Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1993 Jun;2(6):966–976. doi: 10.1002/pro.5560020610

ATP binding to cytochrome c diminishes electron flow in the mitochondrial respiratory pathway.

D B Craig 1, C J Wallace 1
PMCID: PMC2142400  PMID: 8391357

Abstract

Eukaryotic cytochrome c possesses an ATP-binding site of substantial specificity and high affinity that is conserved between highly divergent species and which includes the invariant residue arginine91. Such evolutionary conservatism strongly suggests a physiological role for ATP binding that demands further investigation. We report the preparation of adducts of the protein and the affinity labels 8-azido adenosine 5'-triphosphate, adenosine 5'-triphosphate-2',3'-dialdehyde, and 5'-p-fluorosulfonylbenzoyladenosine. The two former reagents were seen to react at the arginine91-containing site, yet the reaction of the latter, although specific, occurred elsewhere, suggesting caution is necessary in its use. None of the adducts displayed significant modification of global structure, stability, or physicochemical properties, leading us to believe that the 8-N3-ATP and oATP adducts are good stabilized models of the noncovalent interaction; yet modification led to significant, and sometimes pronounced, effects on biological activity. We therefore propose that the role of ATP binding to this site, which we have shown to occur when the phosphorylation potential of the system is high under the equivalent of physiological conditions, is to cause a decrease in electron flow through the mitochondrial electron transport chain. Differences in the degree of inhibition produced by differences in adduct chemistry suggest that this putative regulatory role is mediated primarily by electrostatic effects.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmed A. J., Smith H. T., Smith M. B., Millett F. S. Effect of specific lysine modification on the reduction of cytochrome c by succinate-cytochrome c reductase. Biochemistry. 1978 Jun 27;17(13):2479–2483. doi: 10.1021/bi00606a003. [DOI] [PubMed] [Google Scholar]
  2. Brown G. C., Lakin-Thomas P. L., Brand M. D. Control of respiration and oxidative phosphorylation in isolated rat liver cells. Eur J Biochem. 1990 Sep 11;192(2):355–362. doi: 10.1111/j.1432-1033.1990.tb19234.x. [DOI] [PubMed] [Google Scholar]
  3. Colman R. W. Aggregin: a platelet ADP receptor that mediates activation. FASEB J. 1990 Mar;4(5):1425–1435. doi: 10.1096/fasebj.4.5.2407587. [DOI] [PubMed] [Google Scholar]
  4. Concar D. W., Whitford D., Williams R. J. The location of the polyphosphate-binding sites on cytochrome c measured by NMR paramagnetic difference spectroscopy. Eur J Biochem. 1991 Aug 1;199(3):569–574. doi: 10.1111/j.1432-1033.1991.tb16156.x. [DOI] [PubMed] [Google Scholar]
  5. Corthésy B. E., Wallace C. J. The oxidation-state-dependent ATP-binding site of cytochrome c. A possible physiological significance. Biochem J. 1986 Jun 1;236(2):359–364. doi: 10.1042/bj2360359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Corthésy B. E., Wallace C. J. The oxidation-state-dependent ATP-binding site of cytochrome c. Implication of an essential arginine residue and the effect of occupancy on the oxidation-reduction potential. Biochem J. 1988 Jun 1;252(2):349–355. doi: 10.1042/bj2520349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Craig D. B., Wallace C. J. The specificity and Kd at physiological ionic strength of an ATP-binding site on cytochrome c suit it to a regulatory role. Biochem J. 1991 Nov 1;279(Pt 3):781–786. doi: 10.1042/bj2790781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Czarnecki J., Geahlen R., Haley B. Synthesis and use of azido photoaffinity analogs of adenine and guanine nucleotides. Methods Enzymol. 1979;56:642–653. doi: 10.1016/0076-6879(79)56061-3. [DOI] [PubMed] [Google Scholar]
