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Abstract 

A method is presented  to  model  loops  of  protein  to  be used in  homology  modeling of proteins.  This  method  em- 
ploys the ESAP program of Higo  et  al.  (Higo, J . ,  Collura, V., & Garnier, J . ,  1992, Biopolymers32, 33-43) and 
is based on a fast  Monte  Carlo  simulation  and a simulated  annealing  algorithm.  The  method is  tested on differ- 
ent  loops or peptide segments from  immunoglobulin,  bovine  pancreatic trypsin inhibitor,  and  bovine  trypsin.  The 
predicted  structure is obtained  from  the  ensemble  average of the  coordinates of the  Monte  Carlo  simulation  at 
300 K, which exhibits  the lowest internal  energy.  The  starting  conformation of the  loop  prior  to  modeling is cho- 
sen to be completely  extended,  and a  closing harmonic  potential is applied to  N, CA, C, and 0 atoms of the  ter- 
minal  residues. A rigid geometry  potential  of  Robson  and  Platt (1986, J. Mol. Bioi. 188, 259-281) with a united 
atom  representation is used. This we demonstrate  to yield a loop  structure  with  good  hydrogen  bonding  and  tor- 
sion  angles  in the  allowed  regions of the  Ramachandran  map.  The  average  accuracy of the  modeling  evaluated 
on the  eight  modeled  loops is 1 A root  mean  square  deviation  (rmsd)  for  the  backbone  atoms  and 2.3 A rmsd for 
all heavy atoms. 
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tential;  simulated  annealing 

At  present, modeling of protein  structure by homology 
to  a protein of known  structure is an effective way to  ob- 
tain  the  correct  topology of the  polypeptide  chain  fold. 
Currently this comprises two essential steps. The first step 
is the alignment of amino acid  sequences  of the  protein 
to be modeled with those  from  protein(s) of known  struc- 
ture.  In cases where the sequences have weak homologies 
and  unequal lengths  this  step is subject  to local misalign- 
ments when compared to crystallographic  alignments. 
This  can  be  complemented by biochemical information 
relating  activity to a  modified amino acid  sequence and 
may  sometimes  be  corrected by secondary  structure  pre- 
diction  based on sequence  similarity (Levin & Garnier, 
1988; Garnier & Levin, 1991). In a second  step the  coor- 
dinates of the residues of  the  known  protein  are  trans- 
ferred to residues of the  unknown  protein  that  match in 
the  alignment.  This  can be done  through  the use  of  soft- 
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ware with a relatively good  accuracy  (Srinivasan et al., 
1993). However,  there are segments of the polypeptide 
chain  that do not  match  at all  because  they are of differ- 
ent  lengths and sequences.  Usually, but  not always, they 
correspond to peptide  segments  of  aperiodic  structures 
joining  the  secondary  structural elements  forming the 
conserved  core  of the  homologous  proteins (see the  sur- 
vey made by Chothia & Lesk [1986]). Some of these vari- 
able  segments  may  have important biological  functions 
with important  therapeutic  applications, such as  the rec- 
ognition of antigens by antibodies  (Foote & Winter, 1992). 

Modeling of protein loops has previously included either 
a search of similar  loops  in  a  protein data base (Chothia 
& Lesk, 1987; Sutcliffe  et  al., 1987; Chothia  et  al., 1989) 
o r  a  selection of loops  after a more  or less extensive con- 
formational search (Fine et al., 1986; Shenkin et al., 1987; 
Bruccoleri  et al., 1988; Martin et al., 1989) followed by 
energy  minimization. We want to  report  here  the results 
of a Monte  Carlo  method  (Higo et al., 1992) for  the mod- 
eling of loops of medium size, six to nine amino  acid res- 
idues from an initial extended conformation. These loops 
were taken  from  different proteins  in order  to ascertain 
the generality of a  method  that has  previously  only been 
applied to the modeling of hypervariable  loops  of  immu- 
noglobulins  (Gibrat et al., 1992; Higo et al., 1992). The 
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results  shown below indicate an accuracy very similar to 
the  accuracy  of modeling  of the  immunoglobulin  loops 
without  the difficulties  linked to  conformational search 
algorithms  such  as  that used by Bruccoleri  et al. (1988) 
in which the search  space increases exponentially with the 
number  of  amino acids  in the  loop. 

Monte  Carlo-Metropolis (MC)  simulations  (Metropo- 
lis  et al., 1953) have been considered as less efficient than 
molecular  dynamics  (MD) for  nonhomogeneous  and  an- 
isotropic  systems  such  as  macromolecules  (Northrup & 
McCammon, 1980). This  point of view has been chal- 
lenged by Bouzida et al. (1992). Furthermore, a  number 
of  algorithms  have been developed to increase the  effi- 
ciency of  MC  simulations  in  exploring  conformational 
space  (Pangali et al., 1978; Rossky et al., 1978; Goldman, 
1983; Noguti & GO, 1985; Cao & Berne, 1990; Garel & 
Orland, 1990; Shin & Jhon, 1991; Bouzida  et  al., 1992; 
Kotelyanskii & Suter, 1992). An  MC  simulation  offers, 
like MD,  the possibility of calculating  equilibrium prop- 
erties by computing  appropriate averages  over  a set of 
generated  conformations in order  to represent  the  ther- 
mal  fluctuations  at  the  temperature  at which the experi- 
mental data  are  obtained  or  at which the system performs 
its  biological function. If the  MC  simulation is long 
enough,  the  same average value as  that  obtained experi- 
mentally at equilibrium should be calculated. This is a pri- 
ori  a  more realistic  representation of the  properties of a 
peptide loop including its conformation  than a single min- 
imized conformation  at 0 K. 

The  simulated  annealing  that we developed, ESAP 
(Higo et al., 1992), starts with an  MC simulation at high 
temperature  from  the extended conformation of the pep- 
tide  loop.  The  loop is considered to be flexible, the  other 
atoms of the  protein being conformationally  fixed.  The 
loop  closure is achieved by applying an  harmonic  poten- 
tial to  the  four  backbone  atoms of the  terminal residues. 
The process is then  annealed to  the final temperature, a 
process found  to be  most  effective at finding  the global 
minimum,  avoiding  as  far  as possible the system becom- 
ing trapped in local  minima  (Kirkpatrick  et  al., 1983). 
From  the  MC  simulation having the lowest calculated  in- 
ternal energy  value, a structure  can be  predicted by cal- 
culating the Boltzmann  average  of  the  coordinates of the 
sampled  conformations of that  simulation  at 300 K. The 
accuracies  of the  predictions were 1 A root  mean  square 
deviation  (rmsd) for  the  backbone  atoms  and 2.3 A rmsd 
for all the  atoms on average for the eight loops tested. Hy- 
drogen  bond  networks  and  torsion angle distributions  of 
the  loops were also  analyzed. 

Materials and methods 

Protein loops 

For a  comparison between the modeled  loops and  the 
fixed part  of  the  proteins,  the  coordinates were taken 

from  the  Brookhaven  Protein  Data Bank (Bernstein et al., 
1977). For  the  antibody McPC603 (lmcp  at 2.7 A resolu- 
tion),  data were taken  from  the  study  of  Satow et al. (1987) 
with the hypervariable  loops  L2  (GS6ASTRES61) and  H3 
(Ylo2YGSTWYFlw) used. For  BPTI (4pti at 1.5 A reso- 
lution),  data were from  Marquart et al. (1983) with the  fol- 
lowing loops used: B1 (L&PPYTGl2), B2 (C14KARIIRZO), 
B3 (F22YNAKAGL29), B4 (G36GCRAKR42),  and B5 
(N,,FKSAED,,). For  the  purpose  of  comparison  the 
BPTI  loops  corresponded to those  already  modeled by 
Dudek and Scheraga (1990). For trypsin (2ptn, 1.55 A res- 
olution), data were from Walter et al. (1982) with the  loop 
T1  (N123TKSSGTSY131) used. 

Target function 

The target  function, E,, was a  linear  combination  of  two 
kinds of terms, an harmonic  distance  constraint, Ed, and 
the  nonbonded  atomic  interactions, E;: 

with 

where r; and rj,x are vectors  representing the  position  of 
atom i of the N- and C-terminal residues for, respectively, 
the flexible peptide  segment and  the  corresponding posi- 
tion  from  X-ray  data.  The  summation  for Ed is taken 
over the main-chain atoms (N, CA,  C,  and 0) of the  ter- 
minal residues. 

