0 
1 .O 

0.0 
0.25 
0.0 
0.0 
0.25 
0.75 

Combined 
-~ 

1 .o 
0.606061 
0.606061 
0.393939 

0.52341 
0.52381 
0.261905 
0.261905 
0.261905 
0.214286 

0.6 
0.6 
0.25 
0.35 
0.35 
0.05 

0.263158 
0.526316 
0.210526 
0.052632 
0.315789 
0.421053 

0.444444 
0.666667 
0.333333 
0.111111 
0.333333 
0.222222 

0.157895 
0.736842 
0.157895 
0.0 
0.578947 
0.263158 

a Theoretical  expected  frequency is shown  in  each  case,  calculated 
assuming  every  pattern  has  an  equal  probability of occurrence. 

for both irreducible two-bonded patterns, then rotations 
of one cysteine about this common region can alter ap- 
parent links, as is shown in Figure 5 .  Because this rota- 
tion is a continuous deformation,  apparent linkage of 
nondisjoint bonds is not topological in character. Non- 
topological loop interpenetrations of this type, called 
pseudolinks, are known to occur in proteins (Kinemage 
1;  Kikuchi  et al., 1986;  Le  Nguyen  et al., 1990). However, 
because pseudolinkage is not a topological condition, its 
consideration will be deferred to a later time. 

Topological linkage between two disjoint loops of a 
polypeptide can be determined from its molecular struc- 
ture by evaluation of the linking number 6: of the loops. 
6: is an integer  topological invariant that measures the ex- 

Table 5. Numbers of occurrences of irreducible patterns as 
components of longer, reducible patterns in the aggregate 
sample culled from  both the NBRF and PDB databases 

n Pattern 
~ ~ _ _  

Occurrences 

1 aa 75 

2 abab 48 
abba 15 

3 abcbca 15 
abbcac 5 
abaccb 2 
abcabc 4 
abcbac 1 
abbcca 3 
abccab 1 
abcacb 1 

5 abcbcdaede 1 

7 abcdefefcggbda 1 
abccdadeeffggb 1 

tent of interlinking of two disjoint closed loops in space. 
Unlinked pairs of loops always  have 6: = 0, whereas a 
non-zero value of d: demonstrates topological linkage of 
the loops involved. 

The  linking  number d: of  two disjoint loops may  be cal- 
culated using the following Gaussian integral (Rolfsen, 
1976).  Let s, (resp. s2) denote the contour length param- 

+ 

Fig. 5. Pseudolinking of nondisjoint  loops is not  a  topological  con- 
straint.  Such  pseudolinks  can  be  either  induced or reversed  by  contin- 
uous  deformations. 
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eter of loop 1 (resp. loop 2). That is, position in each loop 
is uniquely determined by measuring the distance si 
along that loop from some starting location, with 0 I 
si I Li, i = 1, 2. Let r(sl ,s2) denote the vector joining 
the point sI on loop 1 to  the point s2 on loop 2. Denote 
by e(s, , s2)  the unit vector e = r/ lrl .  Finally, let T1 (sl) 
(resp. T2(s2)) denote the unit tangent vector to  the loop 
at the point sI (resp. sz). Then the linking number asso- 
ciated to these two loops is 

In the calculations whose results are reported here, the 
loops formed by disulfide bonding were determined from 
the molecular structure using a virtual bond approach. 
The a-carbon positions of all the amino acid residues in 
that part of the polypeptide chain spanned by the disul- 
fide bond were found, and the covalent peptide bonds 
were regarded as straight line connections between these 
a-carbons. The disulfide bond was considered to  be a 
straight line connecting the a-carbons of the participat- 
ing cysteines. In this way the loop formed by a disulfide 
bond spanning n residues (including the bonded cysteines) 
was modeled as a polygonal curve in space comprised of 
n straight segments. If loop i contains ni segments, then 
the integral expressing the linking number decomposes 
into the sum of n l  x n2 expressions, 

where each 6, has the form of the integral of Equation 
11 above, evaluated over the ith segment of loop 1 and 
the j th  segment of loop 2. Because these segments are re- 
garded as straight virtual bonds, the tangent vectors TI 
and T2 in each of the integrals d:,j are constant. This vir- 
tual bond simplification has no effect on the computed 
results, as it does not alter the linkage of the loops. 

