
Protein Science (1994), 3:198-210. Cambridge University Press. Printed in the USA.
Copyright 0 1994 The Protein Society

Sculpting proteins interactively: Continual
energy minimization embedded in a
graphical modeling system

MARK C. SURLES,' JANE S. RICHARDSON,2 DAVID C. RICHARDSON,'
AND FREDERICK P. BROOKS, JR.3
' San Diego Supercomputer Center, San Diego, California 92186-9784
Department of Biochemistry, Duke University, Durham, North Carolina 27710
Department of Computer Science, University of North Carolina, Chapel Hill, North Carolina 27599-3175

(RECEIVED October 13, 1993; ACCEPTED December 1, 1993)

Abstract

We describe a new paradigm for modeling proteins in interactive computer graphics systems-continual mainte-
nance of a physically valid representation, combined with direct user control and visualization. This is achieved
by a fast algorithm for energy minimization, capable of real-time performance on all atoms of a small protein,
plus graphically specified user tugs. The modeling system, called Sculpt, rigidly constrains bond lengths, bond
angles, and planar groups (similar to existing interactive modeling programs), while it applies elastic restraints
to minimize the potential energy due to torsions, hydrogen bonds, and van der Waals and electrostatic4 interac-
tions (similar to existing batch minimization programs), and user-specified springs. The graphical interface can
show bad and/or favorable contacts, and individual energy terms can be turned on or off to determine their ef-
fects and interactions.

Sculpt finds a local minimum of the total energy that satisfies all the constraints using an augmented Lagrange-
multiplier method; calculation time increases only linearly with the number of atoms because the matrix of con-
straint gradients is sparse and banded. On a 100-MHz MIPS R4000 processor (Silicon Graphics Indigo), Sculpt
achieves 11 updates per second on a 20-residue fragment and 2 updates per second on an 80-residue protein, using
all atoms except non-H-bonding hydrogens, and without electrostatic interactions. Applications of Sculpt are de-
scribed: to reverse the direction of bundle packing in a designed 4-helix bundle protein, to fold up a 2-stranded
@-ribbon into an approximate @-barrel, and to design the sequence and conformation of a 30-residue peptide that
mimics one partner of a protein subunit interaction.

Computer models that are both interactive and physically realistic (within the limitations of a given force field)
have 2 significant advantages: (1) they make feasible the modeling of very large changes (such as needed for de
novo design), and (2) they help the user understand how different energy terms interact to stabilize a given con-
formation. The Sculpt paradigm combines many of the best features of interactive graphical modeling, energy
minimization, and actual physical models, and we propose it as an especially productive way to use current and
future increases in computer speed.

Keywords: energy minimization; interactive computer graphics; molecular modeling; protein structure.

We describe a new paradigm for modeling proteins in interac-
tive computer graphics systems - continual maintenance of a
physically valid representation, combined with direct user con-
trol and visualization. A modeling system, called Sculpt, main-
tains valid bond lengths, bond angles, and van der Waals
separations in a model as a user changes its structure by inter-
actively moving atoms, peptides, and side chains. Like a phys-

ter, P.O. Box 85608, San Diego, California 92186-9784; e-mail:
Reprint requests to: Mark C. Surles, San Diego Supercomputer Cen-

surles@sdsc.edu.

ical model, Sculpt prevents certain movements due to bond
rigidity, propagates changes throughout a model due to coupling
in secondary structure or packing, and changes local conforma-
tion when degrees of freedom allow. Moreover, Sculpt keeps the
model in a conformation that locally minimizes the potential en-
ergy due to torsion angles and hydrogen bond, van der Waals,
and electrostatic4 interactions for all atoms of the model. To-
gether, Sculpt both maintains interactive performance and also

4 A model of electrostatic interactions is currently under devel-
opment.

198

M. C. Surles et at. 199

incorporates physical properties that previously required batch
computation.

Figure 1 shows a 20-residue a-helix modeled in Sculpt. The
user moves the phenylalanine by picking it with a mouse (red
arrow) and dragging it toward the cyan backbone. As the ring
turns, it collides with the backbone carbonyl carbon (denoted
by the red wireframe shell) and has minor contact with the
nearby leucine (denoted by red dot surface). These conflicts in
turn change the backbone conformation and side chain position.
All this happens interactively (1 1 updates per second), which
gives the user the impression of changing a real, physical model.
Through a series of atom tugs over 5 min, a user wound a
20-residue extended chain into this helical conformation.
The user sees bad contacts immediately, and likewise, Sculpt
moves atoms to minimize the high potential energy caused by
such contacts.

Motivation

Two goals motivate this work: (1) to enhance understanding of
protein structure and function by placing more realistic com-
puter models at the biochemist's fingertips, and (2) to reduce the
manual and computational repairs needed after modeling ses-
sions with interactive graphics. Such repairs are required in ho-
mology modeling when a residue is inserted or changed, in drug
design when a protein is created with particular shape and prop-
erties, and routinely in de novo design to reconcile local confor-
mation with overall design criteria.

Consider the simple change of flipping a peptide in the mid-
dle of the backbone with interactive modeling systems such as

Sybyl (Tripos Associates), Quanta (MSI), and InsightII (Biosym
Technologies). A change in (p flips the peptide but also moves
the rest of the chain. A change in $ and dihedral angles further
along brings the chain close to its original position. When ev-
erything seems close enough to the desired new conformation,
one runs a batch energy minimizer that shifts atoms into a min-
imum energy conformation. Other atoms may move in unin-
tended ways if the user did not exactly reposition the chain. The
direct grab-and-flip of the peptide in Sculpt is more intuitive,
quick, and exact. Sculpt's savings in labor and in potential er-
rors are even greater in more complicated tasks such as moving
a helix, changing the twist of a sheet, or repacking side chains.

Modeling paradigm

To maintain useful interactive performance, we find that 1 Hz
is a minimum update rate. This limits problem size, properties
modeled, and realism of the properties. On a 100-MHz MIPS
R4000 processor (Silicon Graphics Indigo), Sculpt maintains
1 1 Hz on the 20-residue model in Figure 1,2 Hz on an 80-residue
model, and 1 Hz on a 180-residue model. The performance de-
creases linearly with increased model size.

We make an approximation that significantly improves per-
formance without appreciably decreasing accuracy. Properties
whose deformation requires very large potential energy changes
relative to others (i.e., stiff properties) are replaced with rigid
constraints. Covalent bond lengths and angles and planar dihe-
dral angles are constrained to ideal values; hydrogen bonds,
multivalue dihedral angles, and van der Waals and electrostatic
interactions are modeled with potential energy functions. Min-

Fig. 1. Photo from Sculpt of a user tugging a Phe with the
mouse, denoted by the orange spring between the atom and
red cursor. A previous spring inserted by the user pulls it to-
ward the orange thumbtack; the red thumbtack holds an atom
in place. As the ring turns at 1 1 updates per second, it col-
lides (red wireframe shell) with the carbonyl carbon and has
minor contact (red dot surface) with the nearby leucine. This
changes the backbone and side chain conformation. The
20-residue model of this cy-helix has main chain (cyan), C-0
(red), N-H (brown), and side chain (tan) bonds represented
with tubes, and hydrogen bonds (blue) represented with
vectors.

200 Sculpting proteins interactively

imizing functions with similar potential energies, subject to con-
straints, requires much less computation, in this application,
than minimizing all the energies without any constraints.

The mathematical model contains the sum of the potential en-
ergies and a list of nonlinear equality constraints (e.g., dis-
tance(N,H) = 1 A). When a user pulls an atom, Sculpt adds the
potential energy in a spring between the atom and cursor to the
model’s potential energy. Sculpt then finds a new conformation
that locally minimizes the total potential energy while satisfy-
ing the constraints.

Factoring out the stiff properties allows much larger atom
movement than pure energy-based minimization, but in turn,
it requires solving a system of nonlinear equations on each it-
eration. Constrained minimization has previously been avoided
in interactive applications because, in general, the computation
in solving the system of equations increases with the cube of the
number of atoms. We show in this paper that for protein mod-
els the computation can be arranged to increase only linearly
with the number of atoms. The long backbone (relative to short
side chains) in proteins yields a system of equations that is sparse
and banded. Thus, the constraints allow larger atom movement
by removing stiff properties and only introduce a banded sys-
tem of equations that can be solved efficiently.

This basic concept is not new, only its use in this type of in-
teractive applications. Both molecular dynamics and crystallo-
graphic refinement use constraints to improve either speed or
observation-to-parameter ratio. Molecular dynamics simulations
often constrain the bond length between hydrogens and heavy
atoms in an algorithm called SHAKE. Some crystallographic re-
finement systems employ constraints to idealize bond geometry
while restraining (minimizing energy) weaker properties (Hen-
drickson & Konnert, 1980). Our techniques build on this con-
cept of constraining stiff properties to decrease computation;
we employ different mathematical solutions because we con-
strain many more properties.

Sculpt molecular model

We constrain a stiff property to its ideal value and only let a
weak or multivalue property vary. This decreases model real-
ism slightly, but our intended applications do not require accu-
rately modeling minute changes in these properties. Figure 2 lists
the constrained and restrained (energetic) properties modeled in
Sculpt. A constraint requires that the value of a function equal
a fixed value, and an energy (or restraint) imposes a penalty as
a function value varies from its ideal value. Modeling a bond
distance d with ideal value d as a constraint requires that d =
d or equivalently, d - d = 0. A spring restraint obeying Hooke’s
Law models the variance of the distance from the ideal value
with Energy = k (d - d) 2 , where k describes the spring stiffness.

We require that the constraints remain defined throughout a
modeling session; Sculpt does not model the breaking and form-
ing of covalent bonds. This restriction does not apply to hydro-
gen bonds and nonbonded interactions, because they use an
energy model.

Sculpt’s potential energy model differs in a few aspects, men-
tioned below, from models such as CHARMM (Brooks et al.,
1983), Amber (Weiner et al., 1984), and Cedar (Hermans). These
differences allowed quicker system development but are not es-
sential to the method. Sculpt reads the ideal values and spring
constants from a user-defined dictionary. The dictionary has pa-

Protein property Mathematical model

Bond length

Single dihedral angle
Bond angle Constrained to ideal

Multi-value dihedral angle Spring to nearest ideal angle
Hydrogen bond
Van der Waals interaction 6-A, 4-8 knnard-Jones potential

Spring to ideal length and angle

User tug Zero-length spring

Electrostatic charge
Solvent interaction

lo-A, Coulomb potential (under development)
Not treated

Fig. 2. The mathematical model for each protein property treated in
Sculpt. Covalent bond lengths, angles, and single-value dihedral angles
are constrained to their ideal value; other properties use a potential
energy model.

rameters for models that have implicit hydrogens, hydrogen-
donors only, or all atoms.

Dihedral angles with multiple ideal values (such as the 3
staggered con formers of a side chain x angle)

We use a spring centered at the ideal dihedral angle closest to
the current angle. This still allows transitions among the ideal
angles, although it yields a higher energy barrier between two
ideal angles than CHARMM’s cosine model. Backbone (o and
$ angles are not treated this way, since they interact and are not
well approximated by simple functions; however, they are han-
dled by van der Waals interactions of the surrounding atoms.

Hydrogen bonds

A hydrogen bond is modeled with 2 springs - one for the bond
length and the other for the angle between the donor bond and
the hydrogen bond. Constraints are not used because hydrogen
bonds are much weaker than covalent bonds, and they can
change during a session. Currently all hydrogen bonds are spec-
ified at program initialization in order to preserve desired sec-
ondary structures. We will investigate methods for dynamic
modeling of hydrogen bonds, either using neighbor lists or di-
pole interactions.

4-8 van der Waals approximation

We model the van der Waals interaction energy with a modified
Lennard-Jones function; that function is evaluated on atoms
within a 6-A neighborhood, as is common for macromolecular
calculations. We change the 6 and 12 exponents in the Lennard-
Jones model to 4 and 8. Figure 3 illustrates the differences be-
tween our model and the 6-12 Lennard-Jones model for a given
energy minimum, E,,,, and separation at the minimum energy,
R,. This widens the energy well and yields a slower ascent, but
also allows slightly closer atoms. The slower ascent allows faster
solution of the equations. Our model also clamps the maximum
rate of change of the energy after which the rate of energy in-
crease is constant. The positive energy still repels atoms but al-
lows much faster minimization since extremely large energies
never occur. Since the computer model remains physically valid,
we encounter extremely close atoms only if the user turns off
the van der Waals model and at program initialization.

