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Abstract 

A reduced representation model, which  has  been described in previous reports, was  used to predict the folded struc- 
tures of proteins from their primary sequences and  random starting  conformations. The molecular structure of 
each protein has been reduced to its backbone atoms (with ideal fixed bond lengths and valence angles) and each 
side chain approximated by a single virtual  united-atom. The coordinate variables were the backbone  dihedral 
angles I$ and 4. A statistical potential function, which included local and nonlocal interactions and was computed 
from known protein  structures, was used in the structure minimization. A novel approach, employing the con- 
cepts of genetic algorithms, has been developed to simultaneously optimize  a  population of conformations. With 
the information of primary sequence and the  radius of gyration of the crystal structure  only, and starting  from 
randomly generated initial conformations, I have been able to fold melittin,  a  protein of 26 residues, with  high 
computational convergence. The  computed  structures have a  root mean square  error of 1.66 A (distance matrix 
error = 0.99 A) on average to the crystal structure. Similar results for avian pancreatic polypeptide inhibitor,  a 
protein of 36 residues, are obtained. Application of the method to  apamin,  an 18-residue polypeptide with two 
disulfide bonds, shows that it folds apamin to native-like conformations with the correct disulfide bonds formed. 

Keywords: conformation  population;  conformation  prediction; genetic algorithms; reduced representation;  sta- 
tistical potential 

The basic  question  of  whether  it is possible to  compute 
the native conformation  of a protein  according to  certain 
physical principles with the  known physicochemical prop- 
erties of its  constituent  amino acids  has not yet been an- 
swered.  Enough evidence has been collected that  one  can 
conclude  that  the  primary sequence of a protein  deter- 
mines its structure and function.  Furthermore, it has been 
demonstrated experimentally that  the  thermodynamic hy- 
pothesis  that  the  native structure  of a protein is a t  its 
global  minimum (or deep  local  minima)  of the  thermo- 
dynamic  potential  (free energy) of  the  protein  (Anfinsen, 
1973)  is a valid principle that governs the  protein  confor- 
mational  search  in  both  the  small  perturbation  from  the 
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native  structures  of  proteins  and  the processes of dena- 
turing  and  renaturing  for small and medium-size proteins. 

The computational difficulties that have hindered prog- 
ress in  protein  structure  prediction  and  protein  folding 
come  from two  related  aspects of the problem:  first,  pro- 
teins are highly heterogeneous and have many degrees of 
freedom,  and  second,  the  number of minima  in  the free 
energy landscape of the system depends  exponentially on 
the total  number  of degrees of freedom  of  the  system. 
Molecular  mechanics and molecular  dynamics  (McCam- 
mon & Harvey, 1987; Brooks et al., 1988) with full atomic 
empirical  potential  functions have been successfully used 
in  protein studies such as crystallographic structure refine- 
ment,  normal  mode analysis, and  free energy simulation, 
in which the  conformations of proteins  are  near  their  na- 
tive states. However, these methods  are precluded in stud- 
ies of protein  folding and in large-scale conformational 
searches due  to  the  computational difficulties. In  order 
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to circumvent  these  two major difficulties, an alternative 
approach  has been developed in which the essential points 
are reducing the degrees of freedom in amino acids by a 
simplified  geometric  representation and  smoothing  the 
potential  hypersurface by an average  potential  function 
over  the  geometric  reduction.  The  basic  assumption  of 
this reduced representation model (RRM) is that  the over- 
all  folded  structure  of a protein is relatively insensitive 
to  the  fine  details of atomic  interactions,  and a  mean 
field interaction  potential  should  be  sufficient to account 
for  the overall  folding  of a protein.  The  RRM model will 
help (1) achieve a higher efficiency in  the large-scale con- 
formational  search  of  protein so that  meaningful folded 
protein  structures  can  be  generated  from  the  informa- 
tion of the  primary sequence  only and (2) obtain a  better 
understanding  of  the basic physics of the protein-folding 
process. 

Various reduced representation models of protein  struc- 
tures have been proposed. Levitt and  Warshel(l975)  and 
Levitt (1976) are  among  the earliest who  attempted to use 
a  reduced C" representation  model to  compute  the  near- 
native  conformation of a protein with a starting  confor- 
mation  far  away  from  the  native  one.  Their results on 
bovine pancreatic  trypsin  inhibitor (BPTI) have been con- 
sidered  promising.  Unfortunately,  artificial pulling and 
pushing  potentials  have been used in  their  energy  mini- 
mization  in  order  to reach the near-native conformation 
of BPTI.  Kuntz et al. (1976), Tanakaand  Scheraga(l976), 
and Hagler and  Honig (1978) have also  demonstrated  the 
advantages of the reduced  representation.  Crippen  and 
his coworkers  (Oobatake & Crippen, 1981; Crippen & Vi- 
swanadhan, 1984, 1985) have derived a C"-C" statistical 
interaction  potential  function by using information  con- 
cerning 25 known  proteins.  Using  the C" statistical  po- 
tential,  they  have  proven  that  for  small  proteins, if 
starting  from native conformations,  the  proteins  tend to  
stay  near  their native conformations. Wilson and  Doniach 
(1989) used a  full backbone  geometric  representation  to 
fold  crambin  starting  from  a  random  conformation with 
C" and side-chain statistical  potential  function.  More re- 
cently,  Sippl et al. (1992) used a  similar  statistical  poten- 
tial to  compute  the local  backbone  conformations  of 
several proteins. To  further reduce the size of the  confor- 
mational  space to be  searched,  lattice  models of the C" 
representation  have  been  employed by a number  of  au- 
thors  (Taketomi et al., 1975, 1988; Chan & Dill, 1989a,b, 
1990; Lau & Dill, 1989, 1990; Skolnick & Kolinski, 1989; 
Cove11 & Jernigan, 1990), and  the results  have been en- 
couraging  in  many  aspects.  The  current  status of the  the- 
oretical  understanding  of  protein  structure  and  protein 
stability  has  been excellently reviewed by Chan  and Dill 
(1991, 1993). 

In this paper, I present a model of protein  structure pre- 
diction  that  has been recently described  (Sun et al., 1992; 
Sun & Luo, in  prep.).  The  geometric  representation  of a 
protein is similar to  that of  Wilson and Doniach (1989; 

also  Sun & Luo,  in prep.). The reduced  interaction  po- 
tential  function used in the present  model is the  same  sta- 
tistical potential  function as that  reported previously (Sun 
et  al., 1992; Sun & Luo, in  prep.). The reduced  interac- 
tion  potential  function includes singlet and  doublet local 
interactions of amino acids as well as  the  nonlocal  inter- 
actions  of  one to  four  and  above  among  amino acids 
along  the  primary sequence of a  protein. Because we are 
dealing with the  problem  of folding from  the primary se- 
quence, gradient-dependent energy minimization methods 
are  not  applicable  due  to  the  fact  that these  methods  can 
only search a very limited subset of conformational space. 
The simulated  annealing  optimization  method,  as an im- 
proved  Metropolis  Monte  Carlo  search  technique,  has 
been found  to be  not so efficient  in the  conformational 
search process for  the current RRM (Sun & Luo, in prep.). 
This is apparently  due  to  the following  two  reasons: (1) 
The search is a single path search  in the phase  space of 
the system for a given starting  conformation. (2) The  an- 
nealing process has to be very slow in  order to reach pos- 
sible optimal  conformations. 

In  the present  study, I have  employed  concepts from 
the genetic algorithm  optimization  method, which will  be 
described in detail later in  the  text.  The genetic algorithms 
are searching  algorithms  based on  the mechanics of nat- 
ural selection and  natural genetic operations.  They were 
developed  initially by John  Holland (1975) and his col- 
leagues during the 1960s and 1970s, and have received in- 
creased interest and  attention  in  various fields that closely 
relate to global  optimization  (Goldberg, 1989). The mer- 
its of using the genetic algorithms as energy optimizers  in 
conformational search  are: (1) the  search is a multipath 
search in the phase  space  of the system, and  therefore it 
may improve the convergence of the search greatly; (2) the 
method is intrinsically parallel and  can simultaneously op- 
timize  a population  of  conformations;  and (3) it seems 
possible that  the  conformational search method based on 
the genetic algorithms  can partially  overcome the  prob- 
lem of less sampling  in  a  large-scale  conformational 
search  because of the  multipath  simultaneous search in 
genetic  algorithms,  therefore  the  number of effective 
searches may be  substantially  increased.  Standard genetic 
algorithms  (Goldberg, 1989) with binary  digital  coding 
methods  have been used recently to assign side-chain  ro- 
tamer  conformations with the  known fixed backbone 
conformation of a  protein  (Tuffrey  et  al., 1991) and  to 
analyze  conformations  of a  dinucleotide  photodimer 
(Blommers et al., 1992). However,  the  difficulty of com- 
puting  the  tertiary  structure  from  the  primary  sequence 
of a  protein, even in the reduced  representation  model, 
still  requires  a  more  robust  method of conformational 
search.  In  this  paper, I present  a genetic algorithm-based 
method of conformational  search, which does  not utilize 
binary  coding of the  parameter space, as is usually done 
in  standard  applications, in order to achieve a  robust con- 
formation  search. 
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Reduced representation: 
Geometry and the potential function 

The  RRM is motivated by the following  considerations: 

1. RRM  reduces the  total  number of degrees of  free- 
dom of the  protein so that  the conformational space 
that has to be  searched is reduced  exponentially. 

2 .  RRM  smooths  the  potential  hypersurface  of  the 
protein so that  the  number  of  the local  potential 
minima of the protein is also reduced exponentially. 
The overall  topographical  complexity is then re- 
duced  significantly.  Both  1 and 2  reduce the over- 
all complexity  of the  computation. 

3. RRM-computed  optimal  conformations  can serve as 
the  starting  conformations  for  optimization of full 
atomic  representation  structures by either  conven- 
tional  molecular  mechanics conformational search 
or molecular  dynamics conformational  search. 

Although  many  atomic-level  details  are  lost  due to 
smoothing  in  the  RRM  scheme,  this  method  allows  one 
to effectively search a much  larger  portion  of  conforma- 
tional  space. 

Despite  having  many degrees of  freedom,  most  native 
proteins  adopt a single compact  conformation  around 
which local  fluctuations  may  occur.  Such  frozen  struc- 
tures (Bryngelson & Wolynes, 1990; Shakhnovich & Gu- 
tin, 1990) result from a  balance between the van  der 
Waals,  electrostatic,  hydrogen-bonding  interactions,  as 
well as  strong  solvent  effects. A useful RRM  of  protein 
structure  should  include  the following essential elements: 
(1) geometric features of proteins and known  constraints, 
(2 )  solvent  effects  of amino acids as  the  major  part  of 
the reduced  potential  function,  and (3) proper  consider- 
ation  of  the heterogeneity of the solvent  effect in differ- 
ent  amino acids. 

The geometric representation  (Wilson&  Doniach, 1989; 
Sun et al., 1992; Sun & Luo, in  prep.) of each  protein in 
the  current  RRM  has been set up  as follows (Fig. 1): 

1 .  All backbone  bond lengths and  bond angles are kept 
at their  ideal values. 

2 .  All the  peptide  bond  dihedral angles are fixed in the 
trans (w = 180") conformation. 

3. A single virtual atom is used to represent  each  side 
chain at  the center of mass of the heavy atoms in the 
side chain. 

The geometric  variables that  determine  protein  confor- 
mation in  this  representation  are  the  backbone  dihedral 
angles 4 and $. 

The  potential  function  adopted  for  the  current  RRM 
consists of two parts (Fig. 1): the local part  and  the non- 
local part.  The local part characterizes the  interactions 
of singlet residues  in  a  mean field potential  and  inter- 

Fig. 1. Current reduced representation model (RRM) of protein struc- 
ture. Full backbone and side-chain centroids have been preserved in 
the model; bond lengths and bond angles are held to their ideal values; 
dihedral angle w = 180"; the geometric variables are @, II. at both sides 
of C". A side chain is represented by a point located at the average 
position of the side-chain heavy atoms. A statistical potential function, 
which contains  both local and nonlocal interactions, is used as  the  ob- 
jective function of the system in the genetic algorithms  conformation 
minimization. 

actions between amino acid  residues that  are neighbors 
along  the  primary sequence. The local interactions, which 
contain  predominantly  the steric constraints such as  those 
manifested  in Ramachandran plots (Ramachandran & 
Sasisekhharan, 1968), are defined  as  a  function of the 
backbone  dihedral  angles (4, $). The nonlocal part rep- 
resents the  interactions between residues that  are sepa- 
rated  in  the  primary sequence by at least  two  intervening 
residues, i.e., at least  one to  four interactions.  The  non- 
local  interaction, which contains  the relatively long dis- 
tance  interactions such as  the electrostatic interactions  and 
the  short  distance van  der  Waals  interaction  of  residues 
near  in  space  but  far  in  primary  sequence  and  the  effects 
of statistical thermodynamics such as the  hydrophobic  ef- 
fect, is defined as a function  of  the  distance between the 
nonlocal  residue  pairs.  Therefore,  the  general  form of 
the  interaction  potential  for  the  RRM  can be  written  as 
follows: 
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where  i or j is the  position of a residue  in the  primary se- 
quence, I and k denote  the  amino acid  type, rFff is the 
distance  between  the (2"'s of  the residues i and j ,  r:D is 
the  distance between the  centroids  of  the side  chains of 
the residues  i and j ,  and r:ff-sc is the  distance between 
the C" of  residue i and  the side-chain  centroid of resi- 
due j .  E; in  Equation 1 is the singlet dihedral  angle  po- 
tential, EE, k, the  doublet  dihedral angle  potential, E:; 
the  potential between the Ca 's of residues i and j ,  EfE the 
potential between the side  chains  of i and j ,  and E:;-" 
the  potential between the C" of i and  the side-chain cen- 
troid of j .  a's are empirical coefficients that represent the 
relative importance  of  the  various  terms  in  Equation 1 .  

There  are  two distinct  methods for determining the 
potential  function of the  RRM.  In  the first method,  the 
potential  function is obtained by averaging the empirical 
potential  functions of a  full atomic  representation over 
the  geometric  reduction (empirical  potential)  (Levitt & 
Warshel, 1975; Levitt, 1976); in the second method,  the 
potential  function is derived from  information  on  the 
known  protein  structures by statistics  (statistical  poten- 
tial)  based on the  assumption  that  the  statistical  distribu- 
tion  of  the  conformations  of  the  native  proteins reflects 
all  possible  mean-field  interactions and  the statistics  of 
geometric  constraints  (Oobatake & Crippen, 1981; Crip- 
pen & Viswanadhan, 1984,1985; Wilson & Doniach, 1989; 
Sun et al., 1992; Sun & Luo, in  prep.).  While  the  empiri- 
cal reduced potential  function derived by the first method 
is more  acceptable physically, the  potential  function (sta- 
tistical  potential)  derived by the second  method is much 
easier to  obtain  in  terms of the complexity  of computa- 
tion  and  probably provides a  more realistic representation 
of computationally  difficult  features  such  as  solvation. I 
want to emphasize that  the statistical  potential function 
derived from  the  known X-ray  structures  presumably  in- 
cludes  contributions  from all kinds  of  interactions  in  na- 
tive  structures  of  proteins.  One of the  disadvantages  of 
the statistical  potential is that  one  cannot be Sure that  the 
model will generate meaningful intermediate  folded struc- 
tures. Because I  am here interested only in  the final folded 
conformation, however, the use of a statistical  potential 
is reasonable. 