These integrals may be evaluated in any of several 
ways. The double integral over straight segments can be 
solved analytically, and the resulting algebraic expression 
evaluated for every pair of segments. Because this expres- 
sion is quite complex, in practice it is simpler to use a nu- 
merical routine to solve the integrals. Although this is less 
accurate than the algebraic method, it is simpler to pro- 
gram. Because 6: is an integer-valued invariant, the level 
of precision needed in these calculations is only that re- 
quired to distinguish neighboring integers. For this reason 
the slight degradation of accuracy consequent on perform- 
ing numerical integrations is entirely inconsequential. 

A computer program was written that searches the 
PDB structure database for all polypeptide chains having 
disjoint intrachain disulfide bonds. The linking number 
associated to each pair of disjoint loops in the chain was 
calculated by the procedure described above. Linking of 

loops was detected as a non-zero integer value of d:. This 
procedure was carried through for all molecules in the da- 
tabase, including fragments, precursors, duplicate entries, 
and related molecules. A total of 209 database entries 
were found to have one or more pairs of intrachain dis- 
joint loops. Some polypeptide chains contained large 
numbers of such loop pairs. The most extreme case was 
wheat germ agglutinin (3WGA), each subunit of which 
has 16 disulfide bonds in the pattern [ a b ~ a b c d d ] ~ .  This 
arrangement has 108 pairs of disjoint, intrachain loops. 
The calculation of linking number described above was 
performed on every pair of disjoint intrachain loops 
found. A total of 1,616 loop pairs were examined this 
way. In every case the loops involved were found not to  
be linked. True topological linking does not occur in any 
of the proteins currently represented in the PDB structure 
database. 

A similar procedure was used to probe for catenation 
of loops on distinct polypeptide chains. All cases were ex- 
amined where multiple chains containing disulfide bonds 
were reported in the same database entry. One would not 
expect catenation to  occur in cases where the chains as- 
sociate after their disulfide bonds are formed, such as be- 
tween an enzyme and its inhibitor. However, in other 
cases catenation could occur. For example, cleavage of a 
precursor would result in catenated disulfide bonds if 
these bonds were linked in the precursor molecule. A to- 
tal of 174 database entries were found that contained 
more than one disulfide-containing polypeptide chain. All 
pairs of loops on disjoint chains were examined for cate- 
nation by calculating their linking numbers using the pro- 
cess described above. In addition, all cases were examined 
where one of the loops arose by the formation of two in- 
terchain disulfide bonds. A total of 2,487 pairs of disjoint 
loops were examined in this way, and no instances of cat- 
enation were found in this population. 

At present it is difficult to assess with any precision 
the probability that this lack of true linkage occurs by 
chance. Crippen (1975) has estimated the probability of 
linkage between disjoint loops in a random coil structure 
to  be approximately 0.15. He simulated the chain as a 
self-avoiding random walk on a lattice, with the residues 
connected by disulfide bonds constrained to occupy 
neighboring lattice points. If this estimate were applied 
to the present sample, about 250 cases of intrachain link- 
ing would be expected, whereas none are found. Esti- 
mates of linking probabilities based on random chain 
statistics may not be applicable if the specific interactions 
involved with protein folding are not approximated by 
random fluctuations. For the reasons described in an ear- 
lier section it is not possible to generate a meaningful ran- 
dom sample of protein configurations from which linking 
probabilities could be estimated. Yet the complete absence 
of true linking in the present sample is striking. 

It is important to note that neither topological link for- 
mation nor catenation require the protein chain to  be 
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threaded  through a preexisting loop.  An  alternative mech- 
anism that  can give rise to  true  linking is shown  schemat- 
ically in  Figure  6.  There  an early  stage  of  folding  creates 
a helical interwind, which results in linkage of loops when 
the disulfide bonds  form  later. 