M. C. Surles et al. 20 1

a b
Energy (kcaVmole) Energy,,Jr) =Em(2%- %

-0.21

Fig. 3. Comparison of van der Waals potential using Lennard-Jones
(a,b = 6,12) and Sculpt (a,b = 4,8) model shown for a given separation,
R,, with minimum energy, E,. Sculpt’s exponents yield a wider and
less steep energy well. Sculpt clamps the maximum rate ofenergy increase
and only evaluates the potential on atoms within a 6-A radius.

Electrostatic interactions

We are currently implementing a model of electrostatic interac-
tions within a 10-A radius. The performance results in this pa-
per do not model electrostatic interactions except where
explicitly noted. In those cases we estimated the extra time by
modeling the van der Waals interaction among all atoms within
a 10-A radius in addition to the normal van der Waals interac-
tion in a 6-A radius. This gives an upper bound on the time re-
quired to model electrostatic interactions since, for example, it
includes atoms with no dipoles. Although the present system be-
haves very well, one sees some effect of omitting electrostatics,
such as a stickiness between oxygen atoms.

Mathematical formulation

We use the following mathematical notation for the remainder
of the paper: an n-element vector x (boldface denotes vectors)
holds the variables, a 3-dimensional position for each atom; the
real-valued function e (x) denotes the sum of all the energy func-
tions; and the m-element vector c(x) is the vector of the m con-
straint functions. Specifically, row i in c (x) contains a constraint
function, c i (x) , minus its ideal value, C j , as follows:

On each update Sculpt finds a local minimum of the total en-
ergy, e (x) , that satisfies the set of constraint functions, c (x) =
0. We find a constrained minimum by evaluating the gradient
of the energy and constraints and solving a system of equations.
We detail the method, called the augmented Lagrange-multiplier
method, in the Mathematical solution section. Before we explain
the mathematics, let us consider the contents of the gradients.
The energy gradient, denoted E, is a vector with n elements; each
element is the first partial derivative with respect to one of the

variables. The gradient of the constraints, however, is an n x
m matrix; each column represents the gradient of a single con-
straint. We factor this matrix when solving the linear equations.
For general problems (i.e., nonprotein) this factorization can
take too much time for interactive performance except on small
models, because the computation increases with the cube of the
number of variables. However, the next section shows that the
matrix in the protein application has properties that allow effi-
cient factorization of the matrix; in fact, the computation in-
creases only linearly with the number of atoms.

Structure of Jacobian matrix

The matrix containing the constraint gradient is called the Ja-
cobian matrix. Excluding disulfide bridges, all covalent bonds
in proteins, and therefore all the constraints, are along the back-
bone or within individual side chains. This property yields a very
sparse, banded Jacobian matrix (i.e., the nonzeros lie within a
small, fixed distance from the diagonal). The computation re-
quired to factor such a matrix is linearly proportional to the
number of atoms. We first describe the matrix structure for pro-
teins without disulfide bridges and then generalize this for ones
with disulfide bridges.

Case I : No disulfide bridge

Assume the variables (an x, y , z Cartesian coordinate) are num-
bered sequentially in the order of the Protein Data Bank for-
mat: for each residue, first come the heavy backbone atoms,
then the heavy side chain atoms, and finally the hydrogen at-
oms. For example, atoms in poly-alanine are numbered N, C, ,
C, 0, C,, H, N, etc. Define the index distance as the separa-
tion of variable indices. With this numbering scheme, all cova-
lent bonds (excluding SS bridges) are defined on variables whose
index distance is less than some fixed, maximum distance. This
is also true for all angles and torsion angles defined by covalent
bonds. Nonbonded interactions and hydrogen bonds can be de-
fined on variables with a large index distance, but they are not
covalently bonded and thus are not constrained.

Figure 4 illustrates the Jacobian matrix for a 2-residue seg-
ment. Each column represents the gradient of 1 distance con-
straint. Shading patterns in the matrix correspond to patterned
atoms in the segment. Elements in a column are zero except at
variables where the constraint is defined. The figure omits an-
gle and dihedral angle constraints, as well as the hydrogens, for
simplicity.

The maximum index distance is a constant, independent of
the number of residues. The largest index distance between any
2 atoms occurs between the carbonyl carbon of tryptophan and
the backbone nitrogen of the following residue because trypto-
phan has the most atoms. The maximum index distance in any
constraint occurs in the dihedral angle that models this peptide
(0-C-N-C,) because the dihedral angle references the most
variables and tryptophan contains the mosts atoms.

Case 2: Disulfide bridges

Disulfide bridges do not change the sparsity pattern of the Ja-
cobian very much. A bridge introduces a few columns that de-
note the gradient of constraints defining the bond length and
angles of the bridge. These columns can have arbitrarily large
index distance because the constraints are defined on atoms in

202

Distance constraints

Sculpting proteins interactively

Va
(atom

riaMes
position

Q b
1 Sidechain

1
I Ca

Nitrogen

C d o n

Oxygen

Fig. 4. Illustration of Jacobian matrix (matrix of constraint gradients)
for the 2-residue segment at the bottom. The rows denote atom posi-
tions (a 3-dimensional Cartesian coordinate per row), and the columns
denote the gradient of the distance constraints that model covalent
bonds. Patterns in rows refer to atoms in the segment; blank cells are
zero. Angles and dihedral angles, as well as the hydrogens, are omitted
for simplicity.

residues arbitrarily down the sequence. The mathematics dis-
cussed in the next section handle this case efficiently. The com-
putation required to factor the Jacobian does not increase as
long as there are only a few such columns relative to the total
number of columns. Fortunately, proteins only have a limited
number of bridges.

Figure 5 shows the sparsity pattern of the Jacobian for Felix
(Hecht et al., 1990), an go-residue, 692-atom protein with 1 di-
sulfide; only the backbone amide hydrogens were modeled.
Black dots indicate nonzeros. Notice that the disulfide adds a

Fig. 5. Sparsity pattern of the Jacobian for Felix, an 80-residue, 692-
atom protein with 1 disulfide. Black dots indicate nonzeros. Notice that
the disulfide adds a few nonzeros far below the diagonal. This matrix
has 1,772 columns (constraints) and 2,076 rows (variables).

few nonzeros far below the diagonal. This matrix has 1,772 col-
umns (constraints) and 2,076 rows (variables).

Mathematical solution

Sculpt finds a local minimum of the energy that satisfies the con-
straints using an augmented Lagrange-multiplier method. This
section details the algorithm, bounds its computational require-
ments, and compares it to other algorithms.

The first-order necessary conditions for a local constrained
minimum are illustrated in Figure 6 for a 2-dimensional energy
function with only 1 constraint. The solid line shows values that
satisfy the constraint; dashed lines show isovalue contours of
the energy. The solution must lie on the solid line, thus satisfy-
ing the constraint. At the nonoptimal point, x, a step in the di-
rection d reduces the energy and maintains the constraint. At
the solution, x*, the energy gradient, E, and the constraint gra-
dient, J , also align; i.e., the energy gradient is a scalar multiple
of the constraint gradient, where X is the scalar multiple.

Fletcher (1987) showed that the first-order necessary condi-
tions for a local constrained minimum require (1) that the con-
straints be satisfied, and (2) that the energy gradient be a linear
combination of the constraint gradients. For a problem with n
variables and rn constraints, these conditions require (1) c = 0
and (2) [J] X = E , where E is the gradient of the energy, J is the
n x m Jacobian matrix of constraint gradients, and X is a vec-
tor of rn scalar multiples called Lagrange multipliers.

No direct, closed-form solution exists for finding a con-
strained local minimum because the necessary conditions give
n + rn nonlinear equations with n + m unknowns. We use a
2-step, iterative algorithm: first, estimate the Lagrange multi-
pliers at the solution; second, minimize an unconstrained func-

M. C. Surles et al. 203

E = Ve(x)

J = Vc(x)

L. -:x,/ c(x) = 0

"

\ \ \
' \

< e(x*)"
\ '5, e(x*)

\ e(x*>
Contours of e(x) , I I

Fig. 6. Two first-order necessary conditions for a local constrained min-
imum of a 2-dimensional energy function (isovalue contours indicated
with dashed lines) and only 1 constraint (solid curve). First, the solu-
tion must satisfy the constraint c(x) = 0. Away from the solution, at
point x, a step in the direction d reduces the energy and maintains the
constraint. At the solution, X* , the energy gradient, E, and the con-
straint gradient, J , dign. This second condition requires that the energy
gradient is a scalar multiple of the constraint gradient, where h is the
scalar multiple.

tion that combines the energy and constraint gradients with the
estimated multipliers.

Lagrange-multiplier estimate

We estimate the Lagrange multipliers with the first-order mul-
tiplier method (Gill et al., 1981, p. 248). Given the gradients at
the current position, this finds a least-squares approximation to
the necessary conditions by solving for X in [J] X = E. The sys-
tem is overconstrained as there are more rows (model variables)
than columns (constraints). Note: X is overconstrained, not the
model variables, x.

We multiply each side by the matrix transpose (thus produc-
ing a square matrix) before solving for X : [J T J] X = J'E. This
approach has known drawbacks such as squaring the condition
number (i.e., squaring its sensitivity to roundoff error), requir-
ing a matrix-matrix multiplication, and factoring a matrix with
more nonzeros (Luenberger, 1973). However, we find it works
well for this application due to the sparsity pattern of the ma-
trix. The product of a band matrix times its transpose yields a
matrix with wider bandwidth and a few more nonzeros. The re-
sulting matrix is symmetric and positive definite, 2 properties
exploited by most sparse linear algebra packages (Duff et al.,
1986).

Unconstrained minimization

We use the estimate of the multipliers in an unconstrained min-
imization of a function that combines the energy and constraint
gradients and penalizes constraint violations. The function,

called the augmented Lagrangian, is L(x, X , p) = e - XTc +
pc'c. The third term penalizes the function when constraints
are violated (c # 0), which can occur from a poor initial con-
figuration or from using a first-order approximation of the non-
linear constraints. We set the penalty, p , to the error in the
least-squares approximation (i.e., p +- 11 E - JX We find the
minimum with respect to x of the augmented Lagrangian using
the steepest descent method. This method moves in the direc-
tion of the negative gradient of the function: -E + JX - 2pJc.

Figure 7 summarizes the steps in our iterative constrained min-
imization algorithm. This method is presented in Gill et al.
(1981, p. 227), and its relative merits are described in Surles
(1992a). The multipliers and variables converge to a constrained
local minimum (Hestenes, 1975). We observe that in practice this
algorithm finds the solution in 1 or 2 iterations, since the algo-
rithm begins near a local solution. At the end of each iteration,
Sculpt displays the new atom positions.

Computational requirements

The Lagrange-multiplier estimate requires the most computa-
tion, since it multiplies 2 matrices and factors the result. The
computation required to estimate the multipliers in our case is
proportional to the number of atoms, due to the band structure
of the Jacobian; in general, the computation would increase with
the cube of the problem size.

A multiplication of a banded matrix times its transpose yields
another banded matrix. The nonzeros from a disulfide bridge
that lie outside the band of the Jacobian yield nonzeros outside
the band in the product. Figure 8 shows the sparsity pattern aris-
ing from multiplying the matrix in Figure 5 by its transpose.

If the product has a bandwidth 6 , as illustrated in Figure 9,
there are at most 2bm nonzero e n t r i e ~ . ~ Calculating each of
these elements requires a row-column multiplication (e.g., ele-
ment (i , j) = rowi(JT) * columnj(J)). The computation re-
quired is thus bounded, since the number of nonzeros in each
row and column is bounded.

Factoring the matrix using Gaussian elimination requires ap-
proximately b2m operations. For each of the m diagonals, the
b nonzeros below it must be eliminated. Eliminating each of
these requires multiplying the b elements in each row. When di-
sulfide bridges are present, the nonzeros outside the bandwidth

Protein models have many fewer nonzeros in practice, since many
elements within the band are zero.

1. Given x, compute the energy, Evaluate e, c, E, J
constraints, and their derivatives

2. Estimate multipliers Solve for k UTnn = JTE

3. Set penalty to error in least-squares p t 11E-J&
approximation

4. Minimize the augmented Lagrangian x -E + JA - 2 p ~ c
using the steepest descent

Fig. 7. Iterative algorithm used to find a constrained minimum. When
the user tugs or releases an atom, energy is added or removed. Sculpt
then executes this algorithm, which changes the atom positions (x), and
displays the results.

204

Disulfide

Fig. 8. Sparsity pattern of the matrix product (J T J) , where the Jaco-
bian, J , is shown in Figure 5 . Black dots indicate nonzeros. The matrix
is square (1,772 x 1,772) and symmetric. The disulfide introduces a few
nonzeros far above and below the diagonal.

only fill elements in their same column as the rows are reduced.
Thus, a very small, predictable fill-in results. More detailed anal-
ysis of the required computation appears in Surles (199213).

We solve the system of equations with the banded matrix
solver, FO1MCF, from the Numerical Algorithms Group (NAG,
1981). The method is specialized for symmetric matrices with
variable, or “skyline,” bandwidth. Row pivoting is not neces-
sary because the matrix is positive definite.

Comparison with other methods

Other constrained minimization algorithms avoid the matrix-
matrix multiplication required in our least-squares approxima-
tion. We tried several iterative least-squares solvers, but none
performed as well as the algorithm described here. We observed
that the solvers typically required around m iterations, each re-
quiring a matrix-vector multiplication. Also, the rectangular Ja-

b{

Fig. 9. A matrix with bandwidth b. The bandwidth is the maximum col-
umn (row) separation of nonzero entries in any row (column). White
squares represent zeros.

Sculpting proteins interactively

cobian matrix is not symmetric or positive definite-properties
on which iterative solvers perform best.

We also examined a reduced gradient method (Rosen, 1961)
that projects the energy gradient onto the constraint surface.
This method factors an m X m matrix formed from m linearly
independent rows of the Jacobian. It avoids the matrix-matrix
multiplication and factors a matrix with fewer nonzeros. The
chief disadvantage is the computation required for picking the
independent rows. Once the rows are picked, the algorithm can
use them for many iterations (typically 20-100) before a depen-
dency arises and a new set is needed. While using a set of rows,
the algorithm runs approximately 20% faster than ours. How-
ever, picking a new set of rows requires 20 times more compu-
tation than one iteration. The user experiences a long delay
whenever the system picks a new set of rows.

Applications

To demonstrate how Sculpt operates, consider the task of flip-
ping 1 peptide in a protein by 180” without significantly chang-
ing the rest of the model. This is simple to do with brass or
plastic models, but is cumbersome in most computer modeling
systems. In Sculpt the user clicks on the carbonyl oxygen and
drags the mouse (and the spring) around the peptide bond.
Sculpt responds by bringing the carbonyl around, changing the
local conformation and side chain positions to satisfy constraints
and minimize energies. Near 90” there are unavoidable overlaps
between nearby atoms (e.g., CO to Cfl) , which can be displayed
as red shells and are also evident in a slower atom movement
(the atom moves less per cycle because other forces oppose it).
Toward the end, the structure rapidly settles into the new favor-
able conformation. Kinemage 1 illustrates this process on an
8-residue segment with a tight turn, and Figure 10 presents the
initial and final steps with an 80-residue protein. The orange
coils show springs attached by the user, and the red shell indi-
cates a bad contact. The time for this operation depends on the
system performance, which depends on the number of atoms.
For a small peptide, as in Kinemage 1, it is limited mainly by
the user tug rate; when embedded in an 80-residue protein as in
Figure 10, a complete flip takes 15 s.

Redesigning a dimer interface

As a real application, we used Sculpt to design the sequence and
conformation of a peptide to mimic one half of the dimer iu-
teraction of the HIV protease (in collaboration with Lilia Babi.
at the University of California-San Francisco, who will test its
inhibition of viral replication in vivo, in comparison with sim-
pler @-strand peptides [Babe et al., 19921). We kept 1 subunit
of the protease fixed, with the atoms near the dimer contact (res-
idues 1-10, 23-29, 86-99) included in the van der Waals calcu-
lations and the rest ignored. Parts of the second subunit
provided a starting model for the peptide (modified from Brook-
haven Data Bank file 5HVP; Fitzgerald et al., 1990). We fixed
both the conformation and sequence of the N-terminal and
C-terminal 0-strands (residues 1-5 and 95-99), which form an
interdigitated @-sheet between the 2 subunits. We also fixed the
main chain of residues 24-26, which form a short, antiparallel
@ interaction between subunits next to the active-site aspartates.
Connections between these 3 pieces were modeled using modi-
fications of the original residues 6-1 1, 27-29, and 87-94.

M. C. Surles et al. 205

A

B

Fig. 10. The top photo shows a bad contact (red wireframe) between adjacent carbonyl groups in an intermediate model of Felix.
Springs show the tugs applied by a user to flip the peptide and remove the bad contact. The bottom photo shows the resulting
conformation, with thumbtacks highlighting atoms of the flipped peptide. Kinemage 1 animates the actual process of flipping
a peptide with Sculpt on a simpler model.

206 Sculpting proteins interactively

We used Sculpt to move the 3 loose chain segments into fa-
vorable conformations that: (1) substitute for essentially all di-
mer contacts made in the native protease (except for the flaps
at the bottom of Fig. 1 l), (2) join up properly, and (3) place hy-
drophobic side chains in contact positions and hydrophilic ones
at exposed sites in the peptide-protease complex. We tried sev-
eral conformational strategies over 2 h, and the sculpting pro-
cess prompted a number of changes in sequence and 1 change
in length from our initial guess. The final peptide is 30 residues
long, 11 of which (underlined) differ from the native sequence:

PEITLWQRLSDLHTGSGSPELTQEGCTLNF.

Figure 11 shows the backbone of the HIV model with dimer
A in yellow and dimer B in magenta. Dim vectors were not mod-
eled; bright yellow vectors were fixed but used in the van der
Waals interactions. The tubes show the movable parts; magenta
denotes the original model and cyan shows the result. The two
red tubes highlight the connections among the 3 segments. Ki-
nemage 2 illustrates the contacts in the modeled peptide-protease
complex.

vator protein (Brookhaven Data Bank file 3GAP; Weber &
Steitz, 1987) into a long, twisted, 2-stranded 0-ribbon. There
were 24 0-sheet hydrogen bonds in the starting structure; 9 more
were formed and 2 broken during the unfolding; side chains
were truncated at C,. The smooth performance on unfolding
encouraged us to try the more significant folding direction.

Next, we generated a 32-residue (poly-Ala), idealized strand
of twisted, somewhat-curled 0 structure with alternating cp, IC.
values of (-130°, 160”) and (-90°, 120°), docked 2 copies on
a twisted 0-ribbon from LDH (residues 265-293 of Brookhaven
file ILDM; Abad-Zapatero et al., 1987), closed a hairpin turn
on one end with a Gly-Gly type I’ turn, formed the 0-sheet hy-
drogen bonds, and uncurled the ribbon somewhat. We then
folded that idealized ribbon, by tugging near its ends, into a
6-stranded, Greek-key 0-barrel. Figure 12 shows 7 snapshots
from this latter, 2-h Sculpt session with the backbone colored
cyan in one direction and orange in the other. Interactions at
each end of the final barrel were especially interesting, and in
a later session (shown in Kinemage 3) we folded up a similar
hairpin with Gly, Pro, and Tyr at some critical locations in the
barrel-end connections. This second ribbon was made compact
by a more realistic motion of pushing both ends together and
letting a loop curl in the middle.

Modeling 0-barrel folding

To illustrate and study our hypothesis for the folding of Greek-
key @-barrels, we first used Sculpt to unfold the 8-stranded, To test the strengths and weaknesses of Sculpt for de novo model
“jellyroll” Greek key of residues 19-98 of catabolite gene acti- building, we made a major change in the tertiary structure of

Reversing the directionality of a 4-helix bundle

Fig. 11. Results of using Sculpt for designing the sequence and conformation of a peptide to mimic one half of the dimer in-
teraction of the HIV protease (PDB file 5HVP). The main chain is yellow for dimer A and magenta for dimer B. Dim vectors
were not modeled; bright yellow vectors were not movable, but those residues were used in the van der Waals interactions. Tubes
show the original (magenta) and final (cyan) segments modeled in Sculpt; they overlap at the N- and C-terminal P-strands. Red
tubes indicate the breaks between the original 3 segments, where the dim magenta parts of that subunit were omitted.

M. C. Surles et al. 207

-1

Fig. 12. Seven snapshots from a Sculpt session show the re-
sults of tugging a Zstranded, antiparallel 0-ribbon (bottom)
into a 6-stranded, Greek-key &barrel (top). The backbone
is cyan in one direction and orange in the other. The sides
of the @-sheet surface are colored differently to indicate
twists. The starting model is a pair of 32-residue (poly-Ala),
idealized, twisted 0-strands connected by a Gly-Gly type I‘
hairpin turn.

an 80-residue protein. We began with the designed structure of
Felix, a 4-helix bundle protein (Brookhaven Data Bank file
1FLX; Hecht et al., 1990). The top of Figure 13 shows the back-
bone and hydrophobic side chains of the original structure, with
helix A coming out of the page. This is the common “up &
down” helix-bundle connectivity, folded in a clockwise order
around the bundle. There is a designed disulfide bridge connect-
ing helices A and D, whose sulfurs are shown as yellow spheres.
In doing de novo design of proteins it is just as important to do
negative design that avoids major alternative structures as it is
to do positive design for the desired arrangement. Therefore,
using Sculpt we created another 4-helix model that folds in a
counterclockwise order; the cysteines now cannot form a disul-
fide bridge but instead are at the outer edge of helix contacts on
opposite sides of the molecule. The result is illustrated in the bot-
tom half of Figure 13. The original interhelical connections are
colored yellow, showing that helices A and C were unwound by
1 residue and helices B and D were wound by 1 residue. In the
original model the hydrophobic side chains in the A-D and B-

C helix contacts are red, and the ones in the A-B and C-D con-
tacts are purple; after the modeling session, the faces have turned
so that the red side chains are in the A-B and C-D contacts, and
the purple ones in A-D and B-C.

We preserved secondary structure by first rotating and trans-
lating 4 rigid segments: helix A plus the segment from A to B;
helix B; helix C plus the segments from B to C and C to D; and
helix D. This left the model disjoint (e.g., rotating the first seg-
ment 90” left the chain far below B). We spent approximately
3 h rejoining the segments by tugging the 3 peptides. During this
part of the session, Sculpt modeled constraints and energies in
the residues between the helices and kept the helices fiied. Next,
we modeled all the atoms to adjust side chain contacts. We could
not eliminate all bad contacts at the beginning and ending turns
in the helices. We now use this new model as a basis both for
negative design (i.e., to document the ways in which the Felix
sequence suits the original model better than it suits this one)
and also for designing minimal changes in the sequence that
should make ir prefer to fold jnro this alternarive strubure.

Sculpting proteins interactively 108

Fig. 13. The pair of models shows the results of inverting a
4-helix bundle using Sculpt. The top model shows the back-
bone and hydrophobic side chains of Felix (PDB f i e IFLX),
a designed 4-helix bundle protein with helix A coming out of
the page and B, C, and D folding in a clockwise order. Each
helix, the connecting segments, and the cysteines of the start-
ing disulfide are colored the same in both figures. The bot-
tom model shows the results of changing the folding to a
counterclockwise order. Each helix and each helical side chain
is turned approximately 90'; the yellow segments show heli-
ces A and C are unwound by 1 residue and helices B and D
are wound by 1 residue. In the original model, hydrophobic
side chains between helices A-D and between B-C are red,
and those between A-B and C-D are purple; after the mod-
eling session, the faces have turned so that the red side chains
are between helices A-B and C-D, and the purple ones are
between A-D and B-C.

.~ . . , - . . After

Implementation and performance

Sculpt contains 2 programs: the displayer displays the graph-
ics and user interface on a Silicon Graphics workstation, and
the minimizer finds a constrained minimum. The minimizer can
run either on a Silicon Graphics workstation (possibly a differ-
ent one than the displayer) or on a Cray. The 2 programs com-
municate over Ethernet via Unix sockets; the displayer sends
pick and tug information to the minimizer, which, after mini-
mization, sends new coordinates to the displayer.

Table 1 shows the composition of 10 protein models used in
a performance evaluation. The number in the model name is the
number of residues. Model F80 is the Felix protein with 1 di-
sulfide and hydrogen bonds; F20 and F40 are the first 20 and
40 residues of Felix. K356 is the CAMP-dependent protein ki-
nase (Zheng et al., 1993) with bound ATP; others beginning with
a "K" are pieces of K356 and also include ATP. Bonded ener-
gies represent hydrogen bonds and multivalue dihedral angles.
The numbers of interactions are averages.

Table 2 and Figure 14 show the number of seconds per itera-
tion of the constrained minimizer on the 10 models; communi-
cation time between the minimizer and displayer is negligible.
The performance tests were run on 1,4, and 8 processors of an
8-processor, 100"Hz MIPS R4400 workstation (Silicon Graph-
ics Challenge) using 64-bit double precision. The algorithm has
2 parallel components detailed in Surles (1994): first, the con-
straint gradient and vector operations are divided over p pro-
cessors, yielding approximately a p-times speedup; second,
matrix factorization (step 2 in Fig. 7) runs on 1 processor while
the energy gradient runs on p - 1 processors. When the matrix
factorization takes longer than the energy gradient, as in the
8-processor case, the time for models with and without electro-
static interactions is the same. The minimizer can also run on
1 processor of a 167-MHz Cray Y-MP using 64-bit single pre-
cision. Unfortunately, the rate-limiting steps in this algorithm
are not readily vectorizable, so the Cray performance is roughly
50% faster than the 1-processor SGI implementation.

The performance is listed with and without an estimate of

M. C. Surles et al. 209

Table 1. Composition of 10 models used in performance evaluation"

Bonded Van der Waals Electrostatic
Model Atoms Variables Constraints energies interactions interactions

F20 186 558 473 80 1,831 5,379
F40 341 1,023 870 196 3,347 12,293
F80 693 2,079 1,772 415 7,714 3 1,299
K120 1,054 3,162 2,734 418 11,197 44,542
K160 1,442 4,326 3,737 579 17,155 73,209
K200 1,810 5,430 4,683 738 21,675 94,944
K240 2,172 6,516 5,603 904 26,253 116,466
K280 2,541 7,623 6,556 1,058 31,856 141,512
K320 2,880 8,640 7,439 1,194 35,760 159,519
K356 3,191 9,573 8,244 1,324 40,613 181,893

a The number in the model name is the number of residues. Model F80 is the Felix protein
with 1 disulfide and hydrogen bonds; F20 and F40 are the first 20 and 40 residues of Felix. Model
K356 is the cAPK protein with bound ATP; others beginning with a "K" are pieces of K356 and
also include ATP. Bonded energies represent hydrogen bonds and multivalue dihedral angles;
electrostatics are estimated by running the van der Waals computation with a 10-A cutoff. The
numbers of interactions are averages.

electrostatic interactions. Neither includes the time to compute
a new neighbor list, which is done only every 50 iterations.
Sculpt computes the list of neighbors within a 12-A radius of
each atom for the van der Waals model (20 A for electrostatic),
using a space-subdivision algorithm (Bentley & Friedman, 1979).
Then, at each cycle, it evaluates the van der Waals potential on
atoms in the list that are presently within 6 A of the reference
atom. This maintains valid neighbor lists even though atoms
move. The time to determine the list on 1 processor is also listed
in Table 2. We believe the time to compute a new list can be re-
duced, and this can also run in parallel with the minimization.

Discussion

We believe that solving these modeling tasks with Sculpt is sig-
nificantly easier and faster than with purely geometrical, interac-

tive modeling systems or with batch molecular dynamics meth-
ods, and that Sculpt provides new benefits as well. Guiding an
interactive simulation while immediately viewing the results lets
a user remain continually engaged in the modeling process. This
seems to provide greater situational awareness and to improve
perception of subtle relationships within proteins. On a num-
ber of occasions we noticed unexpected reactions in the model
that, upon closer examination, resulted from nonbonded inter-
actions competing against other properties such as bond rota-
tions. The graphical visualization of nonbonded interactions
helps identify close contacts among atoms and evaluate improve-
ments made by moving atoms.

Scubt can improve both productivity and understanding over
previous molecular modeling systems. Present update rates al-
low productive new research in biochemistry, and we believe a
mature Sculpt system will not just assist in a succession of in-

Table 2. Seconds per iteration of the constrained minimization on I , 4, and 8 processors
of an 8-processor, 100-MHz, MIPS R4400, Silicon Graphics Challenge"

Seconds per update
Seconds for

van der Waals van der Waals and electrostatics list reset

Model 1 CPU 8 CPUS 1 CPU 4 CPUS 8 CPUS 6 A 10 A 4 CPUS
________. ~ _ _ . . _ _ _ _ _ _ _ _ ~ -

F20
F40
F80
K120
K160
K200
K240
K280
K320
K356

0.09
0. I7
0.42
0.57
0.81
1.04
1.23
1.54
1.65
1.86

0.04
0.07
0.19
0.24
0.33
0.41
0.49
0.59
0.65
0.72

0.04
0.06
0.16
0.20
0.28
0.36
0.42
0.50
0.56
0.62

0.14
0.30
0.72
1.03
1.56
2.10
2.44
2.95
3.36
3.74

0.04
0.09
0.23
0.32
0.49
0.62
0.75
0.89
1.02
1.15

0.04
0.06
0.16
0.20
0.28
0.36
0.42
0.49
0.56
0.62

0.03
0.06
0.13
0.18
0.28
0.33
0.41
0.48
0.73
0.84

0.05
0.1 1
0.29
0.43
0.70
0.92
1.15
1.37
I .75
2.12

~ _ _ _ _ _ _ ~ _ ~
a Time to reset the neighbor list (done every 50 iterations) is given on the right. All computations except matrix factoriza-

tion run in parallel. Factorization dominates computation after 4 processors for the van der Waals models and after 8 proces-
sors for the electrostatic models.

210 Sculpting proteins interactively

Acknowledgments

We thank Jan Hermans for informative discussions during the conception
of Sculpt; Jim Begley, Dave Chen, and Rob Katz for implementing parts
of the Sculpt interface; Silicon Graphics for running benchmarks on an
8-processor machine; Lynn Ten Eyck for support and advice; and the
San Diego Supercomputer Center for access to the visualization and su-
percomputing facilities.

This work began in the Computer Science Department at the Univer-
sity of North Carolina at Chapel Hill with support from National In-
stitutes of Health grant RR-02170. The research continues at the San
Diego Supercomputer Center with support from National Science Foun-
dation grant ASC-9211908. The Duke University authors are supported
by NIH grant GM-15000.

References

Abad-Zapatero C, Griffith JP, Sussman JL, Rossmann MG. 1987. Refined
crystal structure of dogfish M4 APO-lactate dehydrogenase. JMol Biol
198:445-467.

Babe LM, Rose J, Craik CS. 1992. Synthetic interface peptides alter assem-
bly of the HIV 1 and 2 proteases. Protein Sci 1:1244-1253.

Bentley JL, Friedman JH. 1979. Data structures for range searching. Com-
puting Surv I I :397-409.

Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Kar-
plus M. 1983. CHARMM: A program for macromolecular energy, min-
imization, and dynamics calculations. JCotnputation Chem 4:187-217.

Duff IS, Erisman AM, Reid JK. 1986. Direct methods forsparse matrices.
Oxford, UK: Clarendon Press.

Fitzgerald PMD, McKeever BM, van Middlesworth JF, Springer JP, Heim-
bach JC, Leu T, Herber WK, Dixon RAF, Darke PL. 1990. Crystallo-
graphic analysis of a complex between human immunodeficiency virus

265:14209-14219.
type I protease and acetyl-pepstatin at 2.0-A resolution. J Biol Chem

Fletcher R. 1987. Practical methods of optimization. New York: John Wiley
& Sons.

Gill P, Murray W, Wright M. 1981. Practicaloptimization. San Diego: Ac-
ademic Press.

Hecht MH, Richardson JS, Richardson DC, Ogden RC. 1990. De novo de-
sign, expression, and characterization of Felix: A four-helix bundle pro-
tein of native-like sequence. Science 249384-891.

Hendrickson WA, Konnert JH. 1980. Incorporation of stereochemical in-
formation into crystallographic refinement. In: Computing in crystal-
lography. Bangalore, India: The Indian Academy of Sciences. pp
13.01-13.25.

Hestenes MR. 1975. Optimization theory, the finite dimensional case. New
York: John Wiley and Sons.

Luenberger DG. 1973. Introduction to linear and nonlinearprogramming.

NAG. 1981. NAG Fortran library manual. Oxford, UK: The Numerical Al-
Menlo Park, California: Addison-Wesley.

gorithms Group Ltd.
Rosen JB. 1961. The gradient projection method for nonlinear programming,

part II : Nonlinear constraints. J SIAM 9514-532.
Surles MC. 1992a. An algorithm with linear complexity for interactive, phys-

ically-based modeling of large proteins. Computer Graphics 26:221-230.
Surles MC. 1992b. Techniques for interactive manipulation of graphical pro-

tein models [dissertationl. Chapel Hill: University of North Carolina.
Surles MC. 1994. Parallel constrained minimization for interactive protein

modeling. 27th Hawaii International Conference System Science, vol. V .
New York: IEEE. pp 183-192.

Weber IT, Steitz TA. 1987. Structure of a complex of catabolite gene acti-
vator protein and cyclic AMP refined at 2.5 A resolution. / M o l Biol

Weiner SJ, Kollman PA, Case DA, Singh C, Ghio C, Alagona G , Profeta
S, Weiner P. 1984. A new force field for molecular mechanical simula-
tion of nucleic acids and proteins. J Am Chem SOC 106:765-784.

Zheng J, Knighton DR, Ten Eyck LF, Karlsson R, Xuong NH, Taylor SS,
Sowadski JM. 1993. Crystal structure on the catalytic subunit of CAMP-
dependent protein kinase complexed with MgATP and peptide inhibi-
tor. Biochemistry 32:2154-2161.

198:311-326.

Seeonds per update
40

A Van der Waals (I CPU)
Van der Waals (4 CPUS)

0 Electorsralic (I CPU)
Eleclonrauc (4 CPUs)

0

0

0

Fig. 14. Plot shows linear increase in computation for models with and
without electrostatic interactions on I , 4, and 8 100-MHz MIPS R4400
processors.

dividual modeling tasks, but also help researchers gain an in-
tuitive understanding of how molecules behave.

Future directions

Actual implementation is in progress for the electrostatics cal-
culation. Along with that, we are examining methods for in-
creasing performance, so that larger proteins with more realistic
energy models can run interactively. One method divides the
computation over heterogeneous supercomputers; for instance,
simultaneously compute the constraint gradient and matrix fac-
torization on a Cray C90 and the nonbonded interactions on a
400-processor Intel Paragon. Another method involves reduc-
ing the number of variables and constraints by modeling second-
ary structures or other pieces with rigid but movable bodies. A
rigid object with few variables could replace large segments of
a model that a user does not want to change. For example, a user
could twist a backbone into a helix and then freeze the helix by
replacing its main chain atoms and bonds with a cylinder of rigid
shape but movable position.

Another area for future work involves improving the method
for sequence input and modification. Currently, several prepro-
cessing steps transform a PDB file into Sculpt input, including
the bond connectivity, ideal values, and energy constants. Sculpt
does not allow residue insertions, deletions, or changes; one
must save the coordinates, use another package to generate the
new atom positions, and then restart. Internalizing those steps
will greatly improve the usability of the system.

Sculpt is available to academic users who understand that it
is a research system still under development. Several user-friendly
features such as documentation and data exchange are incomplete
or nonexistent. Please contact the first author (surles@sdsc.edu)
for more information.

