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Abstract 

We describe a  new paradigm  for  modeling  proteins in interactive  computer  graphics  systems-continual  mainte- 
nance  of a  physically  valid representation,  combined with direct user control  and  visualization.  This is achieved 
by a fast  algorithm  for energy minimization,  capable of real-time  performance  on all atoms  of a small protein, 
plus  graphically specified  user tugs.  The  modeling  system, called Sculpt, rigidly constrains  bond  lengths,  bond 
angles,  and  planar  groups (similar to existing interactive  modeling  programs), while it  applies elastic restraints 
to  minimize  the  potential  energy  due to  torsions,  hydrogen  bonds,  and  van  der Waals and  electrostatic4  interac- 
tions (similar to  existing batch  minimization  programs),  and user-specified springs.  The  graphical  interface  can 
show  bad  and/or  favorable  contacts,  and  individual energy terms  can  be  turned  on or off  to  determine  their  ef- 
fects  and  interactions. 

Sculpt finds a  local minimum of the  total energy that satisfies  all the  constraints using an augmented  Lagrange- 
multiplier  method;  calculation  time increases only linearly  with the  number  of  atoms because the  matrix  of  con- 
straint  gradients is sparse  and  banded.  On a 100-MHz MIPS R4000 processor (Silicon Graphics  Indigo), Sculpt 
achieves 11 updates per  second on a  20-residue fragment  and 2 updates per second on  an 80-residue protein, using 
all atoms except non-H-bonding  hydrogens,  and  without  electrostatic  interactions.  Applications of Sculpt are de- 
scribed: to reverse the  direction of bundle  packing in a designed  4-helix bundle  protein,  to  fold  up a 2-stranded 
@-ribbon  into  an  approximate  @-barrel,  and  to design the  sequence  and  conformation of  a 30-residue  peptide  that 
mimics one  partner of a protein  subunit  interaction. 

Computer  models  that  are  both  interactive  and physically  realistic  (within the  limitations of a given force field) 
have 2 significant  advantages: (1) they  make feasible the  modeling  of very large changes (such as  needed  for  de 
novo  design),  and ( 2 )  they  help  the user understand  how  different energy terms  interact  to stabilize a given con- 
formation.  The Sculpt paradigm  combines  many of the best features  of  interactive  graphical  modeling, energy 
minimization,  and  actual physical models,  and we propose it as  an especially productive way to use current  and 
future increases  in computer  speed. 
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We describe a new paradigm  for  modeling  proteins in interac- 
tive computer  graphics systems - continual  maintenance of a 
physically  valid representation,  combined with direct user con- 
trol  and visualization. A modeling system, called Sculpt, main- 
tains  valid  bond  lengths,  bond  angles,  and  van  der  Waals 
separations in  a model  as a user changes its structure by inter- 
actively moving  atoms,  peptides,  and side chains.  Like a  phys- 
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ical model, Sculpt prevents  certain  movements  due  to  bond 
rigidity,  propagates  changes throughout a  model due  to coupling 
in secondary  structure  or  packing,  and changes  local conforma- 
tion when degrees of  freedom  allow.  Moreover, Sculpt keeps the 
model in a conformation  that locally minimizes the  potential en- 
ergy due  to  torsion angles and  hydrogen  bond,  van  der  Waals, 
and  electrostatic4  interactions  for  all  atoms of the  model.  To- 
gether, Sculpt both  maintains interactive performance  and  also 

4 A  model of electrostatic  interactions  is  currently  under  devel- 
opment. 
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incorporates physical properties that previously required batch 
computation. 

Figure 1 shows a 20-residue a-helix modeled in Sculpt. The 
user moves the phenylalanine by picking it  with a mouse (red 
arrow) and dragging it toward the cyan backbone. As the ring 
turns,  it collides with the backbone  carbonyl carbon (denoted 
by the red wireframe shell) and has minor contact with the 
nearby leucine (denoted by red dot surface). These conflicts in 
turn change the backbone conformation and side chain position. 
All this happens interactively (1 1 updates per second), which 
gives the user the impression of changing a real, physical model. 
Through a series of atom tugs over 5 min, a user wound a 
20-residue  extended chain  into  this helical conformation. 
The user sees bad  contacts immediately, and likewise, Sculpt 
moves atoms  to minimize the high potential energy caused by 
such contacts. 

Motivation 

Two goals motivate this work: (1) to enhance understanding of 
protein structure and function by placing more realistic com- 
puter models at the biochemist's fingertips, and (2) to reduce the 
manual and computational repairs needed after modeling ses- 
sions with interactive graphics. Such repairs are required in ho- 
mology modeling when a residue is inserted or changed, in drug 
design  when a protein is created with particular shape and  prop- 
erties, and routinely in de novo design to reconcile local confor- 
mation with overall design criteria. 

Consider the simple change of flipping a peptide in the mid- 
dle of the backbone with interactive modeling systems such as 

Sybyl (Tripos Associates), Quanta (MSI), and InsightII (Biosym 
Technologies). A change in (p flips the peptide but also moves 
the rest of the chain. A change in $ and dihedral angles further 
along brings the chain close to its original position. When ev- 
erything seems close enough to  the desired new conformation, 
one  runs a batch energy minimizer that shifts atoms  into a min- 
imum energy conformation.  Other atoms may move in unin- 
tended ways  if the user did not exactly reposition the chain. The 
direct grab-and-flip of the peptide in Sculpt is more intuitive, 
quick, and exact. Sculpt's savings in  labor and in potential  er- 
rors are even greater in more complicated tasks such as moving 
a helix, changing the twist  of a sheet, or repacking side chains. 

Modeling paradigm 

To maintain useful interactive performance, we find that 1 Hz 
is a minimum update  rate. This limits problem size, properties 
modeled, and realism of the properties. On a 100-MHz MIPS 
R4000 processor (Silicon Graphics Indigo), Sculpt maintains 
1 1 Hz on the 20-residue  model in Figure 1,2 Hz  on  an 80-residue 
model, and 1 Hz on a 180-residue model. The  performance de- 
creases linearly with increased model size. 

We make an approximation that significantly improves per- 
formance  without appreciably decreasing accuracy. Properties 
whose deformation requires very  large potential energy  changes 
relative to others (i.e., stiff properties) are replaced with rigid 
constraints. Covalent bond lengths and angles and planar dihe- 
dral angles are constrained to ideal values; hydrogen bonds, 
multivalue dihedral angles, and van der Waals and electrostatic 
interactions are modeled with potential energy functions. Min- 

Fig. 1. Photo from Sculpt of a user tugging  a Phe with  the 
mouse, denoted by the  orange  spring  between  the atom and 
red cursor. A previous  spring  inserted  by  the  user pulls it to- 
ward  the  orange  thumbtack; the red  thumbtack holds an atom 
in place. As the  ring  turns at 1 1  updates per second, it col- 
lides  (red  wireframe  shell)  with  the  carbonyl  carbon  and  has 
minor  contact  (red dot surface)  with  the  nearby  leucine.  This 
changes the backbone  and  side  chain conformation. The 
20-residue  model of this  cy-helix has  main  chain  (cyan), C-0 
(red), N-H (brown), and  side chain (tan)  bonds  represented 
with tubes, and  hydrogen bonds (blue) represented  with 
vectors. 
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imizing functions with similar potential energies, subject to  con- 
straints,  requires  much less computation, in this  application, 
than minimizing  all the energies without  any  constraints. 