In  contrast  to  true linking,  pseudolinking  is  known to 
occur in  proteins with reasonably high frequency. Kikuchi 
et  al. (1986) found  four examples  of  pseudolinked  pro- 
teins among 18 structures  examined.  Other cases of pseu- 
dolinking  also  have been reported  (Le  Nguyen  et  al., 
1990). For pseudolinking to occur  after disulfide  bond 
formation,  as Figure 5 shows  may happen,  threading  of 
the  polypeptide  chain  through  a preexisting loop would 
be  required. The close-packing that occurs  in  folded  pro- 
teins may  render  such a motion sterically or energetically 
forbidden.  Instead,  pseudolinks  probably  arise  primarily 
at  the  time  of  bond  formation by a mechanism involving 
preexisting interwinding  analogous to  that shown  in Fig- 
ure 6 for topological linkage. Calculations of the relative 
stability  of  substructures within bovine  pancreatic  tryp- 
sin inhibitor  indicate that their  formation  can  occur  prior 
to and  independent of disulfide bonding,  in  support of the 
present claim (Chou et al., 1985). 

The relatively frequent  occurrence  of  pseudolinks in a 
small  sample of examined  structures  makes the complete 
absence  of  true links  in a much  larger  sample appear un- 
likely to result from chance.  This impression is reinforced 
by the statistics of the relevant types of  bond  pairs. As 
shown  in  Table 3,  there  are  more examples of reducible 
two-bond molecules, the  pattern needed for  true linkage, 

c 

Fig. 6. Schematic  illustration of a mechanism  by  which  interlinked loops 
can occur through disulfide bonding that does not require  threading  the 
chain through preexisting loops. 

than  there  are  of  both types of irreducible  two-bond pat- 
terns  combined.  Similar prevalences are  found when one 
considers the irreducible  components of reducible  mole- 
cules. Thus,  the absence  of true  links  and  the  frequency 
of  pseudolinks is not simply a consequence  of the statis- 
tics of occurrence of disjoint  versus  nondisjoint  bond 
pairs.  These  observations suggest that  the  rarity  of  true 
linking  (none found in any  known  structure)  may  not  be 
the result of  chance  factors  operating  in  protein  folding. 
Any  speculations  concerning why topological  linking is 
disfavored  must  also  account  for  the  fact  that  nontopo- 
logical pseudolinking is not  disfavored.  It  remains to elu- 
cidate precisely why this would be true. The avoidance of 
topological linking becomes especially puzzling when one 
considers that  the  loop  penetrations involved with pseu- 
dolinking  may be virtually permanently fixed in  the  struc- 
ture by steric or energetic  constraints.  Although  they  are 
not  topological,  these  penetrations  may  be effectively as 
restrictive and permanent  as if they were. 

We note  that  other types of entanglement than  true 
linkage  can  occur between disjoint  loops.  Two  examples 
are  shown in  Figure  7. The two  disjoint  loops  shown  in 
Figure  7A  form a  structure  known  in  mathematics  as  the 
Whitehead  tangle.  These  loops  are  topologically  entan- 
gled because  they  cannot  be  separated  without cleavage. 
However  they are  not linked as their  linking  number is 
zero. Similarly,  Figure 7B shows the entanglement  of 
three loops in a  Borromean ring structure (Rolfsen, 1976). 
Here  no  pair  of  loops is linked: the removal of any sin- 
gle loop leaves the remaining two  loops  unentangled. But 
the three rings together are topologically entangled. These 
and  other, higher forms of multiloop  entanglement  have 
not been evaluated in this examination of protein  topology. 

Embedded topologies - Knotting 

In  principle,  a loop  formed by disulfide bond closure 
could  be  knotted.  The  conformational  intertwining  that 
determines  knotting  must  occur  prior to  loop closure by 
disulfide bond  formation. 

The  PDB  structural  database  has been searched for 
knotted  polypeptides. A total of 103 different  protein 
structures were examined,  many of which did not  contain 
disulfide  bonds. (This was done because other  constraints, 
such as &sheet formation,  can  produce  loops.)  No exam- 
ples of  topological  knotting were found in  this case-by- 
case  search. To date all structures  that were reported to 
be  knotted  have  proven to be pseudolinked  (Le Nguyen 
et al., 1990). Again,  nontrivial  topology of this  type  has 
not been detected in  the  sample  of molecules surveyed. 

Crippen (1975) has  estimated the  probability of knot 
formation  in a polypeptide loop modeled as a closed, self- 
avoiding random walk on a cubical lattice. He performed 
a Monte  Carlo calculation to  generate  a  sample  of  con- 
figurations and examined their topological properties. He 
found  that  the  probability  of  knotting increases with 
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Fig. 7. Two types of nonlinked topological entanglement. The occur- 
rence of these structures in proteins has not been evaluated. 

chain length. Although the relative frequency of knotted 
structures  found in this way  was small (not exceeding 
@lo), Crippen speculated that it would approach unity 
were chain length to increase without limit. 

An automated search procedure for knotting is pres- 
ently being developed. Its results will  be presented  in a  fu- 
ture  paper. 

Discussion 

This  paper examines the occurrence of intrinsic and em- 
bedded  topologies  in proteins, arising from the formation 
of covalent loops caused by disulfide bonding. It has 
been shown that symmetric and/or reducible patterns 
are highly overrepresented in the database, relative to 
amounts predicted were  every pattern equally probable. 
For n I 5 the overabundances observed in this sample of 

structures are positively correlated: the conditional prob- 
abilities satisfyp(S1R) >p(S),  andp(R1S)  >p(R). Two 
models for  random bonding were examined - the equi- 
probable  patterns model and Kauzmann’s random coil 
model. The predictions of both models regarding relative 
frequencies of patterns were shown to deviate sharply 
from the observed  frequencies.  These  results  strongly  sug- 
gest that specific, nonrandom effects are involved in di- 
sulfide bond pattern selection. 

The PDB structural  database was examined for two 
types of nontrivial embedded topology- knots and inter- 
linked loops. No examples  of either type of nontrivial to- 
pology  were found in  this  survey.  This  result  suggests that 
specific mechanisms may  exist for  the avoidance of such 
extrinsic topological entanglements. 

A hypothetical protein folding scenario can be pro- 
posed to explain the trends shown by these observations. 
Suppose that folding happens first at particular parts of 
a protein, called  early folding regions  (EFRs). If disulfide 
bonds were confined primarily or exclusively to such re- 
gions, and rarely or never joined two EFRs, the distribu- 
tions of patterns  and embedded topologies that result 
would  have  some of their  observed properties. First, long 
proteins would  be  expected to contain several EFRs. If di- 
sulfide bonds were formed, their propensity to occur 
within EFRs would favor reducible patterns. Moreover, 
if long  molecules  were  constructed from repetitions of one 
or a small number of EFRs, then an enrichment of  sym- 
metric patterns also would  be  seen. Regarding topologi- 
cal linking, this scenario would disfavor or preclude the 
folding pattern shown  schematically  in  Figure 6 if the cen- 
tral, interwound portion of that  structure is regarded as 
an EFR. The disulfide bonds connect that EFR to other 
parts of the molecule,  which  has  been hypothesized to be 
disfavored or forbidden. For this conjectural explanation 
to hold, it  is  necessary that disulfide bonding occur at rel- 
atively early stages of protein folding, approximately si- 
multaneous with  EFR folding and prior to the interaction 
of EFRs with other parts of the molecule. 

This  hypothesis is consistent with the observed  high  fre- 
quencies of reducible and/or symmetric patterns  and the 
paucity of nontrivial embedded topologies. However, the 
hypothesized tendency toward early disulfide bond for- 
mation is unlikely to completely preclude structures with 
any form of nontrivial embedded topology. This  observed 
absence, if it remains correct as new structures  are re- 
ported (and  especially solution structures found by NMR), 
may require a more deterministic mechanism for  the ex- 
clusion of topologically nontrivial conformations. 

Investigations of other  attributes of disulfide bonding 
patterns  are presently in progress. These include auto- 
mated searches of the database for knotted loops and for 
pseudolinked  pairs of nondisjoint loops. The metric prop- 
erties of disulfide bond patterns (i.e., attributes related to 
the positions of the participating cysteines along the chain) 
also are being  examined at present. The  plausibility of the 
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above  hypothetical  folding mechanism is being examined 
by evaluating the  frequency with which disulfide bonds 
are seen to  connect  distinct  domains in a  multidomain 
protein. (We note, however, that  the EFRs hypothesized 
above might not always, or even often, coincide with do- 
mains.)  The results of these investigations will be reported 
in future  contributions. 

We note  that  the considerations  relating to topological 
structure  that have been developed  here specifically for 
disulfide  bonding  also  relate to  other types  of loop  for- 
mation. Specifically,  hydrogen  bonding,  either to  form 
@-sheets in proteins or secondary  structures  in RNA mol- 
ecules, produces  loops whose topologies are subject to 
the  same considerations as  those presented here (Connolly 
et  al., 1980; Richardson, 1985; Mao et  al., 1990). How- 
ever,  there are  four  important differences between these 
cases and  that of disulfide bonding.  First, hydrogen bonds 
can  form  simultaneous associations between a given site 
and  more  than  one  other. RNA molecules can form triple- 
stranded helices, whereas runs of contiguous  amino acids 
can  form @-sheet  associations with more  than  one  other 
site. This creates the possibility of more complex topolog- 
ical structures, such as sheets closing to form  barrels. Sec- 
ond,  the susceptible sites in these cases are  not equivalent. 
Local amino acid sequences vary in their  propensities to 
form  @-sheets, and secondary  structure  formation in sin- 
gle-stranded nucleic acids  requires  some  degree  of  local 
sequence  complementarity.  This  stands in contrast  to  di- 
sulfide  bonding,  where  in  principle all cysteines are  ap- 
proximately  equivalent. Third,  there is a directionality to 
these types of hydrogen-bonded self associations  that is 
not  present in disulfide  bonding. @-Sheets can  form in ei- 
ther of two  orientations, parallel or  antiparallel, whereas 
duplex formation in nucleic acids requires antiparallel  ori- 
entations of the  portions  of  the sequences  involved. Fi- 
nally,  because  these self associations involve relatively 
weak hydrogen  bonds, the possibility exists that  at equi- 
librium  a  population will occur  in a distribution of con- 
figurations.  Thus, dynamics and  fluctuations  may be 
important  at  equilibrium in  these  cases.  In contrast,  the 
disulfide  bonds  present in a fully folded  polypeptide are 
thought to be  permanent. 

Acknowledgments 
The  authors gratefully  acknowledge fruitful discussions and use- 
ful suggestions from Drs. George Ntmethy, Charles DiLisi (who 
first suggested this  problem to C.J.B.), and Michael Waterman. 
The  authors  are especially grateful to  Adrian Mogos for his able 
assistance in compiling the  database  information.  This work  was 
supported in part by grant DMB 88-96284 from  the  National Sci- 
ence  Foundation. 

References 
Barker,  W.C.,  Hunt,  L.T.,  George, D., Yeh, L.S., Chen,  H.R., Blom- 

quist,  M.,  Seibel-Ross,  E.,  Elzanowski,  A,,  Hong,  M.K.,  Ferrick, 

D.,  Blair,  J.,  Chen,  S.L., & Ledley,  R.S.  (1986). Protein Sequence 
Database. National  Biomedical  Research  Foundation,  Washington, 
D.C. 

Bernstein, F., Koetzle,  T.,  Williams, G., Meyer, E., Brice,  M.,  Rogers, 
J.,  Kennard, O., Shimanouchi, T., & Tasumi,  M. (1977). The  Pro- 
tein  Data  Bank:  A  computer-based  archival file for  macromolecu- 
lar  structures. J. Mol. Biol. 112, 535-542. 

Cantor,  C.R. & Schimmel, P. (1980). Biophysical Chemistry, Vol. 1, p. 
292,  W.H.  Freeman,  San  Francisco,  California. 

Chan, H.S. & Dill,  K.A. (1990). The  effects  of  internal  constraints  on 
the  configurations of chain molecules. J. Chem. Phys. 92,3118-3135. 

Chou,  K.-C.,  Nemethy, G., Pottle,  M., & Scheraga,  H. (1985). Fold- 
ing of the twisted &sheet in  bovine  pancreatic  trypsin  inhibitor. Bio- 
chemistry 24, 1948-7953. 

Connolly,  M.,  Kuntz, I . ,  & Crippen, G. (1980). Linked  and  threaded 
loops  in  proteins. Biopolymers 19, 1167-1 182. 

Creighton,  T. & Goldenberg, D. (1984). Kinetic  role  of  a  meta-stable 
native-like  two-disulphide species in  the  folding  transition  of  bovine 
pancreatic  trypsin  inhibitor. J. Mol. Biol. 179, 497-526. 

Crippen,  G. (1974).  Topology of globular  proteins. J. Theor. Biol. 45, 
327-338. 

Crippen, G. (1975). Topology  of  globular  proteins. 11. J. Theor.  Biol. 
51, 495-500. 

Johnson,  R.,  Adams, P., & Rupley,  J. (1978). Thermodynamics of pro- 
tein  cross-links. Biochemistry 17, 1479-1484. 

Kaufmann,  L. & Vogel, P. (1992). Link polynomials  and  a  graphical cal- 
culus. J. Knot Theory l ,  59-104. 

Kauzmann, W. (1959). Relative  probabilities  of  isomers  in  cystine-con- 
taining  randomly coiled polypeptides. In Sulfur in Proteins (Benesch, 
R., Benesch, R.E.,  Boyer,  P.,  Klotz, I . ,  Middlebrook,  W.R.,  Szent- 
Gyorgyi,  A,, & Schwarz,  D.R.,  Eds.),  pp. 93-108. Academic  Press, 
New York. 

Kikuchi, T., Nemethy, G., & Scheraga, H. (1986). Spatial  geometric  ar- 
rangements  of  disulfide-crosslinked  loops in proteins. J. Comput. 
Chem. 7, 61-88. 

Kikuchi, T., Nemethy,  G., & Scheraga, H.  (1989). Spatial  geometric ar- 
rangements  of  disulfide-crosslinked  loops  in  non-planar  proteins. J. 
Comput.  Chem. IO, 287-294. 

Klapper,  M. & Klapper, I.  (1980). The  ‘knotting’  problem in proteins. 
Biochim.  Biophys.  Acta 626, 97-105. 

Le Nguyen,  D.,  Heitz, A,, Chiche,  L.,  Castro, B., Boigegrain, R., Favel, 
A, ,  & Coletti-Previero,  M. (1990). Molecular  recognition  between 
serine  proteases  and  new  bioactive  microproteins  with  a  knotted 
structure. Biochimie 72, 431-435. 

Mao, B. (1989). Molecular  topology  of  multiple-disulfide  polypeptide 
chains. J. Am.  Chem.  Soc. I l l ,  6132-6136. 

Mao, B., Chou, K.,  & Maggiora, G. (1990). Topological  analysis  of 
hydrogen  bonding in protein  structure. Eur. J. Biochem. 188, 361- 
365. 

Meirovitch, H.  & Scheraga, H.  (1981a). Introduction of short-range re- 
strictions  in  a  protein  folding  algorithm  involving  a  long-range  geo- 

Proc.  Natl.  Acad. Sci. USA 78, 6584-6587. 
metrical restriction and  short-, medium-, and  long-range  interactions. 

Meirovitch, H.  & Scheraga, H.  (1981b). An  approach  to  the multiple- 
minimum  problem  in  protein  folding,  involving  a  long-range  geo- 
metrical restriction and  short-,  medium-,  and  long-range  interactions. 
Macromolecules 14, 1250-1259. 

Richardson,  J. (1985). Describing  patterns of protein  tertiary  structure. 
Methods  Enzymol. 115, 341-358. 

Roberts, F. (1984). Applied  Combinatorics. Prentice-Hall,  Englewood 
Cliffs, New Jersey. 

Rolfsen, D. (1976). Knofs and Links. Publish or  Perish  Press,  Berke- 

Scheraga,  H.,  Konishi, Y., & Ooi, T. (1984). Multiple  pathways  for re- 
ley,  California. 

Sela,  M. & Lifson, S. (1959). On  the  reformation of disulfide  bridges 
generating  ribonuclease  A. Adv. Biophys. 18, 21-41. 

in proteins. Biochim. Biophys.  Acta 36, 471-478. 
Thornton,  J.M. (1981). Disulphide bridges in  globular  proteins. J. Mol. 

Walba,  D.  (1985).  Topological  stereochemistry. Tetrahedron 41, 

Weissman, J .  &Kim, P. (1991). Reexamination  of  the  folding  of  BPTI. 

Biol. 151, 261-287. 

3161-3212. 

Science 253, 1386-1392. 