The  nonbonded  interactions E; were calculated with 
the  force field developed by Robson  and  Platt (1986). 
This  force field makes use of rigid geometry reducing sig- 
nificantly the  number  of variables to  the  torsion angles 
of  the  backbone (6 and $) and x for  the side  chains.  It 
contains pairwise atomic  interactions,  van  der Waals and 
electrostatic,  for  the  nonbonded  atoms,  and an intrinsic 
rotation  potential  for  the side-chain  dihedral  angles. It 
uses a united atom  representation in which hydrogens  of 
nonpolar  atoms  are  treated implicitly and hydrogens  of 
polar  atoms  that  may  form  hydrogen  bonds  are  added, 
in both flexible and fixed parts,  at  the stereochemically 
standard  positions  as  determined by the positions of non- 
hydrogen  atoms connected to  the hydrogen  atoms.  The 
peptide bond  dihedral angle w was fixed at 180" and  pro- 
line  residues  in trans  or cis conformation.  The dielectric 
constant was set to 5 and a cutoff  distance  of 10 A was 
used for  the  calculation of pairwise atomic  interactions. 
The pairlist was renewed every 10 Monte  Carlo steps. Be- 
cause  the  coordinates of the fixed part were taken  from 
raw X-ray  data without  correction for  the rigid geometry 
used for  the flexible peptide segments, the pairwise atomic 
interactions between the fixed part  and  the  two side chains 
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of the N- and  C-terminal residues of each  segment were 
neglected. 

Monte Carlo  simulation 

We used the  Monte  Carlo  method of Metropolis et al. 
(1953) for  the  conformational sampling  of the flexible 
peptide segments, adopting  the scaled collective variables 
developed by Noguti  and Gd (1985). The collective vari- 
ables were the eigenvectors obtained by diagonalizing the 
second  derivative  matrix of the target  function with re- 
spect to the  torsion  angles.  An  orthogonal  and  normal- 
ized set of eigenvectors  in the  torsion angle  space was 
calculated, and  a vector step  from  the currently accepted 
conformation to a  trial  one was constructed by a  linear 
combination of the eigenvectors. The second  derivative 
matrix was numerically calculated every 2,000 steps of the 
simulation with a cutoff  distance of 5 A for  the calcula- 
tion of the  nonbonded  atomic  interactions.  The coeffi- 
cient ki assigned to the  ith eigenvector  in the  linear 
combination was 

k,  = c ~ ; ( R T / N ~ ~ ) ~ " ~ ,  (3) 

where R ,  T, N ,  and pi are  the gas constant,  the  absolute 
temperature,  the  number of torsion variables, and  the ith 
eigenvalue, respectively. The pi is a  random  number  as- 
signed to  the  ith eigenvector, which is uniformly  distrib- 
uted from - 1 and + 1 during  the  simulation. The constant 
c was used to modulate  the acceptance  ratio around 0.5- 
0.6 during  the  simulation.  A typical value was 5.0 rad". 
When an eigenvalue was negative,  the value was replaced 
by a  small fixed positive  value (1 .O kcal/mol/rad2). 

The vector  step A0 in conformational space  had ele- 
ments A0,: 

where N is the  total  number of variable  angles and A$, 
the  step  taken  and  added to the  torsion  angle 0, of the 
last accepted conformation; x,,~ is an element of  the ei- 
genvector  matrix and k, the  coefficient  defined  above  in 
Equation  3. 

Simulated  annealing 

The simulated  annealing was performed  as  described by 
Higo et al. (1992). The  gradual decrease  of  temperature 
was obtained by increasing the X values of Equation 1, 
keeping the  temperature  at 300 K .  The effective  temper- 
atures were 300/X. First an extended conformation  for 
each flexible peptide segment was generated by setting all 
the  dihedral angles to 180°, and  the  N,  HN,  and  CA  at- 
oms of the N-terminal  residues  of the  peptide segments 
were moved by appropriate  translations  and  rotations  to 

their  reference  position from  the X-ray data of the fixed 
part. Next an  MC simulation  as  above was done with X d  
and X, equal to 0.01 but  counting  only  nonbonded  inter- 
actions between atoms of the  loop  and  the fixed part. This 
allowed the  proper closing of the  loop within 5,000 MC 
steps.  Then  the last accepted conformations every 2 x 
lo4 steps were taken  as  starting  conformations  for an  an- 
nealing process that is shown in Table 1. Usually five of 
those  starting  conformations were found to be sufficient. 
The lowest energy conformation  from each  annealing 
stage was used as  the  starting  conformation  for  the next 
annealing  stage.  The ensemble of conformations  sampled 
at 300 K from  the last  MC  simulation,  stage 5, was char- 
acterized by the  internal energy, U,  and  the average co- 
ordinates of the  constituents, R;: 

where El,,, n,, m, and Ntotal are  the energy function  (Equa- 
tion l )  of the j th  accepted conformation,  the  number of 
rejected conformations  after thej th  accepted  conforma- 
tion,  the  total  number of accepted conformations,  and  the 
total  number of MC steps. Values ri,J are  the coordinates 
of  atom i from  the j t h  accepted conformation. 

The five simulations  for  the modeling of a seven-amino 
acid loop  took 7 h on  an Alliant  FX80  configured with 
two 4 ACE complexes. No attempt was made to improve 
further  the parallelism of 66% found  for  the  FORTRAN 
77 program  that we wrote to execute the calculations. 

Analysis of the modeled loops 

Comparisons with X-ray data were done by calculating 
the rmsd from  the  X-ray  coordinates with those  coordi- 
nates  calculated from  Equation 6 for  the  backbone  three 
or four heavy atoms,  rmsdb (N, CA,  C,  and 0) and  for 
all  the heavy atoms  including  the  side-chain  atoms, 
rmsda.  Although  the  force field involved  a standard ge- 
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ometry  different  from  the  one used to refine the  X-ray 
data,  the  comparison with the  X-ray  coordinates was done 
without  regularization  of  the  X-ray  structure  and  without 
superposition  algorithms. The  torsion  backbone angles 4 
and $, calculated from  the  coordinates  of  Equation 6 
were also  compared  to observed  values  calculated from 
the X-ray coordinates.  The  hydrogen  bond network was 
calculated using the  algorithm  of Kabsch and  Sander 
(1983) adapted  to  include  the side-chain atoms. 

Results and discussion 

Ensemble  averages  of the energies and  coordinates have 
been considered by Higo et al. (1992) as  the best approx- 
imation to  compare  the modeled  hypervariable loops of 
antibodies with X-ray  data.  Comparison was made be- 
tween the  X-ray  coordinates  without  regularization of the 
X-ray  structure with the rigid geometry  and  without  a 
least-squared  superposition of the modeled loop. This di- 
rect comparison with X-ray  data usually  increases the 
rmsd by about  20%  (Gibrat et al., 1992) but  has the  ad- 
vantage  of being closer to  the expected error of the  mod- 
eling of an  unknown  loop  structure. 

Rigid geometry approximation and ensemble 
averages of coordinates 

In  some instances we have  noticed that  the use of  Boltz- 
mann averages of the  coordinates  could  alter  some  bond 
lengths of side-chain atoms,  due  to  conformational fluc- 
tuations  during  the MC simulation.  This  can be corrected 
by fitting a rigid geometry  structure  on  the  average  coor- 
dinates.  The corrections  from  the  average  coordinates  are 
usually very small, less than  0.1 A for  the  backbone rmsd 
and 0.2 A for all the heavy atoms.  This is negligible com- 
pared to crystallographic  errors, estimated for  the best- 
resolved structures to be 0.5 A for all heavy atoms (see 
discussion in Gibrat et al., 1992). The use of  a rigid ge- 
ometry was also  found  to be in the  range of the lowest 
crystallographic  errors.  For  instance,  regularization, 
which is distance  minimization of the rigid geometry used 
with X-ray  coordinates for  the six loops of 5539 antibody 
at 1.95 A resolution,  gave an average  rmsd  for all heavy 
atoms  of 0.5 A (Gibrat, pers.  comm.). 

Internal energy and lowest rmsd 

Previous  results  (Higo  et  al., 1992) have  shown  that in- 
ternal  energy  obtained  from  the last MC  simulation 
(Equation 5 )  could be used as  a  criterion  for  evaluating 
the accuracy  of the  modeling,  i.e.,  the lower the  internal 
energies, the closer is the  structure  of  the modeled  loops 
to those  from  X-ray analyses. For  half  of  the  loops (Ta- 
ble 2) the lowest internal  energy  corresponded to the low- 
est rmsd,  backbone or all atoms.  For  the  other  four  loops, 
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Table 2. Results of the Monte  Carlo (MC) 
simulations for each tested loop" 

-7.46 
-12.38 
-13.19 
-12.00 

-9.09 

18.79 
26.18 
18.03 
22.94 

-0.80 

-4.32 
30.41 
20.72 
1 1.37 

-4.67 

12.31 
11.01 
8.54 

11.46 
1 1 . 0 6  

-~ ~- 

rmsdb  rrnsda 

B1 

0.89 2.65 
1.01 1.63 
0.92 2.59 
I .OO 1.46 
1.10 1.64 

~ _ _ _ . ~  ~ 

B3 

2.29 5.52 
2.87 5.42 
1.90 4.78 
2.98 5.06 
1.54 2.67 

B5 
~~~ 

0.49 1.59 
3.88 5.58 
1.73 4.34 
1.11  1.76 
0.54 1.75 

L2 

1.48 3.62 
0.91 1.65 
0.83 1.46 
1.47 4.48 
0.92 1.85 

~ ~ _ _ _ _ _ _  

~~ -~~~ 

U rmsdb 
______~ 

B2 
~ ~ ~~ 

4.89 0.87 
10.03 1.35 
34.42 1.79 
7.34 0.69 
8.79 1.48 

B4 
~~~~ 

18.14 0.76 
7.88 0.93 

40.34 3.09 
30.15 3.29 
23.36 0.82 

T 
~ 

15.19 6.51 
-3.30 1.38 

2.78 0.84 
6.30 5.96 

216.00 3.73 

H3 
~ ~ _ _ _ ~ ~  

25.46 3.44 
22.80 3.80 
19.73 2.41 
6.13 0.93 

15.78 2.11 
_ _ _ . ~ _ _ .  

~- .~ ~ 

rmsda 
" 

~- 

1.97 
4.49 
4.43 
2.43 
4.39 

" 

2.46 
2.31 
4.91 
4.26 
2.02 

~" 

6.43 
2.70 
2.26 
5.81 
5.25 

~- 

5 .18  
5.52 
5.88 
3.25 
5.30 

~ 

a T 1 - T 5  correspond  to five  different  annealings. U is given  in 
k c a l h o l ;  rrnsd is in A, rmsdb  for  backbone  atoms N, CA, and C, and 
rmsda  for  all  heavy  atoms. B1-B5 correspond  to BPTI (bovine  pancre- 
atic  trypsin  inhibitor)  loops, T to the  trypsin  loop,  and L2 and H3 to 
hypervariable  loops  of McPC603 (see Materials  and  methods  for  defi- 
nition of the  loops). Bold values correspond to  the lowest internal energy. 

the rmsds of the lowest energy  structures were very close 
to  the lowest rmsd.  Modeling based solely on  the  confor- 
mations of lowest internal energy yielded an average rmsd 
backbone  (three  atoms) for the eight loops of 0.99 A com- 
pared to 0.87 A for  the lowest rmsd found  during all the 
MC simulations. For all the heavy atoms  the average rmsd 
was 2.34 A compared with 2.09 A for  the lowest rmsd. 
The loss  of  accuracy by selecting the lowest internal  en- 
ergy simulations is about lo%, or 0.1-0.2 A. These  dif- 
ferences between the lowest internal  energies and lowest 
rmsd  probably reflect the  fact  that we did not calculate 
the free  energy  change or  the explicit contribution  of  the 
solvent. 

The  ESAP  method of Higo et al. (1992) has  already 
been found  to be  more  accurate  for modeling  hypervari- 
able  loops  of  immunoglobulins  than  the  conformational 
search  methods  (Gibrat et al., 1992), and  the results for 
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the  two hypervariable loops of McPC603 confirmed these 
findings. The accuracy of the modeling of the bovine pan- 
creatic  trypsin  inhibitor (BPTI)  and  trypsin  loops in  Ta- 
ble 2 were very similar to  the accuracy found  for  the 
hypervariable loops even if some of them  contain residues 
in  regular  secondary structure such  as  those of B2, B3, 
and BS. Those  results are  also close to those  found  from 
the  modeling of the  same  loops of BPTI  made by Dudek 
and Scheraga (1990) if one takes into  account  the  fact  that 
their  comparisons were made with regularized  loops and 
not with direct X-ray coordinates. However for  loops B1, 
B4, and B5, they obtained  a significantly better backbone 
rmsd  although  the  all-atoms  rmsd was not  reported. It is 
worth  noting that  Dudek  and  Scheraga (1990) started all 
their  simulations  not  from a completely random  or ex- 
tended  structure of the  loops,  as we did,  but  from a  col- 

lection of backbone  structures  obtained by deforming  the 
regularized X-ray  backbone  structure.  One  may  question 
the efficiency of  this  process to generate  structures  that 
are  not related to the  initial  X-ray structure.  In practical 
loop modeling, the  Dudek  and  Scheraga  method is not 
applicable  because  their  algorithm  requires knowledge 
of the X-ray  structure  for  the  generation of a  starting 
conformation. 

Stereo  drawings of the modeled  loops of BPTI  and 
trypsin  are presented  in  Figure 1 and  compared  to X-ray 
data. A more  detailed  description of their  individual res- 
idue  rmsds is given in  Table 3 for  the MC  simulations of 
lowest internal  energy.  The closure of the  loops with the 
simple  harmonic  potential was quite  effective, with an 
rmsd  of  0.1-0.2 A for  the  backbone  atoms of the  termi- 
nal  residues. 

63 

Fig. 1. Stereo  drawings  of  the  loops  from  BPTI  and  trypsin.  These  correspond to the  MC  simulations of lowest internal  en- 
ergy  in  Table 2.  The X-ray  structures  are  drawn  with  thin  lines  and  the  simulated  structures  with  thick  lines.  The  labeling of 
the  loops is the  same  as  in  the  Materials  and  methods,  Bl-B5  for  BPTI,  and  T for trypsin. (Continues On facing page.)  
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It is becoming  increasingly  accepted that  the  distribu- 
tions of the observed torsion angles, 4 and $, in the  Ra- 
machandran  map,  are localized  in specifically defined 
regions for all residues except glycine (Morris et al., 1992). 
There  are a very few exceptions to  this when the  X-ray 
structure is  well refined at high resolution. We plotted in 
Figure 2 the observed  torsion  angles and  the simulated 
ones  from  the  MC  simulation  of  the lowest internal  en- 
ergy for  the  BPTI  and  trypsin  loops.  The  torsion angles 
calculated from  the X-ray  structure were found in the al- 
lowed regions, and all the  observed positive 4 torsion  an- 
gles corresponded to Gly residues except R39 of loop B4 
of  BPTI, which is in the allowed  region  of  a left cy-helix. 
Remarkably, all the  simulated  torsion angles were found 
to be in the  correct regions of the  map except one, residue 
Cys-38 of loop B4 of BPTI  at 65" and -99". Its  observed 
value was -146" and 156". The  other positive values of 
4 corresponded to Gly residues. The  means of absolute 
variations  of  the  predicted  torsion angles with the  ob- 
served  angles were 30 and 32" for  the 4 and $ angles,  re- 
spectively, with a standard  deviation  of 42". 

Analysis of the simulated hydrogen bonds 

It is  well recognized that hydrogen bonds  are a  character- 
istic feature  of  protein  structures.  The analysis of  the hy- 
drogen  bonds  for  the lowest internal  energy  simulations 
were compared with the X-ray data,  and  some of the re- 
sults are presented  in  Table 4. The predicted  hydrogen 
bonds  that  match  the observed  ones  have a remarkably 
similar  calculated  energy;  however,  a  certain  number  of 
bonds  are  not observed or  are incorrectly calculated (part 
B of Table 4). Noticeably on  an analysis made  on  the five 
loops  of BPTI and  the  trypsin  loop, 43 hydrogen  bonds 
were predicted for 44 bonds  observed,  and  among  them 
26 or 45% of  the predicted  hydrogen  bonds were correct. 
Among  the observed  hydrogen bonds, 70% were bonds 
including backbone  atoms  but only 60% for  the predicted 
bonds.  The  backbone  hydrogen  bonds were twice as ac- 
curately  predicted as  those  of  the side-chain  hydrogen 
bonds: 78% of the predicted bonds were correct  for  the 
backbone  atoms  and  only 31% for  the side  chains.  This 
reflects  the  greater  rmsds  of  the  side-chain atoms  com- 

B5 

Fig. 1. Continued. 
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Table 3. Root mean square deviations in A between 
the  model loops and  their X-ray structure  on a 
residue basis for BPTI and  trypsin loops 

Loop 

B1 

B2 

B3 

B4 

B5 

T2 

~ 

~~~ 

Residue 

L6 
E7 
P8 
P9 
Y I O  
TI 1 
GI2 
Total 

C14 
K15 
A16 
R17 
118 
119 
R20 
Total 

F22 
Y23 
N24 
A25 
K26 
A27 
G28 
L29 
Total 

G36 
G37 
C38 
R39 
A40 
K4 I 
R42 
Total 

N44 
F45 
K46 
s47 
A48 
E49 
D50 
Total 

N123 
T124 
K125 
S126 
S127 
GI28 
TI29 
SI30 
Y131 
Total 

~ ~~ 

~~ 

~ 

rmsdb“ 

0.09 
0.89 
1.23 
1.56 
1.04 
0.3 I 
0.1 1 
0.92 

0.03 
0.60 
1.17 
1.25 
I .33 
0.44 
0.08 
0.87 

0.10 
0.39 
0.59 
2.29 
3.02 
1.88 
0.81 
0.16 
1.55 

0.16 
1.42 
I .23 
0.97 
1.01 
0.74 
0.17 
0.93 

0.08 
0.30 
0.58 
0.89 
0.82 
0.40 
0.15 
0.54 

0.07 
0.38 
1.34 
2.81 
1.39 
2.03 
1.03 
0.36 
0. I4 
1.38 

~ 

~ 

~~~ ~- 
~ 

rmsdbh 

~~~ 

0.15 
I .05 
1.40 
1.41 
0.98 
0.35 
0. I6 
0.94 

0.03 
1.29 
1.27 
1.45 
I .34 
0.47 
0.09 
1.03 

0.09 
0.45 
0.54 
2.58 
3.08 
1.69 
0.77 
0.17 
1.59 

0.33 
2.31 
1.99 
1.40 
0.98 
0.72 
0.15 
1.35 

0.31 
0.34 
0.63 
0.86 
0.76 
0.38 
0.13 
0.55 

0.09 
0.48 
1.38 
3.03 
1.76 
2.33 
1.02 
0.34 
0.13 
1.53 

~~ 

~ ~- ~ -~ _ _ ~  ~ 

a Includes atoms N, CA, and C.  
hIncludes  atoms N, CA,  C, and 0. 
Includes  all  heavy  atoms,  backbone,  and  side  chain 

~~ ~ 

~~ 

rmsda‘ 
- 

0.51 
I .97 
1.34 
2.15 
4.82 
0.41 
0.16 
2.59 

0.10 
1.33 
1.37 
3.06 
2.07 
1.65 
1.94 
I .97 

0.76 
1.23 
1.76 
2.69 
6.09 
1.82 
0.77 
0.58 
2.67 

0.33 
2.31 
1.97 
2.90 
1.06 
1.54 
3.06 
2.31 

2.07 
0.45 
2.48 
I .01 
0.87 
2.74 
0.39 
1.75 

1.62 
1.54 
4.58 
4.01 
1.62 
2.33 
1.31 
0.96 
2.83 
2.70 
-~ 

~~ 

3- 

-180  - 1 5 0  -120 -90 - 6 0  -30 0 30 60 90 120   150  180 
. . . . . . . . . . .  

Fig. 2. Ramachandran  map of observed and simulated  torsion  angles. 
The  symbol 0 corresponds  to  the  torsion  angles  calculated  from  the 
X-ray  coordinates  and 0 to  those  calculated  from  the  ensemble  aver- 
age  coordinates  of  the MC simulations of lowest internal energy. All the 
torsion  angles of the  residues of the  five  loops of BPTI and of trypsin 
are  represented. 

pared to  the  backbone  atoms. Possibly the difficulty in 
simulating  more  accurately the side  chains  of  the  amino 
acids  depends,  in  part, on  the solvent approximation 
made  here.  There  are  no explicit water molecules in the 
simulation,  only a global  solvent  effect through  a dielec- 
tric  constant  of 5 and  the use of the “s” function, which 
smoothes  the electrostatic  interactions at long  distance 
(Robson & Platt, 1986). However, the  total  number of 
side-chain hydrogen  bonds  predicted, 16, does not exceed 
by much the observed number, 13. These  results,  includ- 
ing the overall  number of predicted  hydrogen  bonds (43 
for 44 observed),  greatly  favor the  quality of the  force 
field used here to simulate  surface  loops. 

Conclusion 

The  ESAP  method developed by Higo et al. (1992) for 
modeling  hypervariable  loops of immunoglobulins  has 
been found  to be a method  applicable to loops or peptide 
segments of similar length from  different proteins with a 
comparable  accuracy,  about  an rmsd  backbone of 1 A 
and  an  all-atom rmsd  of 2.3 A. Could  one expect better 
accuracy? The solvent  effect was not explicitly included 
in  this  simulation,  but  the  relative  quality of hydrogen 
bond  prediction suggests that  the  force field used is suit- 
able  for  the modeling of solvent-accessible loops.  It  has 
the merit of the simplicity related to  the use of a rigid ge- 
ometry.  This  geometry is close to  the observed  geometry 
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Table 4. Predicted and observed hydrogen 
bonds of BPTI loops BI and B5 

~~ 

Loop" 

B1 
A 

B 

8 5  
A 

B 

~~ ~ 

Loop  amino acid 
~~ ~ 

L6 N-HN 
E7 C - 0  
TI1 C - 0  

E7  N-HN 
N-HN 
CD-OE 1 
CD-OE2 

P 8   C - 0  
P9 c-0 

N44 N-HN 
F45 N-HN 

c-0 
s47 c-0 
A48 C - 0  
E49 C - 0  
D50 C - 0  

N44 CG-OD1 
CC-OD 1 
ND2-HD1 

K46 NZ-HNZI 
S47 N-H 
E49  CD-OEI 
D50 CG-OD1 

CG-OD2 
~ ~~ ~~ ~~ ~ 

~~ ~~ ~ 

Other  amino  acid 
~ 

0-c D3 
HNDl-ND2 N43 
HN-N  G36 

0-c D3 
0-c F4 
HNZI-NZ K41 
HN-N N43 
HNZl-NZ K41 
HN-N TI 1 

0-c R42 
0-c Y21 
HN-N Y21 
HN-N  C5 I 
HN-N  M52 
HN-N R53 
HN-N  T54 

HNI 1-NH1  R20 
HN-N Y 10 
0-c K4 1 
OD1-CG D5O 
OD1-CG D5O 
HNI2-NH1 R53 
HN21-NH2  R53 
HN21-NH2 R53 

~ ~~ 

~ - 

-~ - ~- ~- ~ 

Hydrogen  bond 
energyh 

(kcal/mol) 

Predicted  Observed 
~~~ ~~ 

~~ ~- - ~- ~ 

-2.04 - 1.88 
-1.87 -2.95 
- 1.16 -2.35 

-0.68 > 
> -1.29 
-0.95 > 
> - 1.67 
-0.76 > 
> -0.55 

-2. I8 -2.23 
-2.62 -2.56 
-2.55 -2.94 
- 1.09 -2.02 
-1.90 -1.13 
-1.62 -1.93 
-2.  I6 -2.39 

> -3.34 
-0.52 > 
-1.79 > 
-0.69 > 
-0.57 > 
-1 .1  > 
> -2.9 
-1.19 > 
- 
" ~ 

Entries  A  correspond  to  predicted  hydrogen  bonds  that  match  the 
observed  ones  and  entries  B  to  those  that  mismatch  observed  hydrogen 
bonds .  

>, Energy is higher  than  -0.5  kcal/mol. 

of well-refined and resolved X-ray  structures  and simu- 
lated  torsion  angles  clustered  in low minimum  regions 
of the  Ramachandran  map  as is observed from  X-ray 
data.  The calculated  internal  energies, with a few excep- 
tions  and  without excessive errors, seemed to be a good 
index of the lowest rmsd,  avoiding  the need for free  en- 
ergy calculations. 

Thus  for  the time being progress is not expected by use 
of  a new force field but rather  from  a better simulated an- 
nealing  process. On a series of five different MC simula- 
tions,  there were always several simulations of high energy 
and rmsd conformations, indicating that  the  loops were 
trapped in local minima. Work is in progress to overcome 
this  problem. 
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