The mathematical  model contains  the  sum of the potential en- 
ergies and a list of  nonlinear  equality  constraints (e.g.,  dis- 
tance(N,H) = 1 A). When a  user  pulls an  atom, Sculpt adds  the 
potential energy in a spring between the  atom  and  cursor  to  the 
model’s potential energy. Sculpt then  finds a new conformation 
that locally  minimizes the  total  potential energy while satisfy- 
ing the  constraints. 

Factoring  out  the stiff properties allows much  larger  atom 
movement  than  pure  energy-based  minimization,  but  in  turn, 
it requires solving a system of  nonlinear  equations on each it- 
eration.  Constrained  minimization  has previously been avoided 
in  interactive applications because,  in general,  the  computation 
in solving the system  of equations increases with the  cube of the 
number  of  atoms. We show in this  paper  that  for  protein  mod- 
els the  computation  can  be  arranged  to increase only linearly 
with the  number of atoms.  The long backbone (relative to  short 
side chains)  in  proteins yields a system of equations  that is sparse 
and  banded.  Thus,  the  constraints allow larger atom movement 
by removing stiff properties  and  only  introduce a banded sys- 
tem of equations  that  can  be solved efficiently. 

This basic concept is not  new,  only  its  use in this  type  of in- 
teractive  applications.  Both  molecular  dynamics  and  crystallo- 
graphic  refinement use constraints  to  improve  either  speed or 
observation-to-parameter ratio. Molecular  dynamics  simulations 
often  constrain  the  bond  length between hydrogens  and heavy 
atoms in an algorithm called SHAKE. Some  crystallographic re- 
finement systems employ  constraints  to idealize bond  geometry 
while restraining (minimizing  energy)  weaker properties  (Hen- 
drickson & Konnert, 1980). Our  techniques  build  on  this  con- 
cept  of  constraining  stiff  properties  to decrease computation; 
we employ  different  mathematical  solutions  because we con- 
strain  many  more  properties. 

Sculpt molecular model 

We constrain a stiff property  to its ideal value and  only let a 
weak or multivalue  property  vary.  This  decreases  model real- 
ism  slightly, but our intended  applications do  not  require  accu- 
rately modeling minute changes  in  these  properties. Figure 2 lists 
the  constrained  and restrained (energetic) properties  modeled  in 
Sculpt. A constraint requires  that  the value of a function  equal 
a fixed value,  and  an energy (or restraint)  imposes a penalty  as 
a function  value varies from its ideal value. Modeling a bond 
distance d with  ideal  value d as a constraint  requires  that d = 
d or equivalently, d - d = 0. A  spring  restraint  obeying  Hooke’s 
Law models  the  variance of the  distance  from  the  ideal value 
with Energy = k (  d - d ) 2 ,  where k describes the  spring  stiffness. 

We require  that  the  constraints  remain  defined  throughout a 
modeling session; Sculpt does not model the breaking and  form- 
ing of covalent bonds.  This restriction does  not  apply  to  hydro- 
gen bonds  and  nonbonded  interactions,  because  they use an 
energy model. 

Sculpt’s potential energy  model differs in a few aspects, men- 
tioned  below,  from  models  such  as  CHARMM  (Brooks et al., 
1983), Amber (Weiner et  al., 1984), and  Cedar (Hermans).  These 
differences allowed quicker system development  but  are  not es- 
sential  to  the  method. Sculpt reads  the  ideal values and  spring 
constants  from a user-defined dictionary. The dictionary has pa- 

Protein  property  Mathematical model 

Bond length 

Single dihedral angle 
Bond angle  Constrained  to  ideal 

Multi-value dihedral angle Spring  to  nearest  ideal  angle 
Hydrogen bond 
Van der  Waals  interaction 6-A,  4-8 knnard-Jones potential 

Spring  to  ideal  length  and  angle 

User tug Zero-length  spring 

Electrostatic  charge 
Solvent interaction 

lo-A, Coulomb  potential  (under development) 
Not treated 

Fig. 2. The  mathematical  model for each  protein  property  treated in 
Sculpt. Covalent  bond  lengths,  angles,  and single-value dihedral  angles 
are  constrained  to  their  ideal  value;  other  properties use a  potential 
energy  model. 

rameters  for  models  that have  implicit hydrogens,  hydrogen- 
donors  only, or all atoms. 

Dihedral angles with multiple ideal values (such as the 3 
staggered con formers of a side chain x angle) 

We use a spring  centered  at  the  ideal  dihedral  angle closest to  
the  current  angle.  This still allows  transitions  among  the  ideal 
angles,  although it yields a  higher  energy barrier between two 
ideal angles than  CHARMM’s  cosine  model.  Backbone (o and 
$ angles are  not  treated  this way,  since  they interact  and  are  not 
well approximated by simple functions;  however, they are  han- 
dled by van  der Waals interactions  of  the  surrounding  atoms. 

Hydrogen bonds 

A hydrogen  bond is modeled with 2 springs - one  for  the  bond 
length  and  the  other  for  the  angle between the  donor  bond  and 
the  hydrogen  bond.  Constraints  are  not used  because hydrogen 
bonds  are  much weaker than  covalent  bonds,  and  they  can 
change  during a session. Currently all  hydrogen bonds  are spec- 
ified at  program  initialization  in  order  to preserve  desired  sec- 
ondary  structures. We will investigate  methods  for  dynamic 
modeling  of  hydrogen  bonds,  either using neighbor lists or di- 
pole  interactions. 

4-8 van der Waals approximation 

We model  the  van  der Waals interaction energy with a modified 
Lennard-Jones  function;  that  function is evaluated  on  atoms 
within a 6-A neighborhood,  as is common  for  macromolecular 
calculations. We change  the 6 and 12 exponents in the  Lennard- 
Jones  model  to 4 and 8. Figure 3 illustrates  the  differences be- 
tween our  model  and  the 6-12 Lennard-Jones  model  for a given 
energy  minimum, E,,,, and  separation  at  the  minimum  energy, 
R,. This widens the energy well and yields a slower ascent,  but 
also allows slightly closer atoms.  The slower ascent  allows  faster 
solution  of  the  equations.  Our model also clamps the  maximum 
rate  of  change of the energy after which the  rate  of energy in- 
crease is constant.  The positive  energy  still  repels atoms  but  al- 
lows much  faster  minimization since  extremely large energies 
never occur.  Since the  computer  model remains physically valid, 
we encounter extremely  close atoms  only if the user turns  off 
the  van  der Waals model  and  at  program  initialization. 



M. C. Surles  et al. 20 1 

a b  
Energy  (kcaVmole)  Energy,,Jr) =Em(2%- % 

-0.21 

Fig. 3. Comparison of van der  Waals potential using Lennard-Jones 
(a,b = 6,12) and Sculpt (a,b = 4,8) model shown for a given separation, 
R,, with minimum  energy, E,. Sculpt’s exponents yield a wider and 
less  steep  energy  well. Sculpt clamps the maximum rate  ofenergy increase 
and  only  evaluates  the  potential on atoms within a 6-A radius. 

Electrostatic interactions 

We are  currently  implementing a model  of  electrostatic  interac- 
tions  within a 10-A radius.  The  performance  results in this  pa- 
per do  not  model  electrostatic  interactions  except  where 
explicitly noted. In those cases we estimated  the  extra  time by 
modeling  the  van  der Waals interaction  among all atoms within 
a 10-A radius in addition  to  the  normal  van  der Waals interac- 
tion  in a 6-A radius.  This gives an  upper  bound  on  the  time re- 
quired to model  electrostatic  interactions  since,  for  example, it 
includes atoms with no dipoles. Although  the present system be- 
haves very well, one sees some  effect  of  omitting  electrostatics, 
such  as a stickiness between  oxygen atoms. 

Mathematical formulation 

We use  the  following  mathematical  notation  for  the  remainder 
of  the  paper:  an  n-element  vector x (boldface  denotes vectors) 
holds the variables, a 3-dimensional  position for each atom;  the 
real-valued function e ( x )  denotes the  sum of all the energy func- 
tions;  and  the  m-element vector c(x) is the vector of  the m con- 
straint functions. Specifically, row i in c (x) contains a constraint 
function, c i ( x ) ,  minus  its  ideal  value, C j ,  as follows: 

On  each  update Sculpt finds a local  minimum  of  the  total en- 
ergy, e ( x ) ,  that satisfies the set of  constraint  functions, c ( x )  = 
0. We find a constrained  minimum by evaluating  the  gradient 
of  the energy and  constraints  and solving a system of  equations. 
We detail the  method, called the augmented  Lagrange-multiplier 
method, in  the  Mathematical solution  section.  Before we explain 
the  mathematics, let  us consider  the  contents  of  the  gradients. 
The energy gradient,  denoted E, is a vector with n elements;  each 
element is the  first  partial  derivative  with respect to  one of the 

variables.  The  gradient  of  the  constraints,  however, is an n x 
m matrix;  each  column  represents  the  gradient  of a  single con- 
straint. We factor this matrix when solving the linear equations. 
For  general  problems (i.e., nonprotein)  this  factorization  can 
take  too  much  time for interactive performance except on small 
models, because the  computation increases  with the  cube of the 
number  of  variables.  However,  the next section  shows  that  the 
matrix in the  protein  application  has  properties  that allow effi- 
cient factorization  of  the  matrix; in fact,  the  computation in- 
creases only linearly  with the  number  of  atoms. 

Structure of Jacobian matrix 

The  matrix  containing  the  constraint  gradient is called the  Ja- 
cobian  matrix.  Excluding  disulfide  bridges,  all  covalent  bonds 
in proteins,  and  therefore all the  constraints,  are  along  the back- 
bone or within individual side chains.  This property yields a very 
sparse,  banded  Jacobian  matrix  (i.e.,  the  nonzeros lie within  a 
small, fixed distance  from  the  diagonal).  The  computation re- 
quired  to  factor such a matrix is linearly proportional  to  the 
number  of  atoms. We first  describe the  matrix  structure for pro- 
teins without  disulfide bridges and  then generalize  this for  ones 
with disulfide bridges. 

Case I :  No disulfide bridge 

Assume  the variables (an x, y ,  z Cartesian  coordinate)  are  num- 
bered  sequentially in the  order  of  the  Protein  Data Bank for- 
mat:  for  each  residue, first come  the heavy backbone  atoms, 
then  the heavy  side chain  atoms,  and finally the  hydrogen  at- 
oms.  For  example,  atoms in poly-alanine are  numbered  N, C, , 
C, 0, C,, H, N,  etc.  Define  the  index  distance  as  the  separa- 
tion of variable indices. With  this  numbering  scheme,  all  cova- 
lent bonds (excluding SS bridges) are defined on variables whose 
index distance is less than  some fixed, maximum  distance.  This 
is also  true  for all angles and  torsion angles defined by covalent 
bonds.  Nonbonded interactions and hydrogen bonds  can be de- 
fined on variables with  a large index distance,  but  they  are  not 
covalently  bonded  and  thus  are  not  constrained. 

Figure 4 illustrates  the  Jacobian  matrix  for a  2-residue seg- 
ment.  Each  column  represents  the  gradient of 1 distance  con- 
straint.  Shading  patterns in the  matrix  correspond  to  patterned 
atoms in the  segment.  Elements in a column  are  zero except at 
variables  where  the  constraint is defined.  The  figure  omits  an- 
gle and  dihedral  angle  constraints,  as well as  the  hydrogens,  for 
simplicity. 

The  maximum index distance is a constant,  independent  of 
the  number  of residues. The largest  index distance between any 
2 atoms  occurs between the  carbonyl  carbon of tryptophan  and 
the  backbone  nitrogen  of  the following residue because trypto- 
phan  has  the  most  atoms.  The  maximum index distance in any 
constraint  occurs  in  the  dihedral  angle  that  models  this  peptide 
(0-C-N-C,)  because  the  dihedral  angle  references  the  most 
variables  and  tryptophan  contains  the  mosts  atoms. 

Case 2: Disulfide bridges 

Disulfide  bridges do  not  change  the  sparsity  pattern  of  the  Ja- 
cobian very much. A bridge  introduces a few columns  that  de- 
note  the  gradient  of  constraints  defining  the  bond  length  and 
angles of  the  bridge.  These  columns  can have arbitrarily  large 
index  distance  because  the  constraints  are  defined  on  atoms in 
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Fig. 4. Illustration of Jacobian matrix (matrix of constraint gradients) 
for  the 2-residue segment at the  bottom.  The rows denote  atom posi- 
tions (a 3-dimensional Cartesian  coordinate per row), and the  columns 
denote  the  gradient of the distance constraints  that model covalent 
bonds. Patterns in rows refer to atoms in the segment; blank cells are 
zero. Angles and dihedral angles, as well as the hydrogens, are omitted 
for simplicity. 

residues arbitrarily  down  the  sequence.  The  mathematics dis- 
cussed  in the next  section handle  this case  efficiently. The  com- 
putation  required  to  factor  the  Jacobian  does  not  increase  as 
long  as  there  are  only a few such  columns relative to  the  total 
number of columns.  Fortunately,  proteins  only  have a  limited 
number of bridges. 

Figure 5 shows  the  sparsity  pattern of the  Jacobian  for Felix 
(Hecht  et  al., 1990), an go-residue, 692-atom  protein  with 1 di- 
sulfide;  only  the  backbone  amide  hydrogens were modeled. 
Black dots  indicate  nonzeros.  Notice  that  the  disulfide  adds a 

Fig. 5. Sparsity pattern of the  Jacobian  for Felix, an 80-residue, 692- 
atom protein with 1 disulfide. Black dots indicate nonzeros. Notice that 
the disulfide adds  a few nonzeros far below the  diagonal. This matrix 
has 1,772 columns (constraints) and 2,076 rows (variables). 

few nonzeros far below the  diagonal.  This matrix  has  1,772 col- 
umns  (constraints)  and 2,076 rows (variables). 

Mathematical solution 

Sculpt finds a local minimum  of the energy that satisfies the con- 
straints using an  augmented  Lagrange-multiplier  method.  This 
section  details the  algorithm,  bounds its computational require- 
ments,  and  compares it to  other  algorithms. 

The  first-order necessary conditions  for a  local constrained 
minimum  are  illustrated in Figure 6 for a 2-dimensional  energy 
function with only 1 constraint.  The solid line shows values that 
satisfy  the  constraint;  dashed lines show isovalue contours of 
the  energy.  The  solution  must lie on the  solid line, thus  satisfy- 
ing the  constraint.  At  the  nonoptimal  point, x, a step in the  di- 
rection d reduces  the energy and  maintains  the  constraint.  At 
the  solution, x*, the energy gradient, E,  and  the  constraint gra- 
dient, J ,  also  align;  i.e.,  the  energy  gradient is a scalar  multiple 
of  the  constraint  gradient, where X is the  scalar  multiple. 

Fletcher (1987) showed  that  the  first-order necessary condi- 
tions  for a local  constrained  minimum  require (1) that  the  con- 
straints  be  satisfied,  and (2) that  the energy gradient be a linear 
combination of the  constraint  gradients. For a problem with n 
variables  and rn constraints, these conditions  require (1) c = 0 
and (2) [ J ]  X = E ,  where E is the  gradient of the  energy, J is the 
n x m Jacobian  matrix of constraint  gradients,  and X is a vec- 
tor  of rn scalar multiples  called Lagrange  multipliers. 

No direct,  closed-form  solution exists for  finding a con- 
strained  local  minimum  because  the necessary conditions give 
n + rn nonlinear  equations with n + m unknowns. We use  a 
2-step,  iterative  algorithm:  first,  estimate  the  Lagrange  multi- 
pliers at  the  solution;  second, minimize an unconstrained  func- 
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E = Ve( x) 

J = Vc( x) 

L. -:x,/ c(x) = 0 

" 

\ \  \ 
' \  

< e(x*)" 
\ '5, e(x*) 

\ e(x*> 
Contours of e(x) , I I 

Fig. 6. Two first-order necessary conditions for a local constrained min- 
imum of a 2-dimensional energy function (isovalue contours indicated 
with dashed lines) and only 1 constraint (solid curve). First,  the solu- 
tion must satisfy the  constraint c(x) = 0. Away from the  solution, at 
point x, a step in the direction d reduces the energy and maintains the 
constraint. At the  solution, X* ,  the energy gradient, E,  and the  con- 
straint gradient, J ,  dign. This second condition requires that  the energy 
gradient is a scalar multiple of the  constraint  gradient, where h is the 
scalar multiple. 

tion  that  combines  the energy and  constraint  gradients with the 
estimated  multipliers. 

Lagrange-multiplier  estimate 

We estimate  the  Lagrange  multipliers with the  first-order  mul- 
tiplier  method (Gill  et al., 1981, p. 248). Given the  gradients  at 
the  current  position, this finds a least-squares approximation  to 
the necessary conditions by solving for X in [ J ]  X = E.  The sys- 
tem is overconstrained as  there  are  more rows  (model  variables) 
than  columns  (constraints).  Note: X is overconstrained,  not  the 
model  variables, x. 

We multiply  each side by the  matrix  transpose  (thus  produc- 
ing a square  matrix)  before solving for X :  [ J T J ]  X = J'E. This 
approach  has  known  drawbacks such as  squaring  the  condition 
number (i.e., squaring its  sensitivity to  roundoff  error),  requir- 
ing  a matrix-matrix  multiplication,  and  factoring a matrix with 
more  nonzeros  (Luenberger, 1973). However, we find  it  works 
well for  this  application  due  to  the  sparsity  pattern  of  the  ma- 
trix.  The  product of a band  matrix  times  its  transpose yields  a 
matrix with  wider bandwidth  and a few more  nonzeros.  The re- 
sulting  matrix is symmetric  and positive definite, 2 properties 
exploited by most  sparse  linear  algebra  packages  (Duff et al., 
1986). 

Unconstrained  minimization 

We use the  estimate of the multipliers  in an unconstrained min- 
imization of a function  that  combines  the energy and  constraint 
gradients  and penalizes constraint  violations.  The  function, 

called the  augmented  Lagrangian, is L(x, X , p )  = e - XTc + 
pc'c. The  third  term penalizes the  function when constraints 
are  violated (c # 0), which can  occur  from a poor  initial  con- 
figuration or from using a  first-order approximation of the  non- 
linear  constraints. We set the  penalty, p ,  to  the  error in the 
least-squares approximation (i.e., p +- 11 E - JX We find  the 
minimum with  respect to x of the  augmented  Lagrangian using 
the steepest descent  method.  This  method moves  in the  direc- 
tion  of  the negative gradient  of  the  function: -E + JX - 2pJc. 

Figure  7  summarizes the steps  in our iterative  constrained  min- 
imization  algorithm.  This  method is presented in Gill  et al. 
(1981, p. 227), and its  relative merits  are  described  in  Surles 
(1992a). The multipliers and variables  converge to a  constrained 
local minimum  (Hestenes, 1975). We observe that in  practice  this 
algorithm  finds  the  solution in  1 or 2 iterations, since the  algo- 
rithm begins near a local solution.  At  the  end  of each iteration, 
Sculpt displays  the new atom  positions. 

Computational requirements 

The  Lagrange-multiplier  estimate  requires  the  most  computa- 
tion, since  it  multiplies  2 matrices  and  factors  the  result.  The 
computation  required  to  estimate  the  multipliers  in our case is 
proportional  to  the  number of atoms,  due  to  the  band  structure 
of  the  Jacobian; in general, the  computation would increase with 
the  cube of the  problem size. 

A multiplication of a banded matrix  times  its transpose yields 
another  banded  matrix.  The  nonzeros  from a disulfide  bridge 
that lie outside  the  band of the  Jacobian yield nonzeros  outside 
the  band in the  product. Figure 8 shows the sparsity pattern aris- 
ing from  multiplying  the  matrix in Figure 5 by its transpose. 

If the  product  has a bandwidth 6 ,  as  illustrated in Figure  9, 
there  are  at  most  2bm  nonzero e n t r i e ~ . ~  Calculating  each  of 
these  elements  requires a row-column  multiplication (e.g., ele- 
ment ( i , j )  = rowi(JT) * columnj(J)).  The  computation  re- 
quired is thus  bounded, since the  number  of  nonzeros in each 
row  and  column is bounded. 

Factoring  the  matrix using Gaussian  elimination  requires  ap- 
proximately b2m operations. For each  of  the m diagonals,  the 
b nonzeros below  it must  be  eliminated.  Eliminating  each of 
these requires multiplying the b elements  in  each row. When  di- 
sulfide bridges are  present,  the  nonzeros  outside  the  bandwidth 

Protein models have many fewer nonzeros in practice, since many 
elements within the  band  are  zero. 

1. Given x, compute the energy, Evaluate e, c, E,  J 
constraints,  and their derivatives 

2. Estimate  multipliers Solve for k UTnn = JTE 

3. Set penalty to error in least-squares p t 11E-J& 
approximation 

4. Minimize the  augmented Lagrangian x -E + JA - 2 p ~ c  
using the steepest  descent 

Fig. 7. Iterative algorithm used to find a constrained minimum. When 
the user tugs or releases an  atom, energy is added or removed. Sculpt 
then executes this algorithm, which changes the atom positions (x), and 
displays the results. 
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Disulfide 

Fig. 8. Sparsity  pattern of  the matrix  product ( J T J ) ,  where the Jaco- 
bian, J ,  is  shown  in Figure 5 .  Black dots indicate  nonzeros.  The  matrix 
is square (1,772 x 1,772) and  symmetric.  The  disulfide  introduces a few 
nonzeros far above  and below the diagonal. 

only fill elements in their  same  column  as  the rows are  reduced. 
Thus, a very small,  predictable fill-in results. More detailed anal- 
ysis of the  required  computation  appears in Surles (199213). 

We solve the system of  equations  with  the  banded  matrix 
solver, FO1MCF, from  the Numerical  Algorithms Group  (NAG, 
1981). The  method is specialized for  symmetric  matrices with 
variable, or “skyline,”  bandwidth.  Row  pivoting is not neces- 
sary  because  the  matrix is positive definite. 

Comparison with other methods 

Other  constrained  minimization  algorithms  avoid  the  matrix- 
matrix  multiplication  required in our least-squares  approxima- 
tion. We tried several iterative  least-squares  solvers,  but  none 
performed  as well as  the  algorithm described  here. We observed 
that  the solvers  typically required  around m iterations,  each re- 
quiring a matrix-vector  multiplication.  Also, the rectangular Ja- 

b{ 

Fig. 9. A matrix with bandwidth b. The bandwidth is the  maximum  col- 
umn (row) separation of nonzero  entries  in  any row (column). White 
squares represent  zeros. 

Sculpting proteins interactively 

cobian  matrix is not symmetric or positive definite-properties 
on which iterative solvers perform  best. 

We also  examined a reduced  gradient  method  (Rosen, 1961) 
that  projects  the energy gradient  onto  the  constraint  surface. 
This  method  factors  an m X m matrix  formed  from m linearly 
independent  rows of the  Jacobian.  It  avoids  the  matrix-matrix 
multiplication  and  factors a matrix  with fewer nonzeros.  The 
chief disadvantage is the  computation  required  for picking the 
independent rows. Once  the  rows  are  picked,  the  algorithm  can 
use them  for  many  iterations (typically 20-100) before a depen- 
dency  arises  and a new set is needed. While  using a set of  rows, 
the  algorithm  runs  approximately  20%  faster  than  ours.  How- 
ever, picking a new set of  rows  requires  20  times  more  compu- 
tation  than  one  iteration.  The user  experiences a long delay 
whenever the system  picks  a new set of rows. 

Applications 

To demonstrate  how Sculpt operates,  consider  the  task  of flip- 
ping 1 peptide  in  a protein by 180” without significantly chang- 
ing the rest  of the  model.  This is simple to   do with brass or 
plastic  models,  but is cumbersome  in  most  computer  modeling 
systems. In Sculpt the user  clicks on  the  carbonyl oxygen and 
drags  the  mouse  (and  the  spring)  around  the  peptide  bond. 
Sculpt responds by bringing  the  carbonyl  around,  changing  the 
local conformation  and side chain  positions to satisfy constraints 
and minimize  energies. Near 90” there  are unavoidable  overlaps 
between nearby atoms (e.g., CO to Cfl) ,  which can be displayed 
as red  shells and  are  also  evident in a  slower atom  movement 
(the  atom moves less per cycle because other  forces  oppose it). 
Toward  the  end,  the  structure rapidly settles into  the new favor- 
able  conformation. Kinemage 1 illustrates  this process on  an 
8-residue  segment with  a tight  turn,  and  Figure 10 presents  the 
initial  and  final  steps with an 80-residue protein.  The  orange 
coils show  springs  attached by the  user,  and  the red  shell indi- 
cates a bad  contact.  The  time  for this operation  depends  on  the 
system performance, which depends  on  the  number  of  atoms. 
For a small  peptide,  as in  Kinemage 1, it is limited  mainly by 
the user tug  rate; when embedded in an 80-residue protein  as in 
Figure 10, a complete  flip  takes 15 s. 

Redesigning a dimer interface 

As a real application, we used Sculpt to design the sequence and 
conformation  of a peptide to  mimic one half of the  dimer  iu- 
teraction of the  HIV  protease (in collaboration  with Lilia Babi. 
at  the University  of California-San  Francisco,  who will test  its 
inhibition  of viral replication in vivo, in comparison with  sim- 
pler @-strand  peptides  [Babe et al., 19921).  We kept 1 subunit 
of  the protease  fixed, with the  atoms near the dimer  contact (res- 
idues 1-10, 23-29, 86-99) included  in  the  van  der Waals calcu- 
lations  and  the  rest  ignored.  Parts  of  the  second  subunit 
provided a starting  model for  the peptide  (modified from Brook- 
haven  Data  Bank file 5HVP; Fitzgerald et al., 1990). We fixed 
both  the  conformation  and  sequence  of  the  N-terminal  and 
C-terminal  0-strands (residues 1-5 and 95-99), which form  an 
interdigitated @-sheet  between the 2 subunits. We also fixed the 
main  chain  of residues 24-26, which form a short,  antiparallel 
@ interaction between subunits next to  the active-site aspartates. 
Connections between  these  3 pieces were modeled using modi- 
fications of the  original residues 6-1 1, 27-29, and 87-94. 
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A 

B 

Fig. 10. The top photo shows a bad  contact (red wireframe)  between  adjacent  carbonyl  groups  in an intermediate  model of Felix. 
Springs  show the tugs  applied by a user to flip the peptide and remove the bad contact. The bottom photo shows the resulting 
conformation, with thumbtacks highlighting atoms of the flipped  peptide.  Kinemage 1 animates the actual process of flipping 
a peptide with Sculpt on a simpler  model. 
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We used Sculpt to move the 3 loose chain segments into  fa- 
vorable conformations  that: (1) substitute for essentially all di- 
mer contacts made in the native protease (except for the flaps 
at the  bottom of Fig. 1 l), (2) join  up properly, and (3) place hy- 
drophobic side chains in contact positions and hydrophilic ones 
at exposed sites in the peptide-protease complex. We tried sev- 
eral conformational strategies over 2 h,  and the sculpting pro- 
cess prompted a number of changes in sequence and 1 change 
in length from our initial guess. The final peptide is 30 residues 
long, 11  of  which (underlined) differ from  the native sequence: 

PEITLWQRLSDLHTGSGSPELTQEGCTLNF. 

Figure 11 shows the backbone of the HIV model with dimer 
A in yellow and dimer B  in magenta. Dim  vectors  were not mod- 
eled; bright yellow vectors were fixed but used in the van der 
Waals interactions. The tubes show the movable parts; magenta 
denotes  the original model and cyan shows the result. The two 
red tubes highlight the connections among  the  3 segments. Ki- 
nemage 2 illustrates the contacts in the modeled  peptide-protease 
complex. 

vator protein (Brookhaven Data Bank file 3GAP; Weber & 
Steitz, 1987) into  a long, twisted, 2-stranded 0-ribbon. There 
were  24 0-sheet hydrogen bonds in the starting structure; 9 more 
were formed and 2 broken during the  unfolding; side chains 
were truncated at C,. The smooth performance on unfolding 
encouraged us to try the more significant folding direction. 

Next, we generated a 32-residue (poly-Ala), idealized strand 
of twisted, somewhat-curled 0 structure with alternating cp, IC. 
values of  (-130°, 160”)  and (-90°, 120°), docked 2 copies on 
a twisted 0-ribbon from  LDH (residues 265-293 of Brookhaven 
file ILDM;  Abad-Zapatero et al., 1987),  closed a hairpin turn 
on one end with a Gly-Gly type I’ turn, formed the 0-sheet hy- 
drogen  bonds, and uncurled the ribbon somewhat. We then 
folded that idealized ribbon, by tugging near its ends, into  a 
6-stranded, Greek-key 0-barrel. Figure 12 shows 7  snapshots 
from this latter, 2-h Sculpt session with the  backbone colored 
cyan in one direction and orange in the other. Interactions at 
each end of the final barrel were  especially interesting, and in 
a later session (shown in Kinemage 3)  we folded up a similar 
hairpin with Gly, Pro,  and Tyr at some critical locations in the 
barrel-end connections. This second ribbon was made compact 
by a  more realistic motion of pushing both ends together and 
letting a  loop  curl in the middle. 

Modeling 0-barrel folding 

To illustrate and study our hypothesis for the folding of Greek- 
key @-barrels, we first used Sculpt to unfold the 8-stranded, To test the strengths and weaknesses  of Sculpt for de novo model 
“jellyroll” Greek key of residues 19-98 of catabolite gene acti- building, we made a  major change in the tertiary structure of 

Reversing  the  directionality of a 4-helix  bundle 

Fig. 11. Results of using Sculpt for designing  the  sequence and conformation of a  peptide to mimic one half of the  dimer  in- 
teraction of the HIV protease (PDB file 5HVP). The main  chain  is  yellow  for  dimer A and  magenta  for  dimer B. Dim vectors 
were not modeled; bright yellow  vectors were not movable, but those  residues were used  in  the  van der  Waals interactions.  Tubes 
show  the  original  (magenta)  and  final  (cyan)  segments  modeled in Sculpt; they  overlap  at the N- and C-terminal  P-strands.  Red 
tubes  indicate the breaks  between  the original 3 segments, where the dim  magenta  parts of that  subunit were omitted. 
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Fig. 12. Seven snapshots  from  a Sculpt session  show  the  re- 
sults of tugging a  Zstranded,  antiparallel  0-ribbon  (bottom) 
into a  6-stranded,  Greek-key  &barrel (top). The  backbone 
is cyan  in one direction  and  orange in the other. The sides 
of the  @-sheet  surface  are colored differently to indicate 
twists.  The  starting  model is a pair of 32-residue (poly-Ala), 
idealized,  twisted  0-strands  connected by a  Gly-Gly  type I‘ 
hairpin  turn. 

an 80-residue protein. We began with the designed structure of 
Felix, a 4-helix bundle protein (Brookhaven Data Bank  file 
1FLX; Hecht et al., 1990). The top of Figure 13 shows the back- 
bone and hydrophobic side chains of the original structure, with 
helix A coming out of the page. This is the common “up & 
down” helix-bundle connectivity, folded in a clockwise order 
around the bundle. There is a designed disulfide bridge connect- 
ing  helices A  and D,  whose sulfurs are shown as yellow spheres. 
In doing de novo design  of proteins it  is just as important to  do 
negative design that avoids major alternative structures  as it is 
to  do positive design for the desired arrangement.  Therefore, 
using Sculpt we created another 4-helix model that folds in a 
counterclockwise order;  the cysteines  now cannot form a disul- 
fide bridge but instead are at the  outer edge  of  helix contacts on 
opposite sides of the molecule. The result is illustrated in the bot- 
tom half of Figure 13. The original interhelical connections are 
colored yellow, showing that helices A  and  C were unwound by 
1 residue and helices B and D were wound by 1 residue. In the 
original model the  hydrophobic side chains in the A-D and B- 

C helix contacts are  red,  and  the ones in the A-B and C-D con- 
tacts are purple; after the modeling  session, the faces  have turned 
so that the red  side chains are in the A-B and C-D contacts, and 
the  purple ones in A-D and B-C. 

We preserved secondary structure by first rotating and trans- 
lating 4 rigid segments: helix A plus the segment from A to B; 
helix B; helix C plus the segments from B to C and C to D; and 
helix D. This left the model disjoint (e.g., rotating  the first seg- 
ment 90” left the chain far below B).  We spent approximately 
3 h rejoining the segments by tugging the 3 peptides. During this 
part of the session, Sculpt modeled constraints  and energies in 
the residues  between the helices and kept the helices fiied. Next, 
we modeled  all the atoms to adjust side chain contacts. We could 
not eliminate all bad contacts at the beginning and ending turns 
in the helices. We now use this new model as a basis both for 
negative design (i.e., to document the ways in which the Felix 
sequence suits the original model better than it suits this one) 
and also for designing minimal changes in  the sequence that 
should make ir prefer to fold jnro this alternarive strubure. 
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Fig. 13. The pair of models shows the results of inverting a 
4-helix bundle using Sculpt. The  top model shows the back- 
bone and hydrophobic side chains of Felix (PDB f i e  IFLX), 
a designed 4-helix bundle protein with helix A coming out of 
the page and B, C,  and D folding in a clockwise order.  Each 
helix, the connecting segments, and the cysteines  of the start- 
ing disulfide are colored the same in both figures. The bot- 
tom model shows the results of changing the folding to a 
counterclockwise order. Each helix and each  helical side chain 
is turned  approximately 90'; the yellow segments show heli- 
ces A and C are unwound by 1 residue and helices B and D 
are wound by 1 residue. In the original model, hydrophobic 
side chains between helices  A-D and between B-C are red, 
and those between A-B and C-D are purple; after the  mod- 
eling session, the faces have turned so that the red side chains 
are between helices  A-B and C-D, and the  purple ones are 
between A-D and B-C. 

.~ . .  , -  . .  After 

Implementation and performance 

Sculpt  contains 2 programs: the displayer displays the  graph- 
ics and user interface on a Silicon Graphics workstation,  and 
the minimizer finds a constrained minimum. The minimizer can 
run either on a Silicon Graphics workstation (possibly a differ- 
ent one than  the displayer) or  on a  Cray. The 2 programs com- 
municate over Ethernet via Unix sockets; the displayer sends 
pick and tug information to the minimizer, which, after mini- 
mization, sends new coordinates to the displayer. 

Table 1 shows the composition of 10 protein models used in 
a performance evaluation. The number in the model name is the 
number of residues. Model F80 is the Felix protein with 1 di- 
sulfide and hydrogen bonds; F20 and F40 are  the first 20 and 
40 residues of Felix.  K356  is the CAMP-dependent protein ki- 
nase  (Zheng  et al., 1993) with bound ATP; others beginning  with 
a "K" are pieces of K356 and also include ATP. Bonded ener- 
gies represent hydrogen bonds and multivalue dihedral angles. 
The numbers of interactions are averages. 

Table 2 and Figure 14 show the  number of seconds per itera- 
tion of the constrained minimizer on  the 10 models; communi- 
cation time between the minimizer and displayer is negligible. 
The performance tests were run on  1,4,  and 8 processors of an 
8-processor, 100"Hz MIPS R4400 workstation (Silicon Graph- 
ics Challenge) using  64-bit double precision. The algorithm has 
2 parallel components detailed in Surles (1994): first, the con- 
straint gradient and vector operations are divided over p pro- 
cessors, yielding approximately  a  p-times  speedup;  second, 
matrix  factorization (step 2 in Fig. 7) runs on 1 processor while 
the energy gradient runs on p - 1 processors. When the matrix 
factorization  takes longer than  the energy gradient, as in the 
8-processor case, the time for models with and without electro- 
static interactions is the same. The minimizer can also run on 
1 processor of a 167-MHz Cray Y-MP using 64-bit single pre- 
cision. Unfortunately,  the rate-limiting steps in this algorithm 
are not readily  vectorizable, so the Cray performance is roughly 
50% faster than  the 1-processor SGI implementation. 

The performance is listed with and without an estimate of 
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Table 1. Composition of 10 models used in performance evaluation" 

Bonded Van der  Waals Electrostatic 
Model  Atoms  Variables Constraints energies interactions interactions 

F20 186 558 473 80 1,831 5,379 
F40 341 1,023 870 196 3,347 12,293 
F80 693 2,079 1,772 415 7,714 3 1,299 
K120 1,054 3,162 2,734 418 11,197 44,542 
K160 1,442 4,326 3,737 579 17,155 73,209 
K200 1,810 5,430 4,683 738 21,675 94,944 
K240 2,172 6,516 5,603 904 26,253 116,466 
K280 2,541 7,623 6,556 1,058 31,856 141,512 
K320 2,880 8,640 7,439 1,194 35,760 159,519 
K356 3,191 9,573 8,244 1,324 40,613 181,893 

a The  number in the model  name is the  number of  residues.  Model F80 is the Felix protein 
with 1 disulfide  and  hydrogen  bonds; F20 and F40 are the first 20 and 40 residues  of  Felix.  Model 
K356 is the cAPK protein with bound  ATP; others beginning  with a "K" are pieces  of K356 and 
also include ATP.  Bonded  energies represent  hydrogen  bonds  and  multivalue  dihedral  angles; 
electrostatics are estimated by running  the van  der  Waals computation with a 10-A cutoff. The 
numbers of interactions are averages. 

electrostatic  interactions.  Neither  includes  the  time to  compute 
a new neighbor list,  which is done  only every 50 iterations. 
Sculpt computes  the list of neighbors within  a 12-A radius  of 
each  atom  for  the van der Waals model (20 A for electrostatic), 
using a space-subdivision algorithm (Bentley & Friedman, 1979). 
Then,  at  each cycle,  it evaluates  the  van  der Waals potential  on 
atoms in the list that  are presently within 6 A of the  reference 
atom.  This  maintains valid neighbor lists even though  atoms 
move. The  time  to  determine  the list on 1 processor is also listed 
in Table 2. We believe the  time  to  compute a new list can be re- 
duced,  and  this  can  also  run in parallel with the  minimization. 

Discussion 

We believe that solving these  modeling  tasks with Sculpt is sig- 
nificantly easier and faster than with purely geometrical,  interac- 

tive modeling systems or  with  batch  molecular  dynamics  meth- 
ods,  and  that Sculpt provides new benefits  as well. Guiding  an 
interactive simulation while immediately viewing the results lets 
a user remain  continually  engaged in the modeling  process. This 
seems to  provide  greater  situational  awareness  and  to  improve 
perception of subtle  relationships within proteins.  On a num- 
ber of  occasions we noticed unexpected reactions  in  the  model 
that,  upon closer examination, resulted from  nonbonded  inter- 
actions  competing  against  other  properties  such  as  bond  rota- 
tions.  The  graphical visualization of  nonbonded  interactions 
helps identify close contacts among  atoms  and evaluate  improve- 
ments  made by moving  atoms. 

Scubt can  improve both productivity and understanding  over 
previous  molecular  modeling  systems.  Present  update  rates  al- 
low productive new research in biochemistry,  and we believe a 
mature Sculpt system will not  just assist  in  a  succession of  in- 

Table 2. Seconds per iteration of the constrained minimization on I ,  4, and 8 processors 
of an 8-processor, 100-MHz, MIPS R4400, Silicon Graphics Challenge" 

Seconds  per update 
Seconds for 

van  der  Waals  van  der  Waals and  electrostatics list reset 

Model 1 CPU 8 CPUS 1 CPU 4 CPUS 8 CPUS 6 A  10 A 4 CPUS 
________. ~ _ _ . . _ _ _ _ _ _ _ _ ~  - 

F20 
F40 
F80 
K120 
K160 
K200 
K240 
K280 
K320 
K356 

0.09 
0. I7 
0.42 
0.57 
0.81 
1.04 
1.23 
1.54 
1.65 
1.86 

0.04 
0.07 
0.19 
0.24 
0.33 
0.41 
0.49 
0.59 
0.65 
0.72 

0.04 
0.06 
0.16 
0.20 
0.28 
0.36 
0.42 
0.50 
0.56 
0.62 

0.14 
0.30 
0.72 
1.03 
1.56 
2.10 
2.44 
2.95 
3.36 
3.74 

0.04 
0.09 
0.23 
0.32 
0.49 
0.62 
0.75 
0.89 
1.02 
1.15 

0.04 
0.06 
0.16 
0.20 
0.28 
0.36 
0.42 
0.49 
0.56 
0.62 

0.03 
0.06 
0.13 
0.18 
0.28 
0.33 
0.41 
0.48 
0.73 
0.84 

0.05 
0.1 1 
0.29 
0.43 
0.70 
0.92 
1.15 
1.37 
I .75 
2.12 

~ _ _ _ _ _ _ ~ _ ~  
a Time to reset the neighbor list (done every 50 iterations) is given  on the right. All computations except  matrix factoriza- 

tion  run in parallel. Factorization dominates computation after 4 processors for the van  der  Waals  models and after 8 proces- 
sors for the electrostatic models. 