  9. Easterbrook-Smith S. B., Wallace J. C., Keech D. B. Pyruvate carboxylase: affinity labelling of the magnesium adenosine triphosphate binding site. Eur J Biochem. 1976 Feb 2;62(1):125–130. doi: 10.1111/j.1432-1033.1976.tb10105.x. [DOI] [PubMed] [Google Scholar]
  10. Ferguson-Miller S., Brautigan D. L., Margoliash E. Correlation of the kinetics of electron transfer activity of various eukaryotic cytochromes c with binding to mitochondrial cytochrome c oxidase. J Biol Chem. 1976 Feb 25;251(4):1104–1115. [PubMed] [Google Scholar]
  11. Ferguson-Miller S., Brautigan D. L., Margoliash E. Definition of cytochrome c binding domains by chemical modification. III. Kinetics of reaction of carboxydinitrophenyl cytochromes c with cytochrome c oxidase. J Biol Chem. 1978 Jan 10;253(1):149–159. [PubMed] [Google Scholar]
  12. Gellerich F. N., Bohnensack R., Kunz W. Control of mitochondrial respiration. The contribution of the adenine nucleotide translocator depends on the ATP- and ADP-consuming enzymes. Biochim Biophys Acta. 1983 Feb 17;722(2):381–391. doi: 10.1016/0005-2728(83)90086-5. [DOI] [PubMed] [Google Scholar]
  13. Gregory M. R., Kaiser E. T. Inactivation of phosphofructokinase by dialdehyde-ATP. Arch Biochem Biophys. 1979 Aug;196(1):199–208. doi: 10.1016/0003-9861(79)90567-8. [DOI] [PubMed] [Google Scholar]
  14. Haley B. E. Adenosine 3',5'-cyclic monophosphate binding sites. Methods Enzymol. 1977;46:339–346. doi: 10.1016/s0076-6879(77)46039-7. [DOI] [PubMed] [Google Scholar]
  15. Heinrich R., Rapoport T. A. A linear steady-state treatment of enzymatic chains. Critique of the crossover theorem and a general procedure to identify interaction sites with an effector. Eur J Biochem. 1974 Feb 15;42(1):97–105. doi: 10.1111/j.1432-1033.1974.tb03319.x. [DOI] [PubMed] [Google Scholar]
  16. Hüther F. J., Berden J., Kadenbach B. Influence of 8-azido-ATP and other anions on the activity of cytochrome c oxidase. J Bioenerg Biomembr. 1988 Aug;20(4):503–516. doi: 10.1007/BF00762206. [DOI] [PubMed] [Google Scholar]
  17. Hüther F. J., Kadenbach B. Specific effects of ATP on the kinetics of reconstituted bovine heart cytochrome-c oxidase. FEBS Lett. 1986 Oct 20;207(1):89–94. doi: 10.1016/0014-5793(86)80018-7. [DOI] [PubMed] [Google Scholar]
  18. JACOBS E. E., SANADI D. R. The reversible removal of cytochrome c from mitochondria. J Biol Chem. 1960 Feb;235:531–534. [PubMed] [Google Scholar]
  19. Kadenbach B. Regulation of respiration and ATP synthesis in higher organisms: hypothesis. J Bioenerg Biomembr. 1986 Feb;18(1):39–54. doi: 10.1007/BF00743611. [DOI] [PubMed] [Google Scholar]
  20. King M. M., Colman R. F. Affinity labeling of nicotinamide adenine dinucleotide dependent isocitrate dehydrogenase by the 2',3'-dialdehyde derivative of adenosine 5'-diphosphate. Evidence for the formation of an unusual reaction product. Biochemistry. 1983 Mar 29;22(7):1656–1665. doi: 10.1021/bi00276a021. [DOI] [PubMed] [Google Scholar]
  21. Koppenol W. H., Vroonland C. A., Braams R. The electric potential field around cytochrome c and the effect of ionic strength on reaction rates of horse cytochrome c. Biochim Biophys Acta. 1978 Sep 7;503(3):499–508. doi: 10.1016/0005-2728(78)90149-4. [DOI] [PubMed] [Google Scholar]