The specific form of the  potential  function used for this 
work is as  follows: 

The  nonlocal  part  of  the  potential  in  Equation 2 is es- 
sentially the  same  as  the  potential  function used by Wil- 
son  and  Doniach (1989). This  model  potential  function 
differs  from  those used in  previous  studies by including 
explicitly the local  interaction  energy to  represent the  ef- 
fects  of  local  steric  constraints, which are manifested  in 
the chirality of the  backbone  structures and  the preferred 
conformations within the regular secondary  structures of 
proteins. 

In this  study,  I  have used the  statistical  method to de- 
termine  the  interaction  potential  function  for  the  RRM. 
The nonlocal  interaction  terms - C"-C" and side-chain- 
side-chain  interactions - both include  only  those  residue 
pairs that  are separated and  are  at least one  to  four inter- 
actions.  The density  function p(rlk) for a given pair of 
Ith  and  kth kinds of amino acids at distance rlk is given by 

which can be  rewritten as 

where  R is the gas constant, Tis the  temperature, Nlk ( r )  
is the  distribution of the  amino acids of type I at r = 0 and 
of type k in the shell of r + 6r, and No( r)  is the  normal- 
ization factor corresponding to  the  uniform  distribution. 
The value  of 6r was set to  be 1 .O A .  The energy  function 
Elk is calculated  statistically from  known  protein  struc- 
tures selected from  the  Brookhaven  Protein  Data Bank 
(Bernstein  et al., 1977; Abola  et al., 1978) with a homol- 
ogy score less than 50%. Both the C"-C" interaction  po- 
tential  and  the side-chain-side-chain  potential can be 
calculated  according to  Equation 4. 

The local interaction  terms  account  for  the  preferred 
conformation of singlet and doublet residues. It has been 
known  for a long  time  that  the (4, $) distribution  for a 
given amino acid or given pair  of  amino acids is limited 
in  dihedral angle space  (Ramachandran & Sasisekhharan, 
1968). The  limitation in the (4, $) values reflects the  lo- 
cal  steric  hindrance and  the local structure preferences in 
proteins, e.g., those  in regular structures.  This  preference 
can also be  converted into  an empirical potential  function 
in (9, $) space  for each  individual amino acid  according 
to  the  Boltzmann  principle. Let nk (4 ,  $) denote  the 
sample density function of k type of amino acid in (4, $) 
space  according to  the  known  protein  structures.  Then 
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which may  be  rewritten as 

where 64, S$ are  the grid sizes in  dihedral  angle  space, 
k indicates the type of the  amino  acid,  and Nk is the  nor- 
malization constant, which  is equal to  the number of total 
samples  in the (4, $) space  for  the  amino acid  of  type k .  

Dipeptide conformations ( $i-l ; +,, $,), found in 
the  Protein  Data  Bank,  can  also be used to  compute a 
pairwise  potential  in  dihedral  angle  space. Because the 
samples  in  the  known  protein  structures are very limited, 
about 24,000 residues  in our studies, it is impossible to 
compute directly  a  useful  potential  function in this  four- 
dimensional  dihedral  angle  space. To solve this  problem, 
I have used a conditional  distribution of (+,, $,) in the 
Ramachandran  map.  The directionality information of 
the  primary sequence  of a protein is carried in  the dipep- 
tide  segments  of that sequence,  therefore one  can use the 
probability  distribution of the possible conformations  for 
(+,, $i) of k,-type amino acid for a given amino acid  in 
front of it (say lip, -type amino acid).  Similar to  the sin- 
glet potential,  the pairwise correlation  potential  function 
(doublet  potential) is defined  as: 

where nj$,,6G, (+,, $,) is the  sample density  function  in 
dihedral  angle  space  of  the  amino  acid  type k with the 
amino acid of type I in front of it. Nlk is the  normaliza- 
tion  constant. 

In  order  to reduce the  computational  demand, a look- 
up  table has been constructed  for  each  term  in  the  poten- 
tial function of Equation  2.  For nonlocal interactions,  the 
last  two  terms  in Equation 2, a cut-off  distance  of 15 A 
has been chosen  beyond which the  interaction  potential 
energy is set  equal to zero.  The local  interactions  of  sin- 
glet and  doublet  potentials  are calculated  in the follow- 
ing way: the  Ramachandran (+, $) map  for a given 
amino acid is coarsely divided into 60 x 60 lattices for sin- 
glet potential  and 36 x 36 lattices for  doublet  potential. 
The singlet potential  function, Ek,  for  an  amino acid of 
type k is given by 

and 

M 

where I+ and I+ are lattice  number indices, the size of the 
lattice is (66, 6 $ )  = (6', 6'), R T  = 0.6, N k  is the  nor- 
malization constant, which is equal to  the  total number 
of  the samples for  the  kth type of amino acid. I have  in- 
troduced a multiple-average  method of Equation 9 to 
smooth  the  potential  surface, which may  otherwise  be 
irregular due  to  the  sparse  data,sample.  The second  term 
in the  potential  function  for  doublet, E/ , - l , k , ( l l+ ,  if,), is 
computed similarly with the (A+, A$) = (lo', 10'). In  both 
singlet and  doublet  potential  calculations, a  multiple- 
average has been used with smoothing  order, M =  2. Also 
a truncation density nfrun = 0.02 has been used where 
neff = 0. Inclusion  of  the  local  interaction  terms  has 
proven to be important  to  improve  the predicted  protein 
conformations (Sun & Luo, in  prep.).  The way in which 
the  potential  function is computed leaves one with the 
freedom to choose  a  scaling  factor  for each  term in the 
total  potential  function  (Equation 2). By considering the 
differences in magnitudes of these terms and their changes 
when  altering  protein  conformation, 1 have set ( a l ,  cy2, 

a 3 ,  a4) = ( 3 , 3 ,  1, 1) in  all of our  simulations.  This choice 
of  energy  scaling factor has been tested for a number of 
proteins  (Sun et al., 1992; Sun & Luo, in  prep.) by using 
the simulated  annealing  method of conformation search 
in  the  current reduced  representation  model.  With  this 
choice of energy scaling the  total  variation of the local in- 
teraction  energy is about 20-30% of that of the nonlocal 
interaction energy. This is also in agreement with what has 
been found by  Dill's group (K.A. Dill,  pers.  comm.). 

The  conformational space to be searched, even in the 
reduced geometric representation, is so huge that  any prac- 
tical computational search can access only  a very small 
subset of the whole phase space. Further lower-order con- 
straints,  such  as  radius  of  gyration,  volume  density,  ac- 
cessible surface  area,  distribution of the  hydrophobic  and 
hydrophilic residues, residues that  form disulfide  bonds, 
etc. can  be used to bias  the  conformational  search.  In this 
study, I have tested the folding effect of the constraint on 
radius of gyration, which is described  as 

and R,  is defined as 

R, = (1/N) - C?VZ)~, 4 k=l  

where h is a  penalty  coefficient and CM is the  coordi- 
nates of center of mass. The typical  value of X is set to 
be  around 8  energy  units  per  residue  per  Angstrom. 

Genetic algorithms and conformation search 

Genetic  algorithms  are  searching  algorithms  (Holland, 
1975; Goldberg, 1989) based on  the mechanism of natu- 
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ral  selection and  natural genetic operations. "They com- 
bine  survival of the  fittest  among  string  structures with a 
structured yet randomized  information exchange to form 
a search algorithm with some of the innovative flair of hu- 
man search.  In every generation,  a new set of string  struc- 
tures is created using bits and pieces of the fittest  of the 
old;  an occasional new part is tried  for  good measure. 
While  randomized,  genetic  algorithms  are  not a random 
walk procedure.  They  efficiently  exploit  historical  infor- 
mation  to speculate on new search  points with expected 
improved  performance"  (Goldberg, 1989). 

This is different  from  the  traditional  optimization 
methods in which a  local  gradient is used. Standard ge- 
netic  algorithms  differ  from  normal  optimization  and 
search  procedures  in  several  aspects: 

1 .  Genetic  algorithms  require  mapping  the  parameter 
set into symbolic string  structures (either binary dig- 
ital  strings  or  nonbinary strings). 

2. Genetic  algorithms  simultaneously  search  a  popu- 
lation  of  points  not a single point  in  the  parameter 
space. The correlation  among  different  points is uti- 
lized during  optimization process. 

3. Genetic  algorithms  operate the search in the  param- 
eter space with probabilistic transition fromp points 
of  the  current  generation to another new p points of 
the next generation.  The  transition  probabilities  of 
these  points  are  determined by their values of  a sys- 
tem  objective  function. 

Quite a few genetic operations have been suggested and 
computationally tested (Goldberg, 1989), and  the most es- 
sential  genetic operations used in  the genetic  algorithms 
are  replication,  mutation,  and crossover. Let us denote 
a population  of  representations by a set of  string  struc- 
t u r e s [ ~ i h n ) ' , h , E [ h ~ , h ~ ] , i E [ 1 , N ] , j E [ 1 , p ] . P ~ ~ i s  
one of the accessible states at a given position  in  a  string, 
hh is the index for a specific state, AT is the  total  number 
of accessible states at a given position  in  the  string  struc- 
ture, i is the index for  ith element  in the  string  structure 
of  length N, a n d j  is the index fo r j th  string  structure  in 
the  total  population  of p .  Let F be the fitness  function 
(or  objective  function, in our case the energy function) 
upon which the selection of next generation is based, i.e., 
F([  P,". )j). The basic genetic operations  can be expressed 
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Crossover: ( [ P I ~ J ~ ,  { ~ p m ) " )  * ( [ 3 / m ) j ,  { ~ p ) ~  
h,E [ h , A T l , i , f E  [ l , N I , j , k E   PI ( 1 1 )  

with [ P , " n ) j *  [ 3 p ) k ,  [3hm)'= [PIm)" i E  [ l ,  a ]  

and [ P p ) j *  [3?)', [3hm)"= [ P I m I k  i E  [ a , N ] ,  

where [ ?,ihm ) j  denotes the string  structures  after  the  mu- 
tation  operation, ([ 3 h m ) j ,  [ 3:") ") denotes  the string 
structures  after  the crossover operation,  the symbols * 
and  mean copying to  the corresponding sites into  the 
target  string  structure, and a is the crossover site for two 
string  structures. 

Although  I have expressed in Equation 1 1  one  muta- 
tion  site  in one string  structure  and  one crossover site in 
one pair of string  structures, it is possible and sometimes 
necessary to have  several sites in  a given string structure 
mutate simultaneously, and to have several sites in a given 
pair of string  structures cross over simultaneously. In gen- 
eral,  the sites of  mutation  operation in  a  string  structure 
can be controlled by a  probability  function "pr((  P P ) j ) ,  

which depends on  the element  position P,". in a string 
structure.  In this study, I used a  probability  function  that 
is random  and  uniform in i E [ 1 ,  N ]  in  a  string  structure. 
Similarly, the site of crossover  operation is controlled by 
a probability  function, which is random  and  uniform in 
i E [ 1 ,  N ]  in a pair  of  string  structures. 

After  the  three basic genetic operations,  a new set of 
string  structures is created which is 

h j  
n 1 rep/;cur;on 3 T P  I Autotion 9 [ si crossouer 

P hl j 

A n €  [ A , ,  h , ] ,  i E  [ l , N ] , j ~   [ l , p ] .  (12) 

A new population will be selected according to their  cor- 
responding values of the fitness  function 

~([pihn 1ip/;cation9 [9hm1jmuto , ;on ,   r s ," l~ j , souer )  * IP,". )Le ,  

A n €  [ h l , A r l , i E  [ l ,NI , jE  [ l , p l .  ( 1 3 )  

The  robustness  of  the  algorithms is demonstrated by a 
theorem, called the  Schema  Theorem,  proven by Holland 
(Goldberg, 1989), which states  that:  Short,  low-order, 
above-average  schemata receive exponential  increasing 
trials in subsequent  generations. 

The genetic  algorithms  introduced  above  can  be  read- 
ily used for  the purpose of protein  conformational  search. 
With  the geometric  setting  introduced  in the last  section, 
the following  coding  scenario will be adopted in the  con- 
formation search process in the  current RRM. The string 
structure  in a population is now  represented by the  pri- 
mary  sequence of a  protein  that  one is interested  in, and 
a conformational  population is defined  such  that  differ- 
ent  conformations in the  population have  different  local 
(4, $) values for a given primary  sequence.  This  confor- 
mational  population will be  expressed  as 
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where A, is an index for  the possible (4, $) pairs  in  the 
internal  coordinate space for a given residue. The index 
A, E ([-180, +180], [-180, +180]) for (4, $) is a con- 
tinuous  angular  variable  for  a given type  of amino acid 
residue;  however, it can be made a grid  integer  variable 
in the  Ramachandran  map,  or a discrete state  variable in 
the  Ramachandran  map in which its  density  distribution 
is in  accordance with the (4, $) distribution of the known 
protein  structures.  Then i is the index for residue position 
along  the  primary sequence of a protein, whereasj is the 
index for  the j t h  conformation  in  the  conformational 
population of size p. In the  representation  of  Equation 
14, each conformation  of  the  protein is characterized by 
a string  structure of ($), and  this  string  structure is con- 
sidered to be a genetic species in the  conformation  pop- 
ulation, which contains a set of ($) string  structures  as 
indicated above. The simplicity of this protein  conforma- 
tion  representation is due to  the reduced  geometrical  rep- 
resentation  adopted in the  RRM. 

The fitness  function of the system is now the  interac- 
tion  potential  function  (or  the  Hamiltonian of the system) 
for a  protein, which in our case is the statistical  potential 
function  defined  in  the  last  section. 

The  three basic  genetic  operations in  the  conforma- 
tional  population  during  the  conformational  search  pro- 
cess are simply defined  as: 

Replication. The replication  operation is simply to 
copy  the  whole set of  conformations in the last  genera- 
tion  of  the  conformation  population  to a so-called repli- 
cation  population.  Although a probability  function of 
replication  can be assigned according to the energy func- 
tion  (fitness  function)  of a conformation (string  struc- 
ture), in this study I set this probability to unity  for all the 
conformations  to be  replicated  in order  to achieve the 
maximal accessible search. 

Mutation. The  mutation  operation is to change one  or 
simultaneously several local (4, $) values in a conforma- 
tional  string  structure { ($)? ) j, i E [ l ,  N ]  . The  mutation 
operation  at a  chosen  site for a given amino acid  residue 
can be  described  as the  change of ($) from  one  point  to 
another  point in the  Ramachandran  map  for  that specific 
residue. The  nonuniform  distributions  of (4, $) pairs  in 
Ramachandran  maps  for all 20 amino acids in the known 
protein structures  are a manifestation of the local geomet- 
ric hindrance  and local energetics. It would be  wise to uti- 
lize these  distributions  to  make  the  mutation  operation 
more  effective. In the practical computation,  the (4, $1 
points  for  an  amino acid  in the  nonhomologous  proteins 
(Table 1) are listed in  a  look-up  table  in which each point 
can  be selected uniform  randomly.  The chosen (4, $) is 
further  perturbed  randomly by d ' z ,  z E [ - I ,  + 1 ] a  uni- 

Table 1. List of 110 proteins from which four primary 
conformational dictionaries have been compiled. They 
have less than 50% identity in their primary sequences 

lABP 
lECA 
lGOX 
lNXB 
1 RDG 
ITIM 
2AAT 
2CI2 
2GN5 
2LZM 
2PRK 
2TMV 
3EST 
3PGK 
4FD1 
6LDH 

1BP2 
1 ETU 
lHIP 
lPCY 
1 REI 
lTMN 
2ACT 
2CNA 
2HFL 
2MEV 
2RSP 
2TS 1 
3FAB 
3RP2 
4HHB 
6LYZ 

lCC5 lCRN 
IF19 lFDX 
lHMQ lHNE 
lPFC IPFK 
IRHD lRNT 
lTNF lTPP 
2ALP 2AZA 
2CPP 2CR0 
21NS 2LBP 
2MLT 2PAB 
2SGA 2SNS 
2WRP 3ADK 
3FXC 3GAP 
3SGB 3XIA 
4RHV 4SBV 
8ADH K A T  

ICTF lCTX 
lFXl  lGCN 
lHOE  lLRD 
1PP2 lPPT 
ISGT 1SN3 
IUBQ  lUTG 
2CAB 2CCY 
2CYP 2GD1 
2LH1 2LIV 
2PAZ  2PKA 
2SOD 2STV 
3BCL 3C2C 
3GRS 3HVP 
451C 4CHA 
5CPA 5CYT 
9PAP 

1CY3 
lGCR 
IMBC 
IPRC 
lTEC 
1 WSY 
2CDV 
2GLS 
2LZ2 
2PLV 
2TAA 
3CLN 
31CB 
4CTS 
5TNC 

form  random  number,  and d= 10". (4  + d . z l ,  $ + d v z 2 )  
is  used for  the  state  to which (($)PI is mutated.  The mu- 
tation  conformation  population ( (  $ ) r n ) j  is generated 
from  the  conformation  population of the last generation. 
Each  conformation in the  population of the preceding 
generation is locally mutated in the way described  above 
at a given number of sites. Each  mutation site i E [ 1, N ]  
in a conformation is uniform  randomly  chosen  along  the 
primary  sequence. One  can  generate a mutation  popula- 
tion  that  has a larger size than  the replication population. 
I have  set  the  mutation  population to  be twice as  large  as 
the replication  population. I would  like to point  out  that 
the genetic algorithm  conformation  search  method de- 
scribed here may be more effective than  that in which one 
tries to  further  code  the (4, $) parameters by a  binary 
Gray  coding,  as suggested in the  standard  application  of 
the genetic  algorithms. 

Crossover. The crossover operation is to exchange 
parts of a  conformation  string  structure,  Equation 14, ac- 
cording to  Equation 11 between a chosen  pair of confor- 
mations.  There  are  many ways to carry  out  the crossover 
operation. In this  study, a method  of  monogamy  cross- 
over is adopted.  Each  conformation  can be crossed over 
only  once  in  a  generation, and there is only one crossover 
site that is uniform  randomly  chosen  along  the  primary 
sequence. The crossover conformation  population is gen- 
erated  from  the replication and  mutation  conformation 
populations.  The  pairs  to be  crossed  over are  randomly 
chosen  from  the replication and  mutation  conformation 
populations. 

Assuming the size of the  conformation  population of 
last  generation to  bep,  the size of the replication and  mu- 
tation  conformation  populations has been set to 2p, while 
the size  of the crossover conformation  population is equal 
to  2p, according to  the  adopted crossover  rule. The new 
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generation of the  conformation  population  of size p is 
selected from  the  replication,  mutation,  and crossover 
conformation  populations of the preceding generation, so 
that  the selected conformations  are  those  that  have  the 
lowest energy among  the  total 5p conformational species. 

A conformational search  algorithm  based on  the ge- 
netic algorithms described above  can  be  formulated  as de- 
scribed  below. 

Conformation search by genetic algorithms 

1 .  

2. 

3. 

4. 

5 .  

Randomly  generate the initial  conformational  pop- 
ulation { ( $ ) ; n ) o / d ,  i E  [ l ,N] ,  j E  [1,p]. Compute 
the  corresponding  energy  profile E ( {  
Generate  the  mutation and crossover conformational 

4 hm j 

d h  .i 

~ o ~ u l a t i o n s ,  { (+); )mutar;on 9 i E NI 3 j E [ 1 ,  P ~ I  9 

and { (  +)i ],,,, i E [ 1, NI , j E 1, pCI. Compute 

and E ( ~ ( $ ) X O " S ) ~  

d h/ j 

the  corresponding  energy  profile E (  { ( $)~'"]jmuration 

Select next  generation  of  the  conformational  pop- 
ulation  from  the  conformational species produced 
by replication,  mutation,  and crossover  according 
to  their  energy  profiles 

i E  [ I ,  N1,jE [ I ,  P I ;  
Loop back to 2 until (i) a prescribed number  of gen- 
erations is reached, (ii) there is no further  change of 
the energy  profile  in  the new generation of the  con- 
formational  population  for a  prescribed  numbers 
of  generations, or (iii) the following  condition is 
satisfied: 

In  order to further increase the efficiency of conforma- 
tional  search by the genetic  algorithms  described  above, 
a conformational dictionary-assisted  search  method  has 
been developed.  This  method is based on  the  assumption 
that  short  peptide  (dipeptide,  tripeptide,  tetrapeptide, 
and  pentapeptide)  conformations  found in known  protein 
structures and small perturbations of these conformations 
are  the  most  probable  conformations in the  protein en- 
vironment.  Primary  conformation pools  have been com- 
piled for di-, tri-,  tetra-,  and  pentapeptides  from the known 

769 

structures  of  proteins  that  have less than 50% homology 
in  their  primary sequences  (Table 1).  These  proteins  are 
a subset  of the  protein  structures used by Heringa  and 
Argos (1991). These conformation  pools  are called con- 
formational  dictionaries  for  the  particular  oligopeptide, 
and have a format  as follows: 

where Ay,B,r,s,r is one of the 20 amino acids. The  pro- 
teins from which the  four dictionaries have been compiled 
are listed in  Table 1 .  The  current sizes of the  conforma- 
tional  dictionaries  are 23,626 for dipeptides, 23,279 for 
tripeptides, 22,943 for  tetrapeptides,  and 22,097 for pen- 
tapeptides.  In  the  conformational search  process, as  an 
option, a perturbation  has been added  to each  dihedral 
angle  variable 20 that  the  conformations accessible to  a 
given protein  sequence are  much  greater  than  the possi- 
ble conformational  combinations  from these four pri- 
mary  dictionaries.  This perturbation  procedure  can be 
expressed as 

k = 2, 3, 4, 5 ,  (16) 

where z j  E [ - 1 ,  + 1 1  are  uniform  random  numbers  and 
d is the  range  of  the  perturbation, which is set to be 10" 
in  this  study.  To utilize this  dictionary-assisted confor- 
mational  search by genetic  algorithms, a species in the 
conformation  population, { ($)?)', has to be  randomly 
divided into segmental conformation strings { ""( :)? ) j, 
iE[ l ,N] , jE  [ l ,p] ,andCsk=N.Thesegmentalpar-  
tition  for  different  conformational species in the  confor- 
mation  population is different since the  partitioning of the 
segments is carried  out  randomly.  In  this case, the local 
mutation  operation is defined as  the replacement of a seg- 
mental  conformation  string  structure S k ( $ ) h n  by another 
segmental conformation  string  structure S k ( $ ) h n  of iden- 
tical  primary  sequence.  The  segment sk has  been  chosen 
to be  a 2-5 residue  peptide  segment with a  probability 
P,, m = 2, 3,  4, 5 ,  so that 

Pz + P3 + P4 + P5 = 1.0, (17) 

Pz > P, > P4 > Ps > 0.0. (18) 

and 

The  four  conformation dictionaries  provide the  pri- 
mary  conformation  pools  from which mutated segmen- 
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tal  conformations  are  randomly  selected.  Both  the 
mutation sites and  the segmental  length  of the  mutation 
are  randomly chosen. In all four dictionaries, especially 
those  for  the  di-  and  tripeptides,  there  are cases in which 
the  same  primary sequence segment corresponds to more 
than  one  conformation (several hundred  conformations 
in  many  cases).  The search  process will randomly select 
one such conformation  at each  step.  The use of  the dic- 
tionary-assisted  segmental conformation  search  prohib- 
its conformations  that have local van  der Waals conflicts 
and  therefore effectively reduces the phase  space to be 
searched.  This method, in combination with the genetic 
algorithms  described  above, is very robust,  and  the  con- 
vergence rate is high in  comparison with the simulated an- 
nealing conformation searches, at least in  case  of the 
RRM  computations.  The segmental genetic algorithm 
conformation search  algorithm  can  be  formulated  as  de- 
scribed  below. 

Conformation search by segmental 
genetic algorithms 

1. Randomly  partition each conformation species into 
doublet,  triplet,  quadruplet, and quintuplet segments 
with probabilities satisfying Equations 17 and 18, and 
randomly  generate  the initial conformation  popula- 
tion  from  the primary  pools with additional  pertur- 
bations, ( s c ( $ ) 4 n ) ; , ,  i e  [ l , N I , j E  [ l , p ] ;  compute 
the  corresponding  energy  profile E(  I s k (  $ ) 4 " ) L l d ) .  

2. Generate  the  mutated  and  crossed-over species 
s/ @ h /  j 

corresponding  energy  profile E (  [ ""( $),? )Jmutation) 

and E (  { "( $),"')~,.oss). The sm( $ ) F m  mutation is ran- 
domly  chosen from  the available  segmental  confor- 
mations in the  corresponding  dictionary  of  the 
identical  primary  sequence. The crossover  site is 
randomly  chosen;  after  the  crossover is done each 
conformational species will be  repartitioned  into a 
new segmental  string  structure. 

3. Select the next generation of conformation  popula- 
tion  from  the  conformational species produced by 
replication,  mutation,  and crossover operation ac- 
cording to  their  energy  profiles 

s,,, @ hm j I ($1; )mutation and (+); 1 cross' and  compute  the 

4. Loop back to 2 until (i) a prescribed number of gen- 
erations is reached, (ii) there is no further  change of 
the energy  profile  in  the new generation of the  con- 
formational  population  for a prescribed  number of 
generations, or (iii) Equation 15 is satisfied. 

5 .  Analyze  the  final  conformational  population 
sk @ hk j . I (r~); l f ina/  

Actually,  the segmental  genetic  algorithm conforma- 
tional  search  method is a better use of  the genetic algo- 
rithms, since one  can view the  short segmental  peptide 
conformations plus the  random  perturbation  as  the highly 
fitted  schemata. By working with them, I have reduced 
the complexity of the  problem by providing the possible 
partial  local  solutions of the  problem. 

It is important  to notice,  in  this  algorithm, that I  have 
used the segmental conformations  found in known protein 
structures  as  the  primary  conformation pools to randomly 
create  initial conformation  population  and  to replace the 
local conformational segments by mutation  through  the 
genetic  operations  described  above.  However,  the  algo- 
rithm  can  generate  local  conformations, which may  not 
be found  among  the  known  structures  of proteins  due to 
the  fact  that  both  the  mutation sites and  the crossover 
sites are  randomly  chosen,  and  the selected primary seg- 
mental  conformations  are  perturbed  randomly. Of course, 
the  fitted segmental conformations will be preserved dur- 
ing the  conformation selection. 

In order  to avoid the  situation in which all conforma- 
tions  in  the  population converge to a single conformation 
(this  almost  always  happens!), which may  lead to a  pre- 
mature  optimization, a share  mechanism, which is simi- 
lar in spirit to that described by Goldberg (1989), has been 
adopted  in  the  current search algorithm.  The  share mech- 
anism  prohibits  the  same  energy level having  more than 
a prescribed  number of conformations (I chose 3). In 
other  words,  during  the genetic  algorithm  conformation 
search process, if many  conformations (n  > 3) correspond 
to exactly the  same energy, only three of these conforma- 
tions of equal  energy will be preserved in the next gener- 
ation.  The selection of the  conformations  to be  retained 
from  this  equal energy  pool is random.  This mechanism 
slightly decreases the convergence rate (in terms of genetic 
generations)  but  enables  the system to search a larger re- 
gion  in the  conformational space. 

In practical computation,  the  mutation  population has 
been set to  be twice as large as  the  population size of the 
last generation, so that  more new conformations may ap- 
pear in the  conformation  population of the next genera- 
tion provided  their energies are  among  the lowest. The 
crossover population is set to be the  same size as  the  mu- 
tation  population.  In  addition  to  the  random selection 
of  the  mutation site, one  can select more  than  one site to 
simultaneously excise local segmental conformational  mu- 
tation  in a conformational species. I have chosen 1 as  the 
number of sites for  simultaneous  segmental  mutation. 

Results 

I  have  applied the  RRM genetic  algorithm  conformation 
search  method to several small  proteins;  I  report  here  the 



Protein structure prediction model 77 1 

computation results on melittin, a protein of  26 residues; 
avian pancreatic polypeptide inhibitor (APPI),  a protein 
of 36 residues; and apamin,  a small protein of  18 residues 
with two disulfide bonds. The crystal structures for the 
first two small proteins are known. The crystal structure 
of melittin (honeybee [Apis mellifera] venom) has a res- 
olution of  2.0 A (Terwilliger & Eisenberg, 1982). The  crys- 
tal  structure of APPI (turkey [Meleagris gallopavo] 
pancreas)  has a resolution of  1.37 A (Blundell  et al., 198 1 ; 
Glover et al., 1983). Attempts to crystallize apamin have 
so far not been successful, and  therefore  no X-ray deter- 
mination of its structure is available. However, NMR 
spectroscopic data  for apamin  are available (Wemmer & 
Kallenbach, 1983). in this study i used apamin backbone 
dihedral angle data by Freeman et al. (1986) to construct 
the native apamin structure; this structure was further en- 
ergy  minimized by DISCOVER  with  BIOSYM force field. 
I used this structure  as  the reference to compute  the root 
mean square  error  (RMS)'  and  distance  matrix  error 
(DME) for structures computed by the genetic algorithm 
conformational search algorithms. 

In the computation, the size  of the initial conformation 
population has been  set to 90, and the  mutation popula- 
tion size  is equal to 180. A  random monogamy crossover 
among the species  in the conformation population of the 
last generation and the newly created mutation conforma- 
tion  population is carried out  at each generation with a 
size  of  180 conformations in the crossover conformation 
population. All of the 90 initial conformations were cre- 
ated randomly from the primary segmental conformation 
pools with additional random perturbation  on each vari- 
able. The overall segmentation probability is (P2,  P3,  PA, 
Ps)  = (0.4, 0.3, 0.2,O.l). This choice is based on the fact 
that the larger the probability for the shorter segments, 
the higher the variability in the constructed conforma- 
tions.  The same segmentation probabilities have  been 
used  in the mutation operation in which both the segmen- 
tal length and the mutation sites  in a conformational spe- 
cies are randomly chosen. I have chosen 1 as the number 
of simultaneous mutation sites for the mutation operation 
in a conformational species. The partition of the segmen- 
tation ( s k )  for any conformational species in different 
generations is uncorrelated; in other words, the random 
segmentation must  be repeated for all conformational 
species in all generations. Termination of the minimiza- 
tion process occurs when no lower energy conformation 
can be found in 20 consecutive generations of the confor- 
mation search. The energy unit is kT in all figures and 
tables in this paper. 
. .  

' RMS and DME are defined respectively as RMS = [$ C,"(r, - 
r : )2 ]1 '2 ,  DME = [& Cr(r,, - r;) ')  , where superscript in- 
dicates the  conformation to which the comparison is made; it  is usually 
the crystallographic conformation of the  protein, which  in most cases 
is not far from  the native conformation. Distance matrix error, in some 
cases, serves as  a better parameter to compare  the overall similarity of 
two  conformations. 

1/2 

Melittin 

Table 2 lists the simulation results for melittin. The in- 
formation  about  the melittin primary sequence and  the 
radius of gyration of the melittin crystal structure are the 
only input  for the computation.  The penalty coefficient 
h in Equation 10  was set to 200 energy units/A. The ran- 
dom perturbation parameter d in Equation 16  was chosen 
to be 10". Ninety structures have been optimized simul- 
taneously. The initial total energy profile, Esfarl, of 90 
initial structures was  very  much scattered and ranged 
from 1,440.08 units to 15,746.34 units. The average total 
energy of 90 starting structures was  2,912.00 units with 
statistical standard deviation of  1,960.75 units. On the 
other  hand, the total energy profiles, Eend, after the RRM 
genetic algorithm optimization uniformly converged to 
their mean value at 1,290.50 units with a  standard devia- 
tion of  0.31 units. Figure 2 plots the  total energy profile 
(open bar)  for all 90 initial conformations and the  total 
energy profile (filled bar) for the conformations after the 
RRM genetic algorithm energy minimization. The aver- 
age  distance matrix error (DME) and RMS  of the 90 com- 
puted structures to the crystal structure  are 0.99 A and 
1.66 A ,  The average total contacts' of all 90 optimized 
structures are 304.9  with a standard deviation of 1 .O, and 
the average value of the radius of gyration is 10.8 A. The 
number of total  contacts  and radius of gyration of all of 
the 90 computed structures are very  close to the corre- 
sponding values for the crystal structure, 300 total con- 

The contacts were defined for each pair of  residues  whose C" were 
separated by less than 10.0 A. 

1.500 1 O4 

n 

1 11 21 31 4 1  51  61  71 E l  
Structure Number 

Fig. 2. Energy profile in melittin simulation. Energy profile of the  ran- 
domly created initial conformations (open bars) and the energy profile 
for the  conformation  after  the RRM genetic algorithm minimization 
(filled bars). The average energy  of the initial conformations is 2,912.00 
units with a standard deviation of 1,960.75 units, and the average en- 
ergy for  the  conformation  after  the minimization is 1,296.50 units with 
a standard deviation of 0.3 I units. 
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Table 2. Simulations for melittin, a  protein  of 26 residuesa 

S .  Sun 

No 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 

~ 

Esrorr 

2,138.38 
1,933.50 
1,761.01 
2,259.51 
1,695.33 
1,564.85 
1,801.90 
4,439.09 
2,379.27 
1,440.08 
3,667.12 
1,566.87 
1,467.34 

15,746.34 
3,472.64 
2,039.30 
3,926.83 
2,726.00 
1,654.73 
2,697.42 
2,950.24 
2,211.92 
3,210.04 
2,386.07 
1,622.41 
3,111.66 
1,577.53 
4,462.51 
1,553.65 
4,848.49 
1,853.37 
1,663.06 
4,000.40 
3,334.50 
3,226.98 
1,739.41 
1,921.52 
2,159.64 
1,750.67 
1,559.57 
1,720.02 
2,225.75 
2,183.84 
7,944.66 
1,890.22 
1,923.63 
3,355.59 
1,798.44 
4,964.73 
2,273.28 
3,778.46 
3,504.84 
1,690.02 
5,561.54 
3,396.25 
2,522.43 
1,534.55 
5,028.48 
4,539.23 
2,001.04 
1,755.71 

Eend E,- 
. .~ 

1,295.80 308.37 
1,295.80 308.37 
1,295.80 308.37 
1,295.84 309.03 
1,295.84 309.03 
1,295.84 309.03 
1,295.87 308.37 
1,295.87 308.37 
1,295.87 308.37 
1,296.04 308.37 
1,296.04 308.37 
1,296.04 308.37 
1,296.05 309.03 
1,296.05 309.03 
1,296.05 309.03 
1,296.09 308.37 
1,296.09 308.37 
1,296.09 308.37 
1,296.38 308.48 
1,296.38 308.48 
1,296.38 308.48 
1,296.43 309.03 
1,296.43 309.03 
1,296.43 309.03 
1,296.47 308.37 
1,296.47 308.37 
1,296.47 308.37 
1,296.47 308.48 
1,296.47 308.48 
1,296.47 308.48 
1,296.50 309.07 
1,296.50 309.07 
1,296.50 309.07 
1,296.54 308.48 
1,296.54 308.48 
1,296.54 308.48 
1,296.54 309.73 
1,296.54 309.73 
1,296.54 309.73 
1,296.57 309.07 
1,296.57 309.07 
1,296.57 309.07 
1,296.58 308.37 
1,296.58 308.37 
1,296.58 308.37 
1,296.59 309.25 
1,296.59 309.25 
1,296.59 309.25 
1,296.59 309.25 
1,296.59 309.25 
1,296.59 309.25 
1,296.63 309.91 
1,296.63 309.91 
1,296.63 309.91 
1,296.63 309.91 
1,296.63 309.91 
1,296.63 309.91 
1,296.66 309.25 
1,296.66 309.25 
1,296.66 309.25 
1,296.66 309.25 

Esc E, E D  

319.94 314.56 
319.94 314.56 
319.94 314.56 
319.66 314.12 
319.66 314.12 
319.66 314.12 
319.94 314.56 
319.94 314.56 
319.94 314.56 
320.43 314.56 
320.43 314.56 
320.43 314.56 
320.15 314.12 
320.15 314.12 
320.15 314.12 
320.43 314.56 
320.43 314.56 
320.43 314.56 
319.67 314.86 
319.67 314.86 
319.67 314.86 
320.21 314.12 
320.21 314.12 
320.21 314.12 
321.02 314.12 
321.02 314.12 
321.02 314.12 
319.67 314.86 
319.67 314.86 
319.67 314.86 
319.94 314.56 
319.94 314.56 
319.94 314.56 
320.16 314.86 
320.16 314.86 
320.16 314.86 
319.66 314.12 
319.66 314.12 
319.66 314.12 
319.94 314.56 
319.94 314.56 
319.94 314.56 
321.39 314.12 
321.39 314.12 
321.39 314.12 
319.07 315.41 
319.07 315.41 
319.07 315.41 
319.07 315.41 
319.07 315.41 
319.07 315.41 
318.79 314.97 
318.79 314.97 
318.79 314.97 
318.79 314.97 
318.79 314.97 
318.79 314.97 
319.07 315.41 
319.07 315.41 
319.07 315.41 
319.07 315.41 

352.27 
352.27 
352.27 
352.27 
352.27 
352.27 
352.27 
352.27 
352.27 
352.27 
352.27 
352.27 
352.27 
352.27 
352.27 
352.27 
352.27 
352.27 
352.27 
352.27 
352.27 
352.27 
352.27 
352.27 
352.27 
352.27 
352.27 
352.27 
352.27 
352.27 
352.27 
352.27 
352.27 
352.27 
352.27 
352.27 
352.27 
352.27 
352.27 
352.27 
352.27 
352.27 
352.27 
352.27 
352.27 
352.27 
352.27 
352.27 
352.27 
352.27 
352.27 
352.27 
352.27 
352.27 
352.27 
352.27 
352.27 
352.27 
352.27 
352.27 
352.27 

__- -~ 

DME 

0.99 
0.99 
0.99 
0.99 
0.99 
0.99 
1 .oo 
1 .oo 
1 .oo 
0.99 
0.99 
0.99 
0.98 
0.98 
0.98 
0.99 
0.99 
0.99 
1.02 
1.02 
1.02 
1 .oo 
1 .oo 
1 .oo 
0.99 
0.99 
0.99 
1.02 
1.02 
1.02 
0.99 
0.99 
0.99 
1.01 
1.01 
1.01 
0.99 
0.99 
0.99 
1 .oo 
1 .oo 
1 .oo 
0.98 
0.98 
0.98 
0.98 
0.98 
0.98 
0.99 
0.99 
0.99 
0.98 
0.98 
0.98 
0.98 
0.98 
0.98 
0.99 
0.99 
0.99 
0.99 

~ ." 

_____ _____ 

RMS 

I .66 
1.66 
1.66 
1.66 
1.66 
1.66 
1.66 
1.66 
1.66 
1.67 
1.67 
1.67 
1.67 
1.67 
1.67 
1.67 
1.67 
1.67 
1.67 
1.67 
I .67 
1.66 
1.66 
1.66 
1.66 
1.66 
1.66 
1.67 
1.67 
1.67 
1.65 
1.65 
1.65 
1.68 
1.68 
1.68 
1.65 
1.65 
1.65 
1.65 
1.65 
1.65 
1.68 
1.68 
1.68 
1.64 
I .64 
1.64 
1.65 
1.65 
I .65 
I .64 
1.64 
1.64 
1.65 
1.65 
1.65 
1.64 
1.64 
1.64 
1.65 

_____ 

Total Radius of 
contacts gyration 
" 

306 
306 
306 
304 
3 04 
304 
306 
306 
306 
3 06 
306 
306 
306 
306 
306 
306 
306 
306 
306 
306 
306 
306 
306 
3 06 
306 
306 
306 
306 
306 
306 
304 
304 
304 
306 
306 
306 
304 
304 
304 
304 
304 
304 
306 
306 
306 
304 
304 
3 04 
3 04 
304 
3 04 
304 
304 
304 
304 
304 
304 
304 
304 
304 
304 

10.8 
10.8 
10.8 
10.8 
10.8 
10.8 
10.8 
10.8 
10.8 
10.8 
10.8 
10.8 
10.8 
10.8 
10.8 
10.8 
10.8 
10.8 
10.8 
10.8 
10.8 
10.8 
10.8 
10.8 
10.8 
10.8 
10.8 
10.8 
10.8 
10.8 
10.8 
10.8 
10.8 
10.8 
10.8 
10.8 
10.8 
10.8 
10.8 
10.8 
10.8 
10.8 
10.8 
10.8 
10.8 
10.8 
10.8 
10.8 
10.8 
10.8 
10.8 
10.8 
10.8 
10.8 
10.8 
10.8 
10.8 
10.8 
10.8 
10.8 
10.8 

(continued) 
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Table 2. Continued 

No. 

62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 

Average 

~ 

U 

E,,,,, 

3,627.62 
1,724.27 
1,475.98 
1,777.25 
1,796.56 
2,127.48 
1,888.86 
1,922.87 
2,216.91 
1,911.39 
3,552.26 
5,018.49 
2,671.00 
2,310.92 
2,817.48 
2,449.02 
2,008.17 
2,139.44 
5,738.88 
4,608.19 
2,064.73 
2,342.82 
1,885.61 
3,344.30 
8,959.83 
2,717.67 
2,489.05 
5,725.82 
1,653.66 

2,912.00 
1,960.75 

&nd 

1,296.66 
1,296.66 
1,296.73 
1,296.73 
1,296.73 
1,296.74 
1,296.74 
1,296.74 
1,296.75 
1,296.75 
1,296.75 
1,296.79 
1,296.79 
1,296.79 
1,296.79 
1,296.79 
1,296.79 
1,296.84 
1,296.84 
1,296.84 
1,296.84 
1,296.84 
1,296.84 
1,296.85 
1,296.85 
1,296.85 
1,296.86 
1,296.86 
1,296.86 

1,296.50 
0.31 

309.25 
309.25 
309.07 
309.07 
309.07 
308.48 
308.48 
308.48 
309.73 
309.73 
309.73 
308.37 
308.37 
308.37 
309.07 
309.07 
309.07 
309.25 
309.25 
309.25 
309.25 
309.25 
309.25 
309.03 
309.03 
309.03 
309.91 
309.91 
309.91 

308.99 
0.51 

Est ES 

319.07 315.41 
319.07 315.41 
320.43 314.56 
320.43 314.56 
320.43 314.56 
320.29 314.86 
320.29 314.86 
320.29 314.86 
320.15 314.12 
320.15 314.12 
320.15 314.12 
320.90 314.56 
320.90 314.56 
320.90 314.56 
320.43 314.56 
320.43 314.56 
320.43 314.56 
319.56 315.41 
319.56 315.41 
319.56 315.41 
319.56 315.41 
319.56 315.41 
319.56 315.41 
320.91 314.12 
320.91 314.12 
320.91 314.12 
319.28 314.97 
319.28 314.97 
319.28 314.97 

319.92 314.69 
0.66 0.46 

- E D  
~ 

352.27 
352.27 
352.27 
352.27 
352.27 
352.27 
352.27 
352.27 
352.27 
352.27 
352.27 
352.27 
352.27 
352.27 
352.27 
352.27 
352.27 
352.27 
352.27 
352.27 
352.27 
352.27 
352.27 
352.27 
352.27 
352.27 
352.27 
352.27 
352.27 

352.27 
0.00 

DME 

0.99 
0.99 
0.99 
0.99 
0.99 
1.01 
1.01 
1.01 
0.98 
0.98 
0.98 
1 .OO 
1 .oo 
1 .oo 
0.99 
0.99 
0.99 
0.98 
0.98 
0.98 
0.98 
0.98 
0.98 
0.99 
0.99 
0.99 
0.98 
0.98 
0.98 

0.99 
0.01 

~ 

~ 

RMS 

1.65 
1.65 
1.67 
1.67 
1.67 
1.68 
1.68 
1.68 
1.67 
1.67 
1.67 
1.66 
1.66 
1.66 
1.67 
1.67 
1.67 
1.66 
1.66 
1.66 
1.65 
1.65 
1.65 
1.68 
1.68 
1.68 
1.66 
1.66 
1.66 

1.66 
0.01 

___ 

Total  Radius of 
contacts  gyration 

304 10.8 
304 10.8 
304 10.8 
304 10.8 
304 10.8 
306 10.8 
306 10.8 
306 10.8 
304 10.8 
304 10.8 
304 10.8 
304 10.8 
304 10.8 
304 10.8 
3 04 10.8 
304 10.8 
304 10.8 
304 10.8 
304 10.8 
3 04 10.8 
3 04 10.8 
304 10.8 
304 10.8 
306 10.8 
306 10.8 
306 10.8 
304 10.8 
304 10.8 
304 10.8 

304.9 10.8 
1 .o 0.0 

a Ninety  structures  have  been  computed  simultaneously. Esra,, is the  energy of starting  conformations, Eend the  energy  of  the 
structures  after  the  RRM  genetic  algorithm  minimization, E p ,  E,,, Es,  ED are  the  energy  components of C - C "  interaction, 
side-chain-side-chain  interaction, singlet interaction  and  doublet  interaction,  respectively,  of  the  minimized  structures.  DME 
and  RMS  (units in A) are  computed  by  using  the  crystal  structure  as  the  reference. u denotes  the  standard  deviation.  The  pen- 
alty  coefficient h in the Erg has  been  set to 200 units/A.  The  starting  conformations  were  randomly  created.  The  crystal  struc- 
ture  has 300 total  contacts  and  a  radius  of  gyration 11.1 A. 

tacts  and 1 1.1 A for  the  radius of gyration. The computed 
structures  converge  uniformly  not  only  in  their  final  en- 
ergy but  more  importantly in their three-dimensional con- 
formations.  There is a high degree of similarity among  the 
90 computed  structures.  The RMS between any  two of the 
90 computed  structures is less than 0.15 A for melittin. 
Figure  3  shows a stereo  plot  of  the  backbone  and side- 
chain  centroid for the melittin  crystal structure  and  one 
structure  computed by the  current model. In all  of the 
computed  structures,  there is a bending  at  the middle of 
the  structure  due  to a proline  residue (Pro-14), which is 
in agreement with the melittin crystal structure. The fold- 
ing around  the  N-terminal  end in the  computed melittin 
structures is not  as helical as  that  shown  in  the crystal 
structure  of  melittin.  The  same  has been found also  in  the 
simulation of melittin  described  below. 

I also  tested the  current model with the overall seg- 
mentation  probability  of P2 = 1.0 and P3 = P4 = Ps = 0 
for melittin, that is, only  the  random  doublet segmenta- 
tion  along  the  chain is used.  Under the  same  conditions 
given in the  above except for  the  segmentation  probabil- 
ity (P2 = 1 .O), I obtained similar simulation results, listed 
in  Table 3. Not  surprisingly, the initial  randomly  con- 
structed 90 conformations  have very high energy rang- 
ing from 1,571.40 to 9,162.78 units. The average value of 
total energy of 90 initial  structures Esrarr is 3,377.8  units 
with a standard  deviation of 1,667.01 units. The 90 opti- 
mized structures have an average total energy of 1,264.99 
units with a standard  deviation  of 2.84 units.  It is under- 
standable  that  the sole  use  of  doublet  segmentation  in- 
creases the variability of  the  conformations  that  compose 
the  population, in  comparison with the case  in which the 
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Table 3. Simulations for melittin, Pz = l .Oa 

No. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 

~ 

E m  

1,925.98 
1,797.16 
2,104.29 
2,668.60 
2,739.85 
3,473.85 
2,875.93 
2,814.33 
3,575.91 
2,287.22 
1,571.40 
2,225.61 
1,799.83 
1,575.42 
3,874.05 
1,927.42 
4,189.52 
6,255.49 
4,418.23 
2,188.64 
3,288.44 
1,959.29 
4,177.65 
2,921.41 
4,325.12 
3,181.17 
2,519.80 
2,595.90 
2,127.36 
2,548.71 
6,122.41 
4,583.71 
2,663.04 
2,470.44 
8,018.83 
5,811.17 
5,293.39 
1,787.76 
6,024.36 
5,486.96 
1,723.92 
4,206.81 
3,481.29 
1,754.54 
4,037.17 
3,825.35 
6,005.03 
3,160.98 
1,939.42 
2,028.87 
2,626.93 
1,716.55 
5,914.45 
3,175.64 
1,746.37 
5,076.25 
3,127.05 
3,097.51 
3,832.12 
3,525.18 
2,561.41 

1,256.27 
1,256.27 
1,256.27 
1,258.58 
1,258.58 
1,258.58 
1,260.28 
1,260.28 
1,260.28 
1,262.18 
1,262.18 
1,262.18 
1,262.59 
1,262.59 
1,262.59 
1,262.77 
1,262.77 
1,262.77 
1,263.15 
1,263.15 
1,263.15 
1,263.56 
1,263.56 
1,263.56 
1,264.49 
1,264.49 
1,264.49 
1,264.55 
1,264.55 
1,264.55 
1,264.68 
1,264.68 
1,264.68 
1,264.75 
1,264.75 
1,264.75 
1,264.79 
1,264.79 
1,264.79 
1,265.08 
1,265.08 
1,265.08 
1,265.46 
1,265.46 
1,265.46 
1,265.85 
1,265.85 
1,265.85 
1,265.86 
1,265.86 
1,265.86 
1,266.02 
1,266.02 
1,266.02 
1,266.63 
1,266.63 
1,266.63 
1,266.82 
1,266.82 
1,266.82 
1,266.85 

304.38 
304.38 
304.38 
304.38 
304.38 
304.38 
309.37 
309.37 
309.37 
305.28 
305.28 
305.28 
309.37 
309.37 
309.37 
299.86 
299.86 
299.86 
304.84 
304.84 
304.84 
303.48 
303.48 
303.48 
305.28 
305.28 
305.28 
305.28 
305.28 
305.28 
301.91 
301.91 
301.91 
304.38 
304.38 
304.38 
305.28 
305.28 
305.28 
299.86 
299.86 
299.86 
304.84 
304.84 
304.84 
304.38 
304.38 
304.38 
303.48 
303.48 
303.48 
310.27 
310.27 
3 10.27 
308.44 
308.44 
308.44 
305.45 
305.45 
305.45 
305.28 

324.29 
324.29 
324.29 
324.29 
324.29 
324.29 
324.83 
324.83 
324.83 
326.11 
326.1 1 
326.11 
324.83 
324.83 
324.83 
321.64 
321.64 
321.64 
321.90 
321.90 
321.90 
324.29 
324.29 
324.29 
326.11 
326.11 
326.11 
321.36 
321.36 
321.36 
325.03 
325.03 
325.03 
323.72 
323.72 
323.72 
323.04 
323.04 
323.04 
321.64 
321.64 
321.64 
321.90 
321.90 
321.90 
324.29 
324.29 
324.29 
324.29 
324.29 
324.29 
326.65 
326.65 
326.65 
323.36 
323.36 
323.36 
325.04 
325.04 
325.04 
321.36 

284.81 
284.81 
284.81 
286.32 
286.32 
286.32 
284.64 
284.64 
284.64 
286.57 
286.57 
286.57 
286.16 
286.16 
286.16 
283.49 
283.49 
283.49 
283.32 
283.32 
283.32 
285.55 
285.55 
285.55 
288.09 
288.09 
288.09 
286.34 
286.34 
286.34 
285.21 
285.21 
285.2  1 
285.38 
285.38 
285.38 
284.89 
284.89 
284.89 
285.00 
285.00 
285.00 
284.84 
284.84 
284.84 
286.68 
286.68 
286.68 
287.06 
287.06 
287.06 
286.40 
286.40 
286.40 
284.72 
284.72 
284.72 
283.50 
283.50 
283.50 
287.86 

342.66 
342.66 
342.66 
343.45 
343.45 
343.45 
341.31 
341.31 
341.31 
343.09 
343.09 
343.09 
342.10 
342.10 
342.10 
350.07 
350.07 
350.07 
348.73 
348.73 
348.73 
350.07 
350.07 
350.07 
343.88 
343.88 
343.88 
350.51 
350.51 
350.51 
350.51 
350.51 
350.51 
35  1.09 
35 1.09 
351.09 
351.09 
351.09 
351.09 
350.87 
350.87 
350.87 
349.52 
349.52 
349.52 
350.36 
350.36 
350.36 
350.87 
350.87 
350.87 
341.74 
341.74 
341.74 
349.74 
349.74 
349.74 
349.79 
349.79 
349.79 
35 1.30 

__ 

DME 

1.69 
1.69 
1.69 
1.69 
1.69 
1.69 
1.74 
1.74 
1.74 
1.75 
1.75 
1.75 
1.74 
1.74 
1.74 
1.78 
1.78 
1.78 
1.78 
1.78 
1.78 
1.59 
1.59 
1.59 
1.75 
1.75 
1.75 
1.49 
1.49 
1.49 
1.73 
1.73 
1.73 
1.68 
1.68 
1.68 
1.69 
1.69 
1.69 
1.78 
1.78 
1.78 
1.78 
1.78 
1.78 
1.69 
1.69 
1.69 
1.59 
1.59 
1.59 
1.79 
1.79 
1.79 
1.73 
1.73 
1.73 
1.81 
1.81 
1.81 
1.49 

__ 
RMS 

3.04 
3.04 
3.04 
3.04 
3.04 
3.04 
3.15 
3.15 
3.15 
3.04 
3.04 
3.04 
3.15 
3.15 
3.15 
2.86 
2.86 
2.86 
2.89 
2.89 
2.89 
2.78 
2.78 
2.78 
3.04 
3.04 
3.04 
2.62 
2.62 
2.62 
3.04 
3.04 
3.04 
3.03 
3.03 
3.03 
3.02 
3.02 
3.02 
2.86 
2.86 
2.86 
2.89 
2.89 
2.89 
3.04 
3.04 
3.04 
2.78 
2.78 
2.78 
3.15 
3.15 
3.15 
3.12 
3.12 
3.12 
3.10 
3.10 
3.10 
2.62 

_" 

Total  Radius of 
contacts  gyration 
~ 

276 
276 
276 
276 
276 
276 
272 
272 
272 
276 
276 
276 
272 
272 
272 
282 
282 
282 
278 
278 
278 
282 
282 
282 
276 
276 
276 
278 
278 
278 
288 
288 
288 
276 
276 
276 
276 
276 
276 
282 
282 
282 
278 
278 
278 
276 
276 
276 
282 
282 
282 
272 
272 
272 
274 
274 
274 
274 
274 
274 
278 

~- 

10.8 
10.8 
10.8 
10.8 
10.8 
10.8 
10.8 
10.8 
10.8 
10.8 
10.8 
10.8 
10.8 
10.8 
10.8 
10.7 
10.7 
10.7 
10.7 
10.7 
10.7 
10.8 
10.8 
10.8 
10.8 
10.8 
10.8 
10.9 
10.9 
10.9 
10.8 
10.8 
10.8 
10.8 
10.8 
10.8 
10.8 
10.8 
10.8 
10.7 
10.7 
10.7 
10.7 
10.7 
10.7 
10.8 
10.8 
10.8 
10.8 
10.8 
10.8 
10.8 
10.8 
10.8 
10.8 
10.8 
10.8 
10.7 
10.7 
10.7 
10.9 

(continued) 
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Table 3. Continued 
~ 

~ 

~ 

No. 

62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 

Average 
U 

E,,,, 

3,631.62 
1,930.24 
2,866.74 
3,051.44 
1,577.12 
4,45 1.15 
1,761.06 
1,712.63 
1,676.59 
2,117.77 
3,196.91 
4,947.02 
2,476.38 
4,526.70 
4,088.10 
2,517.08 
3,683.91 
2,052.23 
2,319.37 
3,867.83 
2,299.27 
8,191.22 
1,617.04 
3,188.41 
9,162.78 
8,683.59 
4,488.94 
2,705.15 
2,452.05 

3,377.77 
1,667.01 

Eend 

1,266.85 
1,266.85 
1,266.99 
1,266.99 
1,266.99 
1,267.03 
1,267.03 
1,267.03 
1,267.06 
1,267.06 
1,267.06 
1,267.10 
1,267.10 
1,267.10 
1,267.82 
1,267.82 
1,267.82 
1,267.97 
1,267.97 
1,267.97 
1,267.97 
1,267.97 
1,267.97 
1,268.08 
1,268.08 
1,268.08 
1,268.33 
1,268.33 
1,268.33 

1,264.99 
2.84 

Ece 
~ 

305.28 
305.28 
301.91 
301.91 
301.91 
308.47 
308.47 
308.47 
304.38 
304.38 
304.38 
305.28 
305.28 
305.28 
302.77 
302.77 
302.77 
305.16 
305.16 
305.16 
302.77 
302.77 
302.77 
309.37 
309.37 
309.37 
310.27 
310.27 
310.27 

305.18 
2.75 

E,, 

321.36 
321.36 
325.03 
325.03 
325.03 
324.44 
324.44 
324.44 
323.72 
323.72 
323.72 
323.04 
323.04 
323.04 
324.61 
324.61 
324.61 
322.11 
322.11 
322.11 
320.00 
320.00 
320.00 
323.63 
323.63 
323.63 
326.65 
326.65 
326.65 

323.77 
1.67 

ES 

287.86 
287.86 
286.72 
286.72 
286.72 
285.38 
285.38 
285.38 
286.90 
286.90 
286.90 
286.41 
286.41 
286.41 
286.97 
286.97 
286.97 
283.27 
283.27 
283.27 
286.74 
286.74 
286.74 
285.21 
285.21 
285.2 1 
287.92 
287.92 
287.92 

285.75 
1.33 

E D  

351.30 
35 1.30 
35 1.30 
35 1.30 
351.30 
348.73 
348.73 
348.73 
351.88 
351.88 
351.88 
351.88 
35 1.88 
35 1.88 
350.95 
350.95 
350.95 
357.20 
357.20 
357.20 
358.37 
358.37 
358.37 
349.74 
349.74 
349.74 
342.54 
342.54 
342.54 

348.84 
4.29 

DME RMS 

1.49 2.62 
1.49 2.62 
1.73 3.04 
1.73 3.04 
1.73 3.04 
1.61 2.86 
1.61 2.86 
1.61 2.86 
1.68 3.02 
1.68 3.02 
1.68 3.02 
1.69 3.02 
1.69 3.02 
1.69 3.02 
1.71 2.97 
1.71 2.97 
1.71 2.97 
1.51 2.66 
1.51 2.66 
1.51 2.66 
1.47 2.72 
1.47 2.72 
1.47 2.72 
1.73 3.13 
1.73 3.13 
1.73 3.13 
1.79 3.15 
1.79 3.15 
1.79 3.15 

1.69 2.96 
0.10 0.16 

Total 
contacts 

278 
278 
288 
288 
288 
278 
278 
278 
276 
276 
276 
276 
276 
276 
288 
288 
288 
276 
276 
276 
290 
290 
290 
272 
272 
272 
272 
272 
272 

278.0 
5.1 

Radius of 
gyration 

10.9 
10.9 
10.8 
10.8 
10.8 
10.9 
10.9 
10.9 
10.8 
10.8 
10.8 
10.8 
10.8 
10.8 
10.8 
10.8 
10.8 
10.9 
10.9 
10.9 
10.9 
10.9 
10.9 
10.8 
10.8 
10.8 
10.8 
10.8 
10.8 

10.8 
0.1 

"" 

a Simulation is carried  out under the same conditions as that in Table 2, except that the  random segmentation probability 
is different. In this simulation, only the doublet segmentation has been  used  in creating the initial conformation population and 
in the  mutation operation. P2 = 1.0, and P3 = P4 = Ps = 0.0 

segmentation  probabilities  of  longer  segments  are  not 
equal to zero.  In  the 90 optimized  structures,  the  struc- 
tures closest to  the melittin  crystal  structure  have a DME 
of 1.47 A ,  and  an  RMS  of 2.72. The  average  DME  for 
90 structures is 1.69 A ,  and  the average  RMS is 2.96 A. 
It is interesting to  note  that  the optimized structures, when 
only  doublet  segmentation is used, are slightly less com- 
pact  than  the  simulation results  in  Table 2. The average 
total  contacts  in  this case is 278, which is  less than  the 300  
in  the crystal  structure. Also as expected, the  final  struc- 
tures  are very similar to each other; however, the  optimi- 
zation  took longer  time (about  one-third  more  time in 
comparison  to  the  simulation  in  Table 1) to converge to 
the final conformation  population. 

I would  like to  point  out  that  the average total energy 
of  the  computed  structures in  this  simulation is about 
2.5% lower than  that in  Table 2. This is apparently  a  typ- 
ical  problem  inherent  in  many  computational models of 

protein  structure, especially reduced representation  mod- 
els: the  actual native state  may  not  be  the lowest energy 
state (Levitt, 1976; Wilson & Doniach, 1989; Cove11 & 
Jernigan, 1990; Sun & Luo, in  prep.). A protein  system, 
which contains  hundreds or even thousands of atoms,  has 
many degrees of  freedom,  and  its low-lying energy levels 
correspond to a nearly continuous  spectra. Even if the 
native  state of a protein is at  the  global  minimum  of its 
energy  landscape,  any  practically  useful  computational 
model of protein  structure  may  deform  the  shape  of  the 
energy landscape of the system due to the  approximations 
introduced  in  the  interaction  potential  function.  There- 
fore, it is not  surprising  that  the lowest energy confor- 
mation  may  not  correspond  to  the  native  structure of 
the  protein in  many  computational models  including the 
full atomic  representation  model in which an empirical 
potential  function is used.  In  this case,  I believe that  this 
problem  originates  in  the  RRM  potential  function  in 
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f Fig. 3. Backbone and side-chain centroid stereo plot for 
melittin. Top: The crystal structure. Bottom: One of  the 

c 90 computed structures (RMS = 1.64 A, DME = 0.98 A 
to the crystal structure). All the  other  computed  struc- 
tures are similar to this one with RMS less than 0.15 A 
(compared to this computed structure). 

which the heterogeneity among  the  amino acids due  to 
the details of the side-chain interactions has been partially 
eliminated. 

Pincus et al. (1982) computed  folded  conformations of 
the 20 N-terminal  residues  of  melittin by a  buildup  pro- 
cedure.  Their  method uses limited  numbers of locally 
optimized  di- and  tripeptide  conformations to  build up 
progressively global  conformations  from  N-terminal  to 
C-terminal.  The genetic  algorithm  RRM  described  here 
is very different  from  that  of  Pincus  et  al. 

A PPI 

Similar  results  have  been found  for  APPI.  Table 4 lists 
the  simulation results for  APPI.  The primary  sequence 
and  the  radius  of  gyration  from  the  APPI crystal  struc- 
ture were the  only  input  information  for  the  simulation. 
The penalty  coefficient X was set to be 280 units/A. The 
random  perturbation  parameter d was the  same  as  that 
in the simulation for melittin.  Convergence  in  the energy 
profile  and in the three-dimensional conformation has 

been found to  be similar to that in the melittin simulation. 
Figure 4 shows the energy  profile  (blank  bar)  for all 90 
initial conformations  and  the energy  profile (filled bar) 
for  the  conformation  after  the minimization. The  RMS 
between any  two  computed  structures is less than 0.30 A. 
While the average  radius of gyration of 90 computed 
structures, 10.6 A ,  is fairly close to  the value for crystal 
structure of 10.7 A ,  the average total  contacts of the com- 
puted  structures is 466.5, which is significantly  different 
from  the crystal  value of 530. This  deviation  primarily 
arises from  the  different  folding  of five C-terminal resi- 
dues (see below)  compared to  their  crystallographic  po- 
sitions. The  computed  structures folded less tightly than 
the crystal structure  does. Figure 5 shows the  stereo  plot 
of backbone  and side-chain  centroids for  APPI crystal 
and  one  of  the  computed  structures.  The  DME  and  the 
RMS  to crystal  structure  for  the  computed  structures  are 
not  as  good  as  the corresponding values of melittin. I have 
noticed,  however, that  this large  RMS  value is primarily 
due  to  the  fact  that  the five C-terminal  end  residues  of 
APPI in the computed  structures  fold significantly differ- 
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Fig. 4. Energy profile in APPI simulation. Energy profile of the ran- 
domly created initial conformations (open bars) and the energy profile 
for the  conformation after the RRM genetic algorithm minimization 
(filled bars). The average energy  of the initial conformations is 6,649.35 
units with a standard deviation of 4,089.66 units, and the average en- 
ergy for  the  conformation  after  the minimization is 2,379.15 units with 
a standard deviation of 1.36 units. 

ently  from  the last five residues in the  crystal  structure. 
RMSt in Table 4 lists the  RMS of the  computed  confor- 
mations to the  crystal  structure when the five C-terminal 
end residues are not included in the  structural  alignment. 
The  RMSt values are  substantially  smaller than  the  cor- 
responding values when the whole computed  structure is 
aligned with the crystal structure.  In  other  words, 31 res- 
idues out of 36 residues in APPI fold correctly in the  cur- 
rent  RRM  model with an accuracy of average RMS of 
1.30 A to  the crystal structure.  It is  very interesting to note 
that  the C-terminal  end of APPI is relatively flexible even 
in the  crystal  structure (Glover et  al., 1983). 

Apamin 

Apamin is an 18-residue polypeptide  component  of bee 
venom.  Native  apamin  contains  two  disulfide  bonds 
linked between residues 1 and 1 1  and between 3 and 15. 
In  the simulations for  apamin,  the segmentation  proba- 
bilities have been set to P2 = 0.6, P3 = 0.4, and P4 = Ps = 
0.0. Random  perturbation of Equation 16 was used with 

Fig. 5. Backbone and side-chain centroid stereo plots 
for avian pancreatic polypeptide inhibitor. Top: The 
crystal structure. Bottom: One of the 90 computed 
structures (RMS = 3.93 A, DME = 1.75 A to the crys- 
tal structure). If only 31 out of 36 residues are struc- 
turally aligned with the crystal structure,  the RMS = 
1.29 A, and DME = 1.05 A. All the  other  computed 
structures  are similar to this one with RMS less than 
0.30 A. 
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Table 4. Simulations for avian pancreatic polypeptide inhibitor, a  protein of 36 residuesa 
" 

" 

No. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 1  
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 

~ 

Esrorr 

6,300.85 
5,105.48 
6,116.62 
3,769.54 
3,037.40 
4,369.94 
4,522.96 
4,220.98 
6,244.32 
3,945.14 
5,890.29 
8,773.48 
3,228.33 
6,161.75 
6,831.68 
3,027.06 
6,129.39 
4,596.85 
3,245.19 

26,335.22 
3,714.76 
4,183.21 

15,643.95 
8,180.30 
4,477.98 
5,143.52 
4,289.66 
4,661.05 
3,648.62 
3,050.06 
4,373.98 
8,084.94 
3,920.38 

12,452.85 
5,401.57 
4,744.02 
9,813.67 
5,159.90 

10,683.21 
5,958.69 
3,935.60 

14,258.66 
4,185.75 
4,394.35 
8,043.25 

13,461.39 
3,819.72 

12,971.94 
5,401.65 
3,411.03 
9,080.26 
4,507.33 

17,334.40 
3,186.79 
4,385.97 
3,191.72 
4,161.78 
4,896.73 
7,200.89 

11,864.37 
8,503.88 

Eend 

2,377.02 
2,377.02 
2,377.02 
2,377.10 
2,377.10 
2,377.10 
2,377.33 
2,377.33 
2,377.33 
2,377.46 
2,377.46 
2,377.46 
2,377.54 
2,377.54 
2,377.54 
2,377.77 
2,377.77 
2,377.77 
2,377.92 
2,377.92 
2,377.92 
2,377.95 
2,377.95 
2,377.95 
2,378.13 
2,378.13 
2,378.13 
2,378.36 
2,378.36 
2,378.36 
2,378.39 
2,378.39 
2,378.39 
2,378.47 
2,378.47 
2,378.47 
2,378.49 
2,378.49 
2,378.49 
2,378.57 
2,378.57 
2,378.57 
2,378.91 
2,378.91 
2,378.91 
2,378.93 
2,378.93 
2,378.93 
2,379.05 
2,379.05 
2,379.05 
2,319.49 
2,379.49 
2,379.49 
2,379.67 
2,379.67 
2,379.67 
2,380.09 
2,380.09 
2,380.09 
2,380.1 1 

EC" 

673.02 
673.02 
673.02 
673.21 
673.21 
673.21 
673.19 
673.19 
673.19 
673.02 
673.02 
673.02 
673.21 
673.21 
673.21 
673.19 
673.19 
673.19 
673.04 
673.04 
673.04 
673.90 
673.90 
673.90 
673.72 
673.72 
673.72 
673.04 
673.04 
673.04 
673.90 
673.90 
673.90 
674.05 
674.05 
674.05 
673.72 
673.72 
673.72 
673.72 
673.72 
673.72 
674.05 
674.05 
674.05 
673.72 
673.72 
673.72 
674.07 
674.07 
674.07 
674.07 
674.07 
674.07 
676.71 
676.71 
676.71 
675.76 
675.76 
675.76 
676.71 

Esc 

729.16 
729.16 
729.16 
729.63 
729.63 
729.63 
729.16 
729.16 
729.16 
729.16 
729.16 
729.16 
729.63 
729.63 
729.63 
729.16 
729.16 
729.16 
730.08 
730.08 
730.08 
730.06 
730.06 
730.06 
729.85 
729.85 
729.85 
730.08 
730.08 
730.08 
730.06 
730.06 
730.06 
729.29 
729.29 
729.29 
730.17 
730.17 
730.17 
729.85 
729.85 
729.85 
729.29 
729.29 
729.29 
730.17 
730.17 
730.17 
730.23 
730.23 
730.23 
730.23 
730.23 
730.23 
732.16 
732.16 
732.16 
729.42 
729.42 
729.42 
732.16 

E, 

430.24 
430.24 
430.24 
429.85 
429.85 
429.85 
430.24 
430.24 
430.24 
430.68 
430.68 
430.68 
430.29 
430.29 
430.29 
430.68 
430.68 
430.68 
430.24 
430.24 
430.24 
429.02 
429.02 
429.02 
429.42 
429.42 
429.42 
430.68 
430.68 
430.68 
429.46 
429.46 
429.46 
430.56 
430.56 
430.56 
429.42 
429.42 
429.42 
429.85 
429.85 
429.85 
43 1 .oo 
431.00 
431.00 
429.85 
429.85 
429.85 
429.42 
429.42 
429.42 
429.85 
429.85 
429.85 
428.74 
428.74 
428.74 
429.74 
429.74 
429.74 
429.18 

E D  

541.88 
541.88 
541.88 
541.88 
541.88 
541.88 
541.88 
541.88 
541.88 
541.88 
541.88 
541.88 
541.88 
541.88 
541.88 
541.88 
541.88 
541.88 
541.88 
541.88 
541.88 
541.88 
541.88 
541.88 
541.88 
541.88 
541.88 
541.88 
541.88 
541.88 
541.88 
541.88 
541.88 
541.88 
541.88 
541.88 
541.88 
541.88 
541.88 
541.88 
541.88 
541.88 
541.88 
541.88 
541.88 
541.88 
541.88 
541.88 
541.88 
541.88 
541.88 
541.88 
541.88 
541.88 
541.88 
541.88 
541.88 
541.88 
541.88 
541.88 
541.88 

DME RMS 

1.76 3.94 
1.76 3.94 
1.76 3.94 
1.75 3.93 
1.75 3.93 
1.75 3.93 
1.76 3.94 
1.76 3.94 
1.76 3.94 
1.76 3.94 
1.76 3.94 
1.76 3.94 
1.75 3.93 
1.75 3.93 
1.75 3.93 
1.76 3.94 
1.76 3.94 
1.76 3.94 
1.76 3.94 
1.76 3.94 
1.76 3.94 
1.76 3.93 
1.76 3.93 
1.76 3.93 
1.77 3.94 
1.77 3.94 
1.77 3.94 
1.76 3.94 
1.76 3.94 
1.76 3.94 
1.76 3.93 
1.76 3.93 
1.76 3.93 
1.77 3.95 
1.77 3.95 
1.77 3.95 
1.77 3.94 
1.77 3.94 
1.77 3.94 
1.77 3.94 
1.77 3.94 
1.77 3.94 
1.77 3.95 
1.77 3.95 
1.77 3.95 
1.77 3.94 
1.77 3.94 
1.77 3.94 
1.77 3.94 
1.77 3.94 
1.77 3.94 
1.77 3.94 
1.77 3.94 
1.77 3.94 
1.77 3.99 
1.77 3.99 
1.77 3.99 
1.78 3.95 
1.78 3.95 
1.78 3.95 
1.77 3.99 

RMST 

1.32 
1.32 
1.32 
1.29 
1.29 
1.29 
1.33 
1.33 
1.33 
1.32 
1.32 
1.32 
1.29 
1.29 
1.29 
1.33 
1.33 
1.33 
1.33 
1.33 
1.33 
1.32 
1.32 
1.32 
1.36 
1.36 
1.36 
1.33 
1.33 
1.33 
1.32 
1.32 
1.32 
1.38 
1.38 
1.38 
1.35 
1.35 
1.35 
1.36 
1.36 
1.36 
1.38 
1.38 
1.38 
1.35 
1.35 
1.35 
1.36 
1.36 
1.36 
1.36 
1.36 
1.36 
1.18 
1.18 
1.18 
1.41 
1.41 
1.41 
1.18 

~ 

Total Radius of 
contacts gyration 

~ ~ 

466 
466 
466 
468 
468 
468 
466 
466 
466 
466 
466 
466 
468 
468 
468 
466 
466 
466 
464 
464 
464 
466 
466 
466 
460 
460 
460 
464 
464 
464 
466 
466 
466 
464 
464 
464 
460 
460 
460 
460 
460 
460 
464 
464 
464 
460 
460 
460 
460 
460 
460 
460 
460 
460 
478 
478 
478 
460 
460 
460 
478 

10.6 
10.6 
10.6 
10.6 
10.6 
10.6 
10.6 
10.6 
10.6 
10.6 
10.6 
10.6 
10.6 
10.6 
10.6 
10.6 
10.6 
10.6 
10.6 
10.6 
10.6 
10.6 
10.6 
10.6 
10.7 
10.7 
10.7 
10.6 
10.6 
10.6 
10.6 
10.6 
10.6 
10.6 
10.6 
10.6 
10.7 
10.7 
10.7 
10.7 
10.7 
10.7 
10.6 
10.6 
10.6 
10.7 
10.7 
10.7 
10.7 
10.7 
10.7 
10.7 
10.7 
10.7 
10.6 
10.6 
10.6 
10.7 
10.7 
10.7 
10.6 

(continued) 
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Table 4. Continued 

No. 

62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 

Average 

.~ 

U 

5,261.20 
13,482.49 
5,500.17 
3,305.59 
4,490.90 
3,106.92 
5,107.46 
6,298.07 
7,815.83 

13,242.62 
3,991.96 
6,741.78 
6,736.16 
4,821.90 
9,172.04 
8,960.64 

10,543.74 
18,306.99 
4,277.75 
6,389.26 
4,004.19 
2,871.08 

13,896.76 
4,873.84 
7,121.87 
4,409.48 
3,217.95 
3,560.30 
5,296.05 

6,649.35 
4,089.66 

2,380.11 
2,380.11 
2,380.53 
2,380.53 
2,380.53 
2,380.58 
2,380.58 
2,380.58 
2,380.63 
2,380.63 
2,380.63 
2,380.82 
2,380.82 
2,380.82 
2,380.98 
2,380.98 
2,380.98 
2,381.02 
2,381.02 
2,381.02 
2,381.02 
2,381.02 
2,381.02 
2,381.07 
2,381.07 
2,381.07 
2,381.11 
2,381.11 
2,381.11 

2,379.15 
1.36 

676.71 
676.71 
675.76 
675.76 
675.76 
677.12 
677.12 
677.12 
676.76 
676.76 
676.76 
677.06 
677.06 
677.06 
676.78 
676.78 
676.78 
676.35 
676.35 
676.35 
677.12 
677.12 
677.12 
676.76 
676.76 
676.76 
676.61 
676.61 
676.61 

674.78 
1.57 

732.16 
732.16 
729.42 
729.42 
729.42 
731.93 
73  1.93 
73 1.93 
733.74 
733.74 
733.74 
732.54 
732.54 
732.54 
732.97 
732.97 
732.97 
734.10 
734.10 
734.10 
73 1.93 
73 1.93 
731.93 
733.74 
733.74 
733.74 
733.91 
733.91 
733.91 

730.78 
1.63 

429.18 
429.18 
430.18 
430.18 
430.18 
429.46 
429.46 
429.46 
427.92 
427.92 
427.92 
429.13 
429.13 
429.13 
429.13 
429.13 
429.13 
428.31 
428.31 
428.31 
429.90 
429.90 
429.90 
428.35 
428.35 
428.35 
428.31 
428.31 
428.31 

429.64 
0.79 

541.88 
541.88 
541.88 
541.88 
541.88 
541.88 
541.88 
541.88 
541.88 
541.88 
541.88 
541.88 
541.88 
541.88 
541.88 
541.88 
541.88 
541.88 
541.88 
541.88 
541.88 
541.88 
541.88 
541.88 
541.88 
541.88 
541.88 
541.88 
541.88 

541.88 
0.00 

1.77 
1.77 
1.78 
1.78 
1.78 
1.78 
1.78 
1.78 
1.77 
1.77 
1.77 
1.77 
1.77 
1.77 
1.77 
1.77 
1.77 
1.78 
1.78 
1.78 
1.78 
1.78 
1.78 
1.77 
1.77 
1.77 
1.78 
1.78 
1.78 
1.77 
0.01 

3.99 
3.99 
3.95 
3.95 
3.95 
4.00 
4.00 
4.00 
3.98 
3.98 
3.98 
3.99 
3.99 
3.99 
3.99 
3.99 
3.99 
3.99 
3.99 
3.99 
4.00 
4.00 
4.00 
3.98 
3.98 
3.98 
3.99 
3.99 
3.99 
3.96 
0.02 

1.18 
1.18 
1.41 
1.41 
1.41 
1.27 
1.27 
1.27 
1.21 
1.21 
1.21 
1.22 
1.22 
1.22 
1.21 
1.21 
1.21 
1.25 
1.25 
1.25 
1.27 
1.27 
1.27 
1.21 
1.21 
1.21 
1.24 
1.24 
1.24 

1.30 
0.06 

~ 

~ 

Total 
contacts 

478 
478 
460 
460 
460 
470 
470 
470 
472 
472 
472 
474 
474 
474 
474 
474 
474 
470 
470 
470 
470 
470 
470 
472 
472 
472 
470 
470 
470 

466.5 
5.4 

Radius of 
gyration 

10.6 
10.6 
10.7 
10.7 
10.7 
10.6 
10.6 
10.6 
10.6 
10.6 
10.6 
10.6 
10.6 
10.6 
10.6 
10.6 
10.6 
10.6 
10.6 
10.6 
10.6 
10.6 
10.6 
10.6 
10.6 
10.6 
10.6 
10.6 
10.6 

10.6 
0.0 

a The notations used  in the  table  are  the same as in Table 2. RMSt denotes the RMS to the crystal structure when five resi- 
dues in the C-terminal end are not included in the structure alignment. Starting conformations were randomly created. The crys- 
tal  structure has 530 total  contacts and a  radius of gyration of 10.68 A. 

d = 10". The simulation  input is the primary sequence and 
the  radius  of  gyration  of  the  DISCOVER-minimized 
NMR  structure  of  apamin.  Two sets  of  simulations  have 
been  carried  out: (case 1) no  further  information  other 
than  the  above; (case 2) explicit disulfide bond pairings 
also were given, and  this  information was implemented 
by an extra  energy  term. The nonlocal  interaction  poten- 
tial  between the cysteines that  form disulfide bonds was 
set to be twice as  large  as  that  for  those cysteines that  are 
not explicitly noted to  form disulfide bonds.  In  other 
words,  the  nonlocal  interaction  potential was doubled for 
Cys- 1 -Cy+ 1 1 and Cys-3-Cys- 15. 

Results  of the  simulations  are listed in  Table 5. The 
total energy  profile of the  starting  conformations  and 
the final conformations has the  same characteristics  as 
that  found  in  the  simulation of melittin and  APPI  for 
both cases 1 and 2 above.  The  final  structures, in  case 1, 
have an average DME  and  an average RMS of 2.53 A and 
3.38 A, respectively. In  these  final  structures 15 out  of 90 

have an RMS less than 3.0 A. The average total  contacts 
and  the average  radius  of  gyration of these 90 optimized 
structures  are 239 and 6.2 A, respectively, figures very 
close to  the corresponding values of 238 and 6.4 A for  the 
DISCOVER-minimized  NMR  structure. The  final  struc- 
tures,  in  case 2, have an average  DME  and  an average 
RMS  of 2.24 A and 2.79 A. The average total  contacts 
and  the average  gyration  radius  are 243 and 6.0 A ,  which 
indicates that  the  computed  structures  are slightly more 
compact  than  the NMR structure.  With  the explicit infor- 
mation  of disulfide bond pairings the  computed  struc- 
tures  have  improved  the average RMS by about 0.6 A. 
The computed  structures  in  both cases have a very high 
similarity  among themselves. The  RMS between any  two 
computed  structures is less than 1.5 A (most of them  are 
less than 0.5 A) among  the  computed  structures  in case 
1 and less than  0.3 A among  the  computed  structures in 
case 2. Figure 6 gives the  stereo  plots  of  the  apamin 
DISCOVER-minimized  NMR  structure,  one  of the  com- 



__ __ 

No. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 

__ 

780 

Table 5. Simulations for  apamin, a  protein of 18 residues with two disulfide bonds" 
- - 

E m ,  
(a) 

" 

4,608.25 
1,697.81 
4,727.07 
1,132.31 
2,934.85 
1,287.35 
1,556.87 
1,03 1.37 
1,795.32 
2,074.14 
3,238.85 
2,988.66 
2,204.34 

918.79 
3,984.66 

876.89 
3,377.51 
1,726.38 

939.84 
3,184.39 

977.02 
1,058.65 
2,060.97 
3,797.78 
2,670.74 
1,545.83 
3,477.23 
3,841.50 
2,223.20 
1,603.14 
1,834.57 
4,165.77 
6,080.29 
2,171.25 
1,531.48 
1,398.34 
2,581.97 
2,823.36 

890.48 
1,026.29 
2,142.13 
3,223.83 
3,451.35 
1,484.12 
3,414.89 
1,378.15 
2,410.50 
1,397.08 
1,913.48 
2,413.79 
2,555.90 
1,981.59 
1,695.46 
3,929.91 
1,584.87 
2,627.37 
1,466.07 
1,353.28 
1,935.34 
1,000.23 

Eend 
(a) _ _ ~  

676.64 
676.64 
676.64 
677.86 
677.86 
677.86 
679.63 
679.63 
679.63 
680.30 
680.30 
680.30 
680.85 
680.85 
680.85 
680.96 
680.96 
680.96 
68 1.30 
681.30 
681.30 
681.97 
68 1.97 
68 1.97 
682.14 
682.14 
682.14 
682.64 
682.64 
682.64 
682.65 
682.65 
682.65 
682.76 
682.76 
682.76 
682.80 
682.80 
682.80 
682.83 
682.83 
682.83 
683.09 
683.09 
683.09 
683.26 
683.26 
683.26 
683.39 
683.39 
683.39 
683.67 
683.67 
683.67 
683.83 
683.83 
683.83 
683.96 
683.96 
683.96 

E,,,,, 
(b) 

4,940.03 
1,752.76 
5,066.58 
1,146.40 
2,975.88 
1,283.65 
1,558.01 
1,040.33 
1,876.56 
2,142.67 
3,451.78 
3,109.11 
2,246.52 

920.34 
4,261.62 

879.44 
3,588.34 
1,725.20 

949.68 
3,383.50 

978.72 
1,068.04 
2,152.48 
4,051.83 
2,818.47 
1,566.69 
3,702.55 
4,099.76 
2,245.55 
1,661.60 
1,854.16 
4,452.07 
6,540.58 
2,289.44 
1,589.83 
1,420.17 
2,719.58 
2,990.07 

894.15 
1,032.90 
2,246.77 
3,423.03 
3,453.77 
1,534.62 
3,628.69 
1,418.96 
2,534.86 
1,438.01 
2,001.18 
2,545.71 
2,703.10 
1,981.15 
1,772.84 
4,189.59 
1,642.70 
2,778.94 
1,506.71 
1,396.41 
2,028.00 
1,014.53 

Eend 
(b) 

647.29 
647.29 
647.29 
648.13 
648.13 
648.13 
648.45 
648.45 
648.45 
652.39 
652.39 
652.39 
653.44 
653.44 
653.44 
653.46 
653.46 
653.46 
654.41 
654.41 
654.41 
655.07 
655.07 
655.07 
655.11 
655.11 
655.11 
655.20 
655.20 
655.20 
655.88 
655.88 
655.88 
655.89 
655.89 
655.89 
656.17 
656.17 
656.17 
657.35 
657.35 
657.35 
657.50 
657.50 
657.50 
658.05 
658.05 
658.05 
658.35 
658.35 
658.35 
658.76 
658.76 
658.76 
659.02 
659.02 
659.02 
659.15 
659.15 
659. I5 

DME 
(a&) 

2.54 2.23 
2.54 2.23 
2.54 2.23 
2.53 2.24 
2.53 2.24 
2.53 2.24 
2.54 2.23 
2.54 2.23 
2.54 2.23 
2.55 2.23 
2.55 2.23 
2.55 2.23 
2.53 2.23 
2.53 2.23 
2.53 2.23 
2.55 2.24 
2.55 2.24 
2.55 2.24 
2.30 2.22 
2.30 2.22 
2.30 2.22 
2.54 2.23 
2.54 2.23 
2.54 2.23 
2.64 2.23 
2.64 2.23 
2.64 2.23 
2.54 2.24 
2.54 2.24 
2.54 2.24 
2.57 2.23 
2.57 2.23 
2.57 2.23 
2.33 2.24 
2.33 2.24 
2.33 2.24 
2.65 2.24 
2.65 2.24 
2.65 2.24 
2.54 2.23 
2.54 2.23 
2.54 2.23 
2.29 2.25 
2.29 2.25 
2.29 2.25 
2.57 2.24 
2.57 2.24 
2.57 2.24 
2.30 2.25 
2.30 2.25 
2.30 2.25 
2.57 2.26 
2.57 2.26 
2.57 2.26 
2.65 2.26 
2.65 2.26 
2.65 2.26 
2.64 2.23 
2.64 2.23 
2.64 2.23 

RMS 
(a,b) 

3.46 2.80 
3.46 2.80 
3.46 2.80 
3.45 2.81 
3.45 2.81 
3.45 2.81 
3.46 2.80 
3.46 2.80 
3.46 2.80 
3.48 2.78 
3.48 2.78 
3.48 2.78 
3.46 2.79 
3.46 2.79 
3.46 2.79 
3.48 2.79 
3.48 2.79 
3.48 2.79 
2.90 2.79 
2.90 2.79 
2.90 2.79 
3.46 2.80 
3.46 2.80 
3.46 2.80 
3.56 2.78 
3.56 2.78 
3.56 2.78 
3.46 2.78 
3.46 2.78 
3.46 2.78 
3.40 2.77 
3.40 2.77 
3.40 2.77 
2.93 2.80 
2.93 2.80 
2.93 2.80 
3.56 2.79 
3.56 2.79 
3.56 2.79 
3.46 2.77 
3.46 2.77 
3.46 2.77 
2.90 2.80 
2.90 2.80 
2.90 2.80 
3.40 2.79 
3.40 2.79 
3.40 2.79 
2.91 2.79 
2.91 2.79 
2.91 2.79 
3.40 2.81 
3.40 2.81 
3.40 2.81 
3.56 2.81 
3.56 2.81 
3.56 2.81 
3.55 2.77 
3.55 2.77 
3.55 2.77 

S. Sun 

Total 
contacts 

( a b )  
- ____ 

236 
236 
236 
236 
236 
236 
236 
236 
236 
238 
238 
238 
236 
236 
236 
238 
238 
238 
248 
248 
248 
236 
236 
236 
234 
234 
234 
236 
236 
236 
242 
242 
242 
250 
250 
250 
234 
234 
234 
236 
236 
236 
248 
248 
248 
242 
242 
242 
248 
248 
248 
242 
242 
242 
234 
234 
234 
234 
234 
234 

~ 

242 
242 
242 
242 
242 
242 
242 
242 
242 
244 
244 
244 
244 
244 
244 
242 
242 
242 
242 
242 
242 
242 
242 
242 
244 
244 
244 
242 
242 
242 
244 
244 
244 
242 
242 
242 
242 
242 
242 
244 
244 
244 
244 
244 
244 
244 
244 
244 
244 
244 
244 
244 
244 
244 
242 
242 
242 
244 
244 
244 

Radius of 
gyration 

( a b )  
~~ ~ 

6.3 6.0 
6.3 6.0 
6.3 6.0 
6.3 6.0 
6.3 6.0 
6.3 6.0 
6.3 6.1 
6.3 6.1 
6.3 6.1 
6.3 6.0 
6.3 6.0 
6.3 6.0 
6.3 6.0 
6.3 6.0 
6.3 6.0 
6.3 6.0 
6.3 6.0 
6.3 6.0 
6.1 6.1 
6.1 6.1 
6.1 6.1 
6.3 6.0 
6.3 6.0 
6.3 6.0 
6.3 6.0 
6.3 6.0 
6.3 6.0 
6.3 6.0 
6.3 6.0 
6.3 6.0 
6.1 6.0 
6.1 6.0 
6.1 6.0 
6.0 6.0 
6.0 6.0 
6.0 6.0 
6.3 6.0 
6.3 6.0 
6.3 6.0 
6.3 6.0 
6.3 6.0 
6.3 6.0 
6.1 6.0 
6.1 6.0 
6.1 6.0 
6.1 6.0 
6.1 6.0 
6.1 6.0 
6.1 6.0 
6.1 6.0 
6.1 6.0 
6.1 6.0 
6.1 6.0 
6.1 6.0 
6.2 6.0 
6.2 6.0 
6.2 6.0 
6.3 6.0 
6.3 6.0 
6.3 6.0 

(continued) 
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Table 5. Continued 

E,,,,, 
No.  (a) 

61 2,706.64 
62 1,092.95 
63 1,307. I7 
64 2,079.12 
65 907.68 
66 917.00 
67 1,011.21 
68 985.76 
69 1,317.61 
70  2,735.13 
71 804.42 
72 2,280.51 
73 2,931.12 
74 2,028.29 
75 5,820.01 
76 4,928.56 
77 1,938.13 
78 2,044.68 
79 1,282.42 
80 3,323.07 
81 1,439.44 
82 1,898.57 
83 977.66 
84  1,283.22 
85 3,770.57 
86 1,636.43 
87 2,302.26 
88 2,047.03 
89  2,332.90 
90 3,792.49 

Average 2,236.97 
U 1,159.99 

Eend 
(a) 

~- 

684.49 
684.49 
684.49 
684.61 
684.61 
684.61 
684.62 
684.62 
684.62 
685.38 
685.38 
685.38 
685.70 
685.70 
685.70 
685.81 
685.81 
685.81 
685.97 
685.97 
685.97 
686.17 
686.17 
686.17 
686.39 
686.39 
686.39 
686.84 
686.84 
686.84 

683.08 
2.43 

E,,,,, 
(b) 

2,867.47 
1,106.74 
1,311.26 
2,179.85 

907.40 
919.85 

1,026.52 
990.47 

1,357.24 
2,901.97 

804.05 
2,412.07 
3,113.70 
2,090.90 
6,254.17 
5,291.35 
2,016.91 
2,049.63 
1,307.65 
3,535.32 
1,494.59 
1,933.88 

990.61 
1,166.72 
3,732.30 
1,697.23 
2,430.61 
2,066.36 
2,462.03 
4,047.82 

2,334.81 
1,259.34 

Eend 
(b) 

659.36 
659.36 
659.36 
660.21 
660.21 
660.21 
660.23 
660.23 
660.23 
661.54 
661.54 
661.54 
661.61 
661.61 
661.61 
661.92 
661.92 
661.92 
662.70 
662.70 
662.70 
663.23 
663.23 
663.23 
663.29 
663.29 
663.29 
663.47 
663.47 
663.47 

657.22 
4.39 

DME 
(a,b) 