__________ 



210 Sculpting proteins interactively 

Acknowledgments 

We thank  Jan  Hermans  for  informative  discussions  during  the  conception 
of Sculpt; Jim Begley, Dave  Chen,  and  Rob  Katz  for  implementing  parts 
of  the Sculpt interface;  Silicon  Graphics  for  running  benchmarks  on  an 
8-processor  machine;  Lynn  Ten  Eyck for  support  and  advice;  and  the 
San  Diego  Supercomputer  Center  for access to  the visualization  and su- 
percomputing  facilities. 

This  work  began  in  the  Computer Science Department  at  the  Univer- 
sity  of  North  Carolina  at  Chapel  Hill  with  support  from  National  In- 
stitutes  of  Health  grant  RR-02170.  The  research  continues  at  the  San 
Diego  Supercomputer  Center with support  from  National Science Foun- 
dation  grant ASC-9211908. The  Duke University authors  are  supported 
by NIH grant  GM-15000. 

References 

Abad-Zapatero  C,  Griffith  JP, Sussman JL, Rossmann MG. 1987.  Refined 
crystal structure of dogfish M4 APO-lactate dehydrogenase. JMol Biol 
198:445-467. 

Babe LM, Rose J, Craik CS. 1992. Synthetic interface peptides alter assem- 
bly of the  HIV 1 and  2 proteases. Protein Sci 1:1244-1253. 

Bentley JL, Friedman JH. 1979. Data structures for range searching. Com- 
puting Surv I I :397-409. 

Brooks BR, Bruccoleri RE, Olafson BD, States  DJ,  Swaminathan S, Kar- 
plus M. 1983. CHARMM:  A program for macromolecular energy, min- 
imization, and dynamics calculations. JCotnputation Chem 4:187-217. 

Duff IS, Erisman  AM, Reid JK. 1986. Direct methods  forsparse  matrices. 
Oxford, UK: Clarendon Press. 

Fitzgerald PMD, McKeever BM, van Middlesworth JF, Springer JP, Heim- 
bach JC, Leu  T, Herber WK, Dixon RAF, Darke PL. 1990. Crystallo- 
graphic analysis of a complex between human immunodeficiency virus 

265:14209-14219. 
type I protease and acetyl-pepstatin at  2.0-A resolution. J Biol Chem 

Fletcher  R.  1987. Practical methods of optimization. New York: John Wiley 
& Sons. 

Gill P, Murray W, Wright M. 1981. Practicaloptimization. San Diego: Ac- 
ademic Press. 

Hecht MH, Richardson JS, Richardson DC, Ogden RC. 1990. De novo de- 
sign, expression, and characterization of Felix: A four-helix bundle pro- 
tein  of native-like sequence. Science 249384-891. 

Hendrickson WA, Konnert JH. 1980. Incorporation of stereochemical in- 
formation  into crystallographic refinement. In: Computing in crystal- 
lography. Bangalore,  India:  The  Indian Academy of Sciences. pp 
13.01-13.25. 

Hestenes MR. 1975. Optimization  theory, the finite dimensional case. New 
York: John Wiley and  Sons. 

Luenberger DG. 1973. Introduction to linear and nonlinearprogramming. 

NAG. 1981. NAG Fortran library manual. Oxford, UK: The Numerical Al- 
Menlo Park,  California: Addison-Wesley. 

gorithms  Group  Ltd. 
Rosen  JB. 1961. The gradient projection method for nonlinear programming, 

part II :  Nonlinear constraints. J SIAM 9514-532. 
Surles MC. 1992a.  An algorithm with  linear  complexity for interactive, phys- 

ically-based  modeling  of  large proteins. Computer Graphics 26:221-230. 
Surles MC. 1992b.  Techniques for interactive manipulation of graphical pro- 

tein models [dissertationl. Chapel Hill: University of North  Carolina. 
Surles MC. 1994. Parallel constrained minimization for interactive protein 

modeling. 27th Hawaii International Conference System Science, vol. V .  
New York: IEEE. pp 183-192. 

Weber  IT, Steitz TA. 1987. Structure of a complex of catabolite gene acti- 
vator protein and cyclic AMP refined at 2.5 A resolution. / M o l  Biol 

Weiner SJ, Kollman PA, Case DA, Singh C, Ghio C, Alagona G ,  Profeta 
S, Weiner  P.  1984. A new force field for molecular mechanical simula- 
tion of nucleic acids and  proteins. J Am Chem SOC 106:765-784. 

Zheng J, Knighton DR, Ten  Eyck  LF, Karlsson R, Xuong NH, Taylor SS, 
Sowadski JM. 1993. Crystal structure on the catalytic subunit of CAMP- 
dependent protein kinase complexed with MgATP and peptide inhibi- 
tor. Biochemistry 32:2154-2161. 

198:311-326. 

Seeonds per update 
40 

A Van der Waals (I CPU) 
Van der Waals (4 CPUS) 

0 Electorsralic ( I  CPU) 
Eleclonrauc (4  CPUs) 

0 

0 

0 

Fig. 14. Plot  shows  linear  increase in computation  for  models  with  and 
without  electrostatic  interactions  on I ,  4,  and 8  100-MHz  MIPS  R4400 
processors. 

dividual modeling tasks,  but  also help researchers gain an in- 
tuitive understanding  of how molecules behave. 

Future directions 

Actual  implementation is  in progress for the electrostatics cal- 
culation.  Along with that, we are examining methods for in- 
creasing performance, so that larger proteins with more realistic 
energy models can run interactively. One  method divides the 
computation over heterogeneous supercomputers;  for instance, 
simultaneously compute the constraint gradient and matrix fac- 
torization on a Cray  C90 and  the nonbonded  interactions on a 
400-processor Intel Paragon. Another  method involves reduc- 
ing the number of  variables and constraints by modeling  second- 
ary  structures or other pieces  with rigid but movable bodies. A 
rigid object with  few variables could replace large segments of 
a model that a user does not want to change. For example, a user 
could twist a  backbone into a helix and then freeze the helix by 
replacing  its main chain atoms  and bonds with a cylinder of  rigid 
shape but movable position. 

Another area for future work involves improving the method 
for sequence input and modification. Currently, several prepro- 
cessing steps transform a PDB file into Sculpt input, including 
the bond connectivity, ideal values, and energy constants. Sculpt 
does  not allow residue insertions, deletions, or changes; one 
must save the coordinates, use another package to generate the 
new atom positions, and then  restart. Internalizing those steps 
will greatly improve  the usability of the system. 

Sculpt is available to academic users who understand that it 
is a research system  still under development. Several user-friendly 
features such as documentation and data exchange are incomplete 
or nonexistent. Please contact the first author (surles@sdsc.edu) 
for more information. 