  22. Küster U., Bohnensack R., Kunz W. Control of oxidative phosphorylation by the extra-mitochondrial ATP/ADP ratio. Biochim Biophys Acta. 1976 Aug 13;440(2):391–402. doi: 10.1016/0005-2728(76)90073-6. [DOI] [PubMed] [Google Scholar]
  23. Osheroff N., Brautigan D. L., Margoliash E. Definition of enzymic interaction domains on cytochrome c. Purification and activity of singly substituted carboxydinitrophenyl-lysine 7, 25, 73, 86, and 99 cytochromes c. J Biol Chem. 1980 Sep 10;255(17):8245–8251. [PubMed] [Google Scholar]
  24. Reimann A., Hüther F. J., Berden J. A., Kadenbach B. Anions induce conformational changes and influence the activity and photoaffinity-labelling by 8-azido-ATP of isolated cytochrome c oxidase. Biochem J. 1988 Sep 15;254(3):723–730. doi: 10.1042/bj2540723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rieder R., Bosshard H. R. Comparison of the binding sites on cytochrome c for cytochrome c oxidase, cytochrome bc1, and cytochrome c1. Differential acetylation of lysyl residues in free and complexed cytochrome c. J Biol Chem. 1980 May 25;255(10):4732–4739. [PubMed] [Google Scholar]
  26. Smith M. B., Stonehuerner J., Ahmed A. J., Staudenmayer N., Millett F. Use of specific trifluoroacetylation of lysine residues in cytochrome c to study the reaction with cytochrome b5, cytochrome c1, and cytochrome oxidase. Biochim Biophys Acta. 1980 Sep 5;592(2):303–313. doi: 10.1016/0005-2728(80)90191-7. [DOI] [PubMed] [Google Scholar]
  27. Tager J. M., Wanders R. J., Groen A. K., Kunz W., Bohnensack R., Küster U., Letko G., Böhme G., Duszynski J., Wojtczak L. Control of mitochondrial respiration. FEBS Lett. 1983 Jan 10;151(1):1–9. doi: 10.1016/0014-5793(83)80330-5. [DOI] [PubMed] [Google Scholar]
  28. Wallace C. J., Clark-Lewis I. Functional role of heme ligation in cytochrome c. Effects of replacement of methionine 80 with natural and non-natural residues by semisynthesis. J Biol Chem. 1992 Feb 25;267(6):3852–3861. [PubMed] [Google Scholar]
  29. Wallace C. J., Corradin G., Marchiori F., Borin G. Cytochrome c chimerae from natural and synthetic fragments: significance of the biological properties. Biopolymers. 1986 Nov;25(11):2121–2132. doi: 10.1002/bip.360251107. [DOI] [PubMed] [Google Scholar]
  30. Wallace C. J., Corthésy B. E. Alkylamine derivatives of cytochrome c. Comparison with other lysine-modified analogues illuminates structure/function relations in the protein. Eur J Biochem. 1987 Dec 30;170(1-2):293–298. doi: 10.1111/j.1432-1033.1987.tb13698.x. [DOI] [PubMed] [Google Scholar]
  31. Wallace C. J. Functional consequences of the excision of an omega loop, residues 40-55, from mitochondrial cytochrome c. J Biol Chem. 1987 Dec 15;262(35):16767–16770. [PubMed] [Google Scholar]
  32. Wallace C. J., Mascagni P., Chait B. T., Collawn J. F., Paterson Y., Proudfoot A. E., Kent S. B. Substitutions engineered by chemical synthesis at three conserved sites in mitochondrial cytochrome c. Thermodynamic and functional consequences. J Biol Chem. 1989 Sep 15;264(26):15199–15209. [PubMed] [Google Scholar]
  33. Wallace C. J., Proudfoot A. E. On the relationship between oxidation-reduction potential and biological activity in cytochrome c analogues. Results from four novel two-fragment complexes. Biochem J. 1987 Aug 1;245(3):773–779. doi: 10.1042/bj2450773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Wallace C. J., Rose K. The semisynthesis of analogues of cytochrome c. Modifications of arginine residues 38 and 91. Biochem J. 1983 Dec 1;215(3):651–658. doi: 10.1042/bj2150651. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES