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Abstract 

A comparison is made between a 200-ps molecular dynamics simulation in vacuum and a  normal  mode analysis 
on  the protein bovine pancreatic trypsin inhibitor  (BPTI) in order  to elucidate the  dual aspects of harmonicity 
and anharmonicity in the dynamics of proteins. The molecular dynamics trajectory is analyzed using principal 
component analysis, an effective harmonic analysis suited for  comparison with the results from the  normal mode 
analysis. The results suggest that the first principal component shows qualitatively different behavior from higher 
principal components and is associated with apparent barrier crossing events on  an anharmonic  conformational 
energy surface.  The higher principal components  appear to have probability  distributions that  are well approxi- 
mated by Gaussians, indicating harmonicity. Eliminating the  contribution from  the first principal component re- 
veals a  great  deal of correspondence between the 2  methods.  This  correspondence, however, involves a  factor of 
2, as the variances of the distributions of the higher principal components are,  on average, roughly twice those 
found  from the normal mode analysis. A model is proposed to reconcile these results with those from previous 
analyses. 
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The study of protein dynamics is primarily motivated by the view 
that a protein’s function is not determined solely by its static 
structure but  also by the relative movement of the constituent 
parts of that  structure. A number of experimental works sup- 
port this view, not least the cryocrystallographic studies on ribo- 
nuclease A (Cusak, 1992; Rasmussen et al., 1992; Tilton et al., 
1992) and  the numerous  X-ray studies of proteins in liganded 
and unliganded states (Schulz, 1991), where it appears  that 
rather large-scale motions of protein  domains as relatively  rigid 
bodies occur upon  the binding of ligands. 

In  order to gain  a detailed understanding as to  the  nature of 
protein  dynamics, computational methods are indispensable 
given the complexity of protein molecules. Of the computer 
methods used, molecular dynamics (McCammon & Harvey, 
1987) and  normal  mode analysis (Brooks & Karplus, 1983; Go 
et al., 1983; Levitt et al., 1983) have become the most popular. 
However, in their approach, these 2  methods are in fact  quite 
far  apart. Molecular dynamics, being the raw integration of 
Newton’s equation, should give an  accurate  simulation of pro- 
tein motion over a certain time interval but does not directly say 
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anything of the higher physics involved in determining the na- 
ture of protein dynamics, leaving that  to be deduced from the 
analysis of the collective trajectories of the protein  atoms. On 
the  other hand, the normal mode analysis method assumes from 
the outset that a  harmonic analysis at a single conformational 
energy minimum  can give relevant information  on a protein’s 
dynamics. Theoretically this is based upon  the well-packedness 
of the atoms in the  interior of the protein, giving it  analogous 
properties to  that of a crystal. 

Experimentally, the strongest evidence for  the accuracy of 
the normal  mode analysis comes from  the  normal mode refine- 
ment  method for protein crystallography (Kidera & G6, 1990, 
1992). Using this method, it is possible to separate the external 
and internal contributions to the Debye-Waller factors. For hu- 
man lysozyme, a comparison between this internal  part and the 
results from a normal  mode analysis on  that protein showed a 
quantitative agreement (Kidera et al., 1992), suggesting that a 
harmonic  potential  surface determined at a single energy mini- 
mum can indeed give accurate results for protein  motion over 
the whole range of conformational  fluctuations at a  tempera- 
ture of 300 K. Paradoxically, though,  other experimental (Aus- 
tin et al., 1975) and computational (Elber & Karplus, 1987; 
Noguti & GB, 1989a, 1989b, 1989c, 1989d, 1989e) work has 
shown that a protein has a multiple-minima conformational en- 
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ergy surface over the range of conformational fluctuations at 
300 K. A careful comparison, therefore, between a normal mode 
analysis and a molecular dynamics simulation  should help to 
shed light on these dual aspects. Such a comparison  has been 
made possible by doing  a  principal  component analysis of the 
molecular dynamics trajectory (Kitao et al., 1 9 9 1 ) .  This method 
determines  a new set of axes, in a  multidimensional  space, for 
the description of the distribution of points  corresponding to 
atomic coordinates at each time  step  along the protein’s trajec- 
tory. Collective motions  occurring  during  a  simulation  can be 
effectively described by these new variables, termed principal 
component variables. Significant for our purposes though, is 
that in the case of a truly harmonic  conformational energy sur- 
face, the principal  component analysis is identical to  the nor- 
mal mode analysis provided the mean-square fluctuations have 
converged during the simulation.  In the case of an  anharmonic 
energy surface,  the principal components  can be thought of as 
the normal modes of a harmonic approximation to  that surface, 
and, in analogy to  normal mode analysis, one can define an 
effective frequency associated with each  principal  component. 

Teeter and Case (1990), in their  comparison between a  nor- 
mal mode analysis and a molecular dynamics simulation in 
vacuum on  the small protein crambin,  found  a  rather good cor- 
respondence between the cumulative frequency distribution de- 
termined from  the normal  mode analysis and  the cumulative 
effective frequency density determined from a  quasiharmonic 
analysis (equivalent to principal component analysis  as  described 
above,  but no use was made of the eigenvectors) of the molec- 
ular dynamics trajectory.  In addition, in comparing the RMS 
fluctuations (RMSF) of the residues, the 2  approaches agreed 
well, except over the floppy C-terminal  region, where the  nor- 
mal mode analysis underpredicted the RMSF values of the 
residues. 

For the polypeptide melittin (Kitao et al., 1991), where the 
same methods as here  were used, the RMSF values for  the alpha- 
carbon  atoms derived from  the normal mode analysis underpre- 
dicted those from the molecular dynamics trajectory in vacuum. 

Despite  these studies, the nature of a protein’s conformational 
potential energy surface remains unclear. In this work, we make 
full use of principal  component analysis in analyzing a 200-ps 
molecular dynamics trajectory in vacuum of the small globular 
protein bovine pancreatic trypsin inhibitor (BPTI) and compare 
the results with a  normal  mode analysis. 

Materials and methods 

Molecular dynamics simulation 

The molecular dynamics (MD) simulation was carried out using 
PRESTO (Morikami et al., 1992) and was run on a  Fujitsu 
VP2600 computer.  Coordinates of BPTI were taken  from  4PTI 
in the  Protein  Data Bank (Deisenhofer & Steigemann, 1975; 
Markquart et al., 1983). Amber-OPLS united atom parameter 
set (Weiner et al., 1986; Jorgensen & Tirado-Rives, 1988) was 
used. With this  parameter  set,  BPTI has 568 “atoms.” A  cut- 
off was not applied to  the nonbonded  interactions and a rela- 
tive dielectric constant  proportional to the distance between the 
atoms was used. Hydrogen atoms  not united with heavy atoms 
were constrained using SHAKE (Ryckaert et al., 1977). A  tem- 
perature of 300 K was chosen, the temperature being maintained 
by the Berendsen method (Berendsen et al., 1984) using a relax- 

ation time of 40 fs for  the velocity rescaling. A  time  step of 
2 fs was chosen for  the integration of the Verlet algorithm. After 
a 30-ps equilibration  period, the coordinate and velocity trajec- 
tories were collected every 12 fs for 200 ps. The  first 100 ps of 
this trajectory were  used in a previous  work for comparison with 
a trajectory in water (Hayward et al., 1993). 

Principal component analysis 

Principal component analysis is performed by diagonalizing the 
variance-covariance matrix r of the mass-weighted internal dis- 
placements. This  matrix is  given  by the expression 

1 
r = - XX’, 

K 

where x is a  matrix whose elements xi, give the mass-weighted 
internal displacements (Cartesian  coordinate times square  root 
of mass) of each atomic  coordinate i at a given time step t ,  xT 
is the transpose of x, and K is the  total number of  time  steps, 
which was 8,333, i.e., every 24 fs over the whole 200-ps trajec- 
tory.  The  diagonal elements of r are the variances, and the off 
diagonal elements, the covariances. Diagonalization of r gives 
a  diagonal eigenvalue matrix R and a matrix U,  the columns of 
which  give the eigenvectors, or principal components.  The ma- 
trix CJ is normalized to  the identity matrix, I .  The elements of 
R are the variances or mean-square  fluctuations of the princi- 
pal components.  The trajectory of thejth principal component 
X,, is  given  by 

x,, = Xjr Ujj. 
I 

From  the mean-square  fluctuations of the principal compo- 
nents it is  possible to define an effective frequency, u p ,  of each 
principal  component as 

where R,  denotes the mean-square  fluctuation of the  ith prin- 
cipal component.  In defining the effective frequency, one is de- 
termining the frequencies of harmonic modes that have the same 
mean-square  fluctuations as the  principal  components.  In the 
case  of an anharmonic energy surface, the principal components 
can be thought of as  the normal modes (see below) of a har- 
monic approximation to  that surface. In the case of  a truly har- 
monic conformational energy surface, the principal component 
analysis is identical to  the normal  mode analysis provided the 
mean-square  fluctuations have converged. 

If the  conformational energy surface along a principal com- 
ponent is harmonic,  then  the  probability density will  be  given 
by the Gaussian 

Normal mode analysis 

Normal mode analysis was performed in Cartesian  coordinate 
space with the same parameter set used for  the MD. The  atomic 



938 S. Hayward  et al. 

Cartesian  coordinates  are  mass weighted in  the  same  way  as in 
the principal component analysis. The potential energy was min- 
imized using PRESTO’S conjugate gradient energy minimization 
routine.  The  Hessian  matrix was then  calculated  and  diagonal- 
ized to  obtain  the eigenvalues and  the eigenvector matrix W. The 
eigenvalues are  the  angular  frequencies  squared  and so define 
the frequencies of oscillation of  the  normal  modes.  The  normal 
modes themselves are given by the  columns of W, which is nor- 
malized to  identity  matrix.  The  mean-square  fluctuation  of  the 
ith  atomic  coordinate is given by 

Comparison of principal  component 
and  normal  mode  vectors 

To quantify  the similarity between the principal component vec- 
tors  and  the  normal  mode  vectors,  the  inner  products  are cal- 
culated. To do this, first the average conformation  from  the MD 
and  the  minimized  structure  of  the  normal  mode  analysis  are 
brought  into  their  best-fit  positions,  reorientating  the  normal 
mode  and  principal  component  vectors  accordingly. If w, rep- 
resents  the ith  normal  mode  vector  and u, represents  the j t h  
principal  component  vector,  then  their  inner  product is defined 
as 

Because both sets of vectors are  orthonormal,  the following con- 
dition  must  hold: 

3N-6 2 g,:=1. 
i = l  

(7) 

The  quantities g,$, then,  quantify  the similarity  between the  ith 
normal  mode  vector  and  the j t h  principal  component. 

Spectral  density 

All of  the  quantities  defined  above  for  analysis of the MD re- 
sults  are  derived  from  the  mean-square  fluctuations of atomic 
fluctuations.  Quantities  determined from  the  normal  mode  anal- 
ysis and  the  principal  component  analysis  contain  no  informa- 
tion on  the  actual  dynamics if the  dynamics  are  not  purely 
harmonic.  The  spectral  density is defined  as 

where 

(9) 

ysis or effective frequency density from  the principal component 
analysis. 

Results 

The  total mass-weighted mean-square  fluctuation  (normalized 
by  dividing by the  total  mass)  calculated  over  the  whole 200-ps 
MD trajectory  has a value of 1.47 A’. Calculated  over  just  the 
first 100 ps,  the value  is 1.03 A 2 .  The  normal  mode  analysis 
gives the  considerably lower  value of 0.40 A2 for  this  quantity. 
The  principal  components  are  arranged in order  of  their  mean- 
square  fluctuations, i.e., the first has  the  largest,  the second the 
second  largest,  and so on.  It  has been shown previously (Kitao 
et  al., 1991; Hayward  et  al., 1993) that  the  first few principal 
components  make  an  overwhelming  contribution to the  total 
mean-square  fluctuation in comparison  to  the higher principal 
components,  i.e.,  over  the  first 100 ps,  the  first  principal  com- 
ponent contributes  23%  to the total mass-weighted mean-square 
fluctuation,  the  second, 13%, the  third,  8.6%;  over  the  whole 
200-ps trajectory,  the first  principal component  alone makes the 
overwhelming  contribution of 43%,  compared  to  7%  for  the 
second  and 4.9% for  the  third.  Figure 1, constructed using 
Equation  2,  shows  the 200-ps MD trajectory  projected  onto  the 
plane  defined by the  first 2 principal  components. Because the 
first and  second  principal  components  together  contribute 50% 
to  the  total mass-weighted mean-square  fluctuation of the  pro- 
tein,  Figure 1 must give a fairly  accurate  representation of the 
character  of  the  motion.  The  trajectory begins on the  right-hand 
side of the  figure  and  ends  on  the  left-hand side. A clear  clus- 
tering  effect is visible, indicative of the expected multiple-minima 
nature of the  conformational energy surface for a protein in vac- 
uum.  The cluster on the  left-hand side  of the figure corresponds 
to  the  trajectory  from 130 to 200 ps. It is clear that  the first  prin- 
cipal  component  corresponds  to  the  transitions visible in this 
figure. 

Table 1 shows  the values for  the  inner  products,  calculated 
using Equation 6, between the first 10 principal components  and 
the first 10 normal  mode vectors. Using Equation  7,  one can cal- 
culate  the  extent  to which each  principal  component  can  be ex- 
pressed by a set  of normal  modes.  The  right-hand  column  of 

and  ui(t) is the mass-weighted  velocity of the  ith  atomic  com- 
ponent  at  time t. F ( w )  is a quantity  that  contains dynamics and, 
provided  there is no  external  motion, is directly  comparable  to 
the  frequency  density  determined  from  the  normal  mode  anal- 

1 S t  Principal Component <A> 
Fig. 1. Projection  of 200-ps trajectory onto plane defined by first 2 
principal components. 
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Table 1. Inner products between first 10 normal modes (NM) and first 10 principal components (PC) 

NM no. 

PC  no. 1 2 3 4 5 6  7  8  9 10 Percentagea 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

-0.18 0.13 0.25 
-0.23 0.33 -0.34 

0.30 0.27 -0.41 
0.02 0.15 -0.15 
0.40 -0.07 -0.06 
0.18 0.04 0.01 
0.01 0.39 0.00 
0.05 -0.03 0.06 
0.13 -0.04 0.00 

-0.07 0.13 -0.08 

-0.08  0.27  0.17  0.25 
0.02  0.30  0.02 -0.07 
0.06 -0.16  0.04  0.09 

-0.24 -0.06 0.07 -0.01 
0.35 -0.32 -0.06 0.20 
0.34  0.24  0.06  0.17 
0.06 0.05 -0.10 0.08 
0.05 0.01 0.16 -0.09 
0.10 0.26 -0.17 0.09 

-0.03  -0.25  0.21  0.03 

0.09 
0.01 

-0.11 
-0.04 

0.05 
0.13 

-0.34 
0.02 

-0.06 
0.12 

0.38  0.08  30.1 
0.04 -0.10 39.4 
0.03 0.05 38.9 

-0.04 -0.05 11.3 
0.01 -0.10 44.3 

-0.15 0.07 28.8 
0.13 -0.12 20.1 

-0.03 -0.1  1 5.6 
-0.04 0.03 13.9 

0.03 -0.07 16.5 

~ 

a Degree to which each of the first 10 principal components can be expressed in the subspace of the first 10 normal modes. 

Table 1 shows the degree to which  each principal component can 
be expressed  in the subspace defined by the first 10 normal mode 
vectors. 

By taking  their inner product,  one finds that the first princi- 
pal component derived from the whole 200-ps trajectory can be 
expressed to 66% by the first principal component derived from 
the first 100-ps trajectory. In the case of the second principal 
component,  the corresponding value is 74%. 

Figure 2 shows the probability densities for  the  first, second, 
third,  fourth,  loth,  and 100th principal components derived di- 
rectly from  the  MD using Equation  2 in comparison with the 
Gaussian distributions derived using Equation 4. The first prin- 
cipal component shows peaks clearly associated with the clus- 
ters in Figure 1. Surprisingly, the second and higher principal 
components show considerable agreement with the Gaussian dis- 
tributions, a result  similar to that of Amadei et al. (1993)  in their 
analysis of a 900-ps MD trajectory of lysozyme in water. De- 
spite  this  general  agreement, the character of the expected 

multiple-minima energy surface still features in these figures, 
e.g., the peak between -0.3 A and 0 A seen in the probability 
density for  the second principal  component  can be identified 
with the cluster on  the left-hand side of Figure 1. 

Figure 3 shows the frequency of each mode  plotted against 
mode  number for  both  the principal components and  normal 
modes. In this figure the scale for  the  normal mode frequency 
is a  factor of 1.4 greater than  the scale for  the principal com- 
ponent frequency. One can see considerable agreement over the 
first 700 modes. However, one exception to this agreement oc- 
curs for  the first modes, the ratio of the first  normal mode fre- 
quency to  the first principal component frequency being 4.0. 

Using Equation 5, the RMSF values of the C" atoms can be 
calculated from  the normal  mode analysis. Figure 4A shows 
these in comparison with the RMSF values for  the C" atoms 
calculated from the MD. One can see that the normal mode anal- 
ysis predicts some of the features in the pattern of peaks and 
troughs in the MD RMSF values, but considerably underpredicts 

1 1.5 

0.8 1.5 

>\ .e 0.4 

c 0.2 
v) 0.5 

Q, Fig. 2. Probability densities along first, 
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Fig. 3. Mode frequency plotted against mode number, for principal 
component  (continuous line) and normal  mode  (broken line). 

their  actual values. Figure 4B shows the MD RMSF values of 
the C" atoms in comparison with the contribution from  just  the 
first principal component. This shows that  the transitions in the 
direction of the first  principal  component are  alone sufficient 
to determine the overall pattern of peaks and troughs in the  to- 
tal RMSF values for  the C" atoms. Figure 4C shows the result 
from  the normal  mode analysis for  the RMSF values of the C" 
atoms, now multiplied by the factor of 1.4, in comparison with 
the contribution from all principal  components excluding the 
first one. The  good  correspondence between the two is clearly 
visible. 

Figure 5 shows the spectrum, calculated using Equation 8, 
over the whole 200-ps trajectory in comparison with the fre- 
quency density derived from  the normal  mode analysis and  the 
effective frequency density from  the principal component anal- 
ysis. The spectral density showed no change when calculated 
over just the first 100 ps. In the previous paper (Hayward et al., 
1993), the vacuum spectral density contained broad peaks cen- 
tered on 120 cm" and 200  cm" . By performing  the  Fourier 
transforms using the IMSL fast Fourier  transform  routine on 
the velocity trajectory at 12-fs intervals  instead of an original 
18-fs interval, these peaks were  seen to shift to frequencies  higher 
than 600 cm" , the maximum frequency displayed in Figure 5 ,  
showing that they were aliased signals of motions with frequen- 
cies  much higher than the sampling frequency. The normal mode 
analysis predicts the spectral density quite accurately. The  ef- 
fective frequency density calculated from  the principal  compo- 
nent analysis accurately predicts the upper extent of the spectral 
density. The  fact that  the frequency density from  the normal 
mode analysis runs slightly  below that of the effective frequency 
density from the principal component analysis can be explained 
by Figure 3. Because the frequency densities are given by the in- 
verse derivative of  the curves in Figure 3, the difference in scale 
means that,  for a given frequency interval, there are fewer nor- 
mal modes than principal  components.  In addition,  the peaks 
in Figure 5 are a result of a minimum in  the derivative in the 
curves of Figure 3 at approximately the 100th mode.  The dif- 
ference  in  scale, then, explains why the peak  in the normal mode 
frequency density occurs at a siightly higher frequency than  for 
the effective frequency density. 