2.65 2.25 
2.65 2.25 
2.65 2.25 
2.53 2.24 
2.53 2.24 
2.53 2.24 
2.64 2.23 
2.64 2.23 
2.64 2.23 
2.57 2.24 
2.57 2.24 
2.57 2.24 
2.35 2.24 
2.35 2.24 
2.35 2.24 
2.54 2.26 
2.54 2.26 
2.54 2.26 
2.56 2.27 
2.56 2.27 
2.56 2.27 
2.55 2.25 
2.55 2.25 
2.55 2.25 
2.56 2.26 
2.56 2.26 
2.56 2.26 
2.55 2.23 
2.55 2.23 
2.55 2.23 

2.53 2.24 
0.10 0.01 

RMS 
(ab )  

3.56 2.80 
3.56 2.80 
3.56 2.80 
3.45 2.81 
3.45 2.81 
3.45 2.81 
3.55 2.80 
3.55 2.80 
3.55 2.80 
3.40 2.79 
3.40 2.79 
3.40 2.79 
2.94 2.80 
2.94 2.80 
2.94 2.80 
3.46 2.81 
3.46 2.81 
3.46 2.81 
3.38 2.82 
3.38 2.82 
3.38 2.82 
3.48 2.79 
3.48 2.79 
3.48 2.79 
3.38 2.81 
3.38 2.81 
3.38 2.81 
3.48 2.78 
3.48 2.78 
3.48 2.78 

3.38 2.79 
0.21 0.01 

234 
234 
234 
236 
236 
236 
234 
234 
234 
242 
242 
242 
234 
234 
234 
236 
236 
236 
242 
242 
242 
238 
238 
238 
242 
242 
242 
238 
238 
238 

239 
4.8 

242 
242 
242 
242 
242 
242 
242 
242 
242 
242 
242 
242 
242 
242 
242 
242 
242 
242 
242 
242 
242 
244 
244 
244 
244 
244 
244 
244 
244 
244 

243 
I .o 

Radius of 
gyration 

(ab)  

6.2 6.0 
6.2 6.0 
6.2 6.0 
6.3 6.0 
6.3 6.0 
6.3 6.0 
6.3 6.0 
6.3 6.0 
6.3 6.0 
6.1 6.0 
6.1 6.0 
6.1 6.0 
6.2 6.0 
6.2 6.0 
6.2 6.0 
6.3 6.0 
6.3 6.0 
6.3 6.0 
6.2 6.0 
6.2 6.0 
6.2 6.0 
6.3 6.0 
6.3 6.0 
6.3 6.0 
6.2 6.0 
6.2 6.0 
6.2 6.0 
6.3 6.0 
6.3 6.0 
6.3 6.0 

6.2 6.0 
0.1 0.0 

-~ 

a Two sets of data are presented in the table: a: the simulation without constraints on disulfide bonds, and b: the simula- 
tion with the explicit native disulfide bond  constraints, which  was implemented by an additional nonlocal interaction potential 
for cysteines that form disulfide bonds.  The segmentation probabilities used  in the simulations are P2 = 0.6, P3 = 0.4, and 
P4 = Ps = 0.0. The reference structure used  in the calculation of DME and RMS of the optimized structures was a DISCOVER- 
minimized NMR structure of apamin. This NMR-measured structure has a  radius of gyration of 6.4 A, and 238 total  contacts. 
All the initial conformations were created randomly.  The penalty coefficient X was  set to 120 units/A. 

puted  structures in case  1, and  one of the  computed  struc- 
tures in case 2. 

One of the very interesting  features  in the  computed 
structures  in  case  1 is that distances between C" atom of 
Cys-3 and Cys-15 in  different optimized structures  are very 
close,  ranging  from 4.95 A to 5.79 A. The average  dis- 
tance between C" atom of Cys-3 and Cys-15 for 90 com- 
puted  structures is 5.55 A, which is an  optimal C"-C" 
distance to form a disulfide bond (Srinivasan et al., 1990). 
The average  distance between cysteines 1 and 3 is 5.70 A 
(ranging from 5.32 A to 6.90 A), 7.58 A between cysteines 
11 and 15, 10.25 A between cysteines 3 and 11, and 9.79 A 
between cysteines 1 and 15. On  the  other  hand,  for Cys-1 
and Cys-1 1 , only 15 out of 90 computed  structures have 
a C"-C" distance  that  may be  favorable  for disulfide 

bond  formation  (the average is 13.22 A). These 15 com- 
puted  structures have an RMS less than 3.OA. These results 
were obtained  without  the  information of disulfide  bond 
pairing in the simulation, and they suggest that  the native 
disulfide bond pairings are between cysteines 3 and 15 and 
1 and 1 1. They  also suggest that  the disulfide  bond between 
cysteines 3 and 15 is formed with higher probability than 
that between cysteines 1 and 11 as  an experiment  has  in- 
dicated  (Huyghues-Despointes & Nelson, 1992). 

When  the disulfide bond  information is included as 
an  additional  nonlocal  interaction  potential between the 
cysteines that  form disulfide bond,  the  computed  struc- 
tures  are  more native-like (case 2). The C"-C" distance 
between Cys-1 and Cys-11 is 6.85 A and 5.67 A between 
Cys-3 and Cys-15. 
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Fig. 6.  Backbone and side-chain centroid ste- 
reo plots for  apamin. Top: The DISCOVER- 
minimized NMR structure. Middle: One Of 
the 90 computed  structures (DME = 2.54 A, 
RMS = 3.46 A) without explicit disulfide bond 
information in the simulation. Bottom: One Of 
the 90 computed  structures  (DME = 2.23 A, 
RMS = 2.77 A) with the explicit disulfide bond 
information in the  simulation. 

Effect of random perturbation and Erg 

A random  perturbation  term has been added  in  the  change 
of each geometric variable ($,$) in  the dictionary-assisted 
conformational search process (see Equation 16). In do- 
ing so, it is hoped  that  this mechanism will be  able to ex- 
plore  a  much  larger  region  in  the  conformational  space 
than  the possible  combinations of the segmental confor- 
mations  from  the  primary  conformation  dictionaries  for 
a given primary sequence, so that  the search may be more 
complete. 

Previous  studies  (Sun & Luo, in  prep.)  indicated  that 
the statistical  potential function used in  the  current re- 
duced  representation  model  may  not  only  deform  the 
mean energy surface of the system but may also introduce 
further degeneracy,  which  corresponds to several  differ- 
ent  structures of comparable  energy.  There  are  several 
possible ways to improve  the simple  statistical  potential 

function on the empirical level (or adding  phenomeno- 
logical  interaction  terms),  as  mentioned  in  section 11. In 
this  study, a penalty  energy  term for  radius  of  gyration, 
Equation 10 has  been added  to  the statistical  potential 
function. 

Table 6 listed the average  results of 90 structures  com- 
puted  under  different  conditions  as  indicated  in  the  first 
column of the  table.  The results  show that with the  com- 
bined  application  of  the  random  perturbation  and  the 
target  function  for  radius  of  gyration,  the  computed 
structures  are  much closer to  the corresponding  crystal 
structures. 

Efficiency of algorithm 

The RRM genetic algorithm  minimization  method  pre- 
sented  here is very robust  and  has a very high degree of 
convergence. Three  important  factors greatly improve the 
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Table 6. Effect of the random  pertubation and Erga 
~- "~ 

Average 
Average radius of Average Average 

total gyration DME RMS 
Structure contacts (A) (A) ( 4  

Melittin crystal 
R-T 
NR-T 
R-NT 
NR-NT 

APPI crystal 
R-T 
NR-T 
NR-NT 

300.0 
304.9 
284.9 
319.9 
306.5 
530.0 
466.5 
450.1 
430.9 

1 1 . 1  
10.8 0.99 1.66 
10.8  1.82 2.67 
8.7 4.81 5 .78  
9.0 4.95 5.59 

10.7 
10.6 1 .I7 3.96 
10.4 3.29 5.15 
10.7 2.79 4.64 

a All the listed average data are for 90 structures. Melittin crystal and 
APPI crystal are the crystal structures, all the rest are average values 
of the computed structures. R and NR indicate  including  and  not  includ- 
ing the random perturbation in Equation 16, respectively. T and NT in- 
dicates including and not including the energy term of Equation 10. 

efficiency of the  computation: (1) the intrinsic  parallel 
search  of the genetic algorithm, which  provides a simul- 
taneous  multipath search algorithm  in  the  conformational 
space; (2) the use of  the dictionary-assisted  variation  of 
the  conformations, which excludes all possible conforma- 
tions  that  have local  steric  conflicts; and (3) the use of a 
penalty energy function  (or  target  function)  Equation 10, 
which selects conformations with a preferred  value  of 
radius  of  gyration.  In  general,  the  number  of  structures 
that have  been  simultaneously  computed  are 5p, where 
p is the size of  the  conformational  population. A 90- 
structure  population will have had 450 structures  pro- 
cessed simultaneously.  In  the  case  of  the  melittin  simu- 
lation  (population size 90), the  minimization converged 
after  about 32-45 generations of the genetic algorithm 
search  operations in a total central processing unit (CPU) 
time of 5 min on a VAX-6400. For APPI simulation,  the 
minimization converged after  about 37-55 generations of 
genetic  algorithm  search  operations in a total CPU time 
of  about 10 min  on a VAX-6400. In  another  report (Sun 
& Luo, in  prep.), we used a simulated  annealing  minimi- 
zation  algorithm  and  computed  the optimized  structures 
for melittin and APPI in a similar  reduced  representa- 
tion  model. It took  about 10 min to optimize  one melit- 
tin  structure  and  about 15 min for  one APPI structure. 
The current  RRM genetic  algorithms  minimization  algo- 
rithm is roughly 100-200 times  faster than  the  RRM sim- 
ulated  annealing  algorithm.  Moreover, the  current  RRM 
genetic  algorithm is able to generate  much  more  conver- 
gent and  accurate  conformations  than  that of the  RRM 
simulated  annealing  algorithm,  at least in  the cases of me- 
littin  and APPI. Extensive  simulated  annealing  calcula- 
tion  for  apamin  has been  carried out (Sun & Snyder,  in 
prep.),  the results show that  both  the secondary  structure 
element and  the disulfide  bridges are  formed  naturally. 

However, the simulated  annealing  computation is slower 
by a factor  of 200 in  comparison with the  computation 
by genetic  algorithms. 

Discussion 

The reduced representation model and dictionary-assisted 
genetic  algorithms  conformational  search  method  de- 
scribed  in  this  paper  have been tested on three  small  pro- 
teins, melittin, APPI, and apamin.  The results have shown 
that  the  computed  conformations  are convergent  in both 
their  energy  profiles and three-dimensional  structures. 
With  the  primary sequence and  the  radius of gyration of 
the crystal structure  as  the only input  information  for  the 
computation,  the  computed  structures  are close to  their 
corresponding  crystal  structures  (for  melittin  and APPI) 
or NMR  structure  (apamin).  This indicates that  the  cur- 
rent  model is consistent  with the basic  characteristics  of 
the  folded  protein  structures. 

The  performance  of  the statistical  potential  function 
computed  from  the  known  structures of proteins and used 
in  the  current model has been further improved by the  ad- 
ditional  phenomenological energy term, i.e., Erg the  tar- 
get energy function  for  radius  of  gyration.  This energy 
term uses the specific crystal structure  information,  radius 
of  gyration R,, of the  protein to be  computed. I consider 
that this constraint of the  radius of gyration is a low-order 
one,  because the  number  of possible  folded conforma- 
tions is still enormously  large if the  radius of gyration is 
the  only folding  constraint.  Without  this  term,  the  com- 
puted  structures still fold  into  ones that have overall sim- 
ilarity to  the crystal  structures  (Sun & Luo, in  prep.). 
Instead  of the  constraint  for  the  radius  of  gyration,  there 
are a  number  of  other possible ways to  improve  the per- 
formance of the statistical  potential  function  further.  For 
instance,  the statistical  radial  distribution  functions of 
amino acids  in the  known  proteins  (Sun, in  prep.)  could 
be used for  this  purpose. 

The use of short peptide conformations  as  found in 
known  protein  structures  as  the  primary  conformation 
pool to search  protein  conformations  has been discussed 
by several authors, these  studies,  however,  have  focused 
on  the use of  hexapeptide conformations (e.g.,  Unger 
et al., 1989). For a given protein  sequence,  there are  not 
many  samples  for  hexapeptide  conformations in the 
known  protein  structures,  and if similar  sequences are 
eliminated,  the  sample size is even smaller.  This  may re- 
sult  in  a  serious  limitation  in  sampling conformational 
space.  The dictionary-assisted conformational  search 
method  presented  here attempts  to overcome  come  this 
problem by using a set of shorter  peptide  conformational 
pools. While the dictionary-assisted conformational search 
reduces the  number  of  conformations  to be  searched by 
a factor  enormously  large in  comparison to  the  random 
search,  the variability  of the accessible conformations is 
retained by the use of  the  shorter segmental conforma- 
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tions  and  their  random  perturbations.  The (I$, $) sam- 
pling  probability is automatically  in  accordance with the 
Ramachandran  distribution of (I$, $) for  any  amino acid 
residue  in the segmental method;  furthermore, higher- 
order  correlation in short sequence  segments is utilized. 

Careful  readers  would  have  noticed that  the 110 non- 
homologous  proteins used to  build  segmental  dictionar- 
ies contain  the melittin and  APPI,  but I believe that 
the  probability of generating a native-like  melittin  struc- 
ture  or  an  APPI  structure by randomly assembling struc- 
tural  fragments  from  the segmental  dictionaries is very 
small. For instance, melittin has 26 residues, and  thus has 
26 possible random  conformational  mutation sites. The 
number  of possible conformation  combinations  for  a  di- 
peptide  random  search  can  be  computed from  the size of 
the  dipeptide segmental  dictionary.  The lower bound of 
this  number is about (24,000/400)26 = 602'j = lo4'; here, 
24,000 is the number of dipeptide  conformations in the 
dictionary.  Notice  that I have  not  counted the  random 
perturbation  at each (I$, $) yet in  this  estimation. If the 
random  perturbation  at each (I$, $) in Equation 16  is 
properly  counted,  the  estimated  number of possible con- 
formational  combinations  has to be  multiplied by an  ad- 
ditional  astronomical  factor.  Therefore, it is unlikely to  
generate  randomly a native-like structure  from  the seg- 
mental  conformation dictionaries  in  a  feasible  period of 
computation  without  the genetic algorithm  optimization. 
This is because all its  parts have to  have  correct  confor- 
mations  in  order  for a  structure to be  native-like. 

Visualizing the  conformational  population  as a  sub- 
ensemble  of  all the accessible conformations  of a pro- 
tein,  the  conformational species in this subensemble span 
across  the  entire  conformational  space of the system. The 
genetic  optimization process describes a dynamic  evolu- 
tion process of  this  subensemble, in which the collective 
correlation  among  the  conformation species governs the 
behavior  of  migration  of  the  subensemble in conforma- 
tional  space,  like a swarm of bees heading to a new hive, 
until  this evolving subensemble is attracted in the basin 
of the energy  landscape of the system. I would  like to 
point  out  that despite the  potential usefulness  of the ge- 
netic  algorithm  conformational  search  method,  the  fold- 
ing  process computed by the  current genetic algorithm 
RRM may  have  nothing to  do with the real  folding  pro- 
cess. The real protein  folding is a spontaneous  dynamic 
process that is governed by all kinds of interactions  be- 
tween a  protein  and its surrounding  environment.  It is a 
process that involves the free energy gradients  rather than 
the values of the  free  energy of the system. On  the  other 
hand, if the  thermodynamic  hypothesis is valid,  the  final 
folded  conformation  of a protein will not  depend on  the 
path  along which it  folds. 
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