2 1- A 

2 .  

1.5 . 

0 
0 10 20 30 40 50 60 

Residue Number 
Fig. 4. RMSF values of C" atoms plotted against residue number. 
A: Total RMSF of C" atoms (continuous line), in comparison with  re- 
sult from normal mode analysis (broken line). B: Total RMSF of  C" 
atoms (thick line), in comparison with contribution  from first princi- 
pal component only (thin line). C: Contribution from all principal com- 
ponents excluding the first one (continuous line), in comparison with 
results from normal mode analysis multiplied by the  factor 1.4 (broken 
line). 

Discussion 

The  dual aspects of harmonicity and anharmonicity found in 
previous experimental and computational works on protein dy- 
namics are clearly demonstrated in this work. The  anharmonic- 
ity is  visible in the clustering effect in Figure 1, indicative of the 
expected multiple-minima nature of the potential energy surface. 
The harmonic aspect is demonstrated in the correspondence be- 
tween the results of the normal mode analysis and principal com- 
ponent analysis as shown in Figures 3,4C, and 5 .  Interestingly, 
the  anharmonic aspect appears  to be embodied to a  greater ex- 
tent in the first principal component than any other. In fact,  the 
first  principal component, which clearly represents the transi- 
tions between minima (see Fig. 1) and makes, in comparison to 
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Fig. 5. Spectral  density  calculated  using  Equation 8 (fine  broken  line), 
in  comparison  with effective frequency  density  from  principal compo- 
nent  analysis  (thick  broken  line)  and  frequency  density  from  normal 
mode analysis (continuous line). 

other principal components,  an overwhelmingly large contribu- 
tion to  the  total mean-square fluctuation (see Fig. 4B), displays 
behavior qualitatively different from all other principal compo- 
nents.  This is obvious in Figure 2, where it is the  only  principal 
component not well approximated by a Gaussian. It is also dem- 
onstrated by the degree of correspondence between the princi- 
pal  component analysis and  the  normal mode analysis (Figs. 3, 
4C), found only when the first principal component is excluded. 
This correspondence between the normal mode analysis and the 
principal component analysis  is not exact, however, but involves 
a  factor of 1.4, i.e., the RMSF values for  the C" atoms  from 
the principal  component analysis are,  on average, a  factor of 
1.4 greater than their  corresponding values from  the normal 
mode analysis. Kitao et al. (1991), in their comparison of a nor- 
mal mode analysis with MD simulations on melittin, also found 
that the RMSF values of the C" atoms from the MD simulation 
in vacuum were a factor of about 1.4 greater than those from 
the  normal  mode analysis. However, in the work on crambin 
by Teeter and Case (1990), where a  comparison between a  nor- 
mal mode analysis and a 100-ps vacuum MD simulation was 
made, a  greater degree of correspondence than here was seen 
for  the RMSF values of the residues (averaged over backbone 
heavy atoms),  although, over the final 8 residues, in the floppy 
loop region, the values from  the  MD simulation also exceed 
those from  the  normal mode by about  the same factor. 

These results appear  to be in contradiction with those from 
the  normal  mode  refinement  method  applied  to lysozyme 
(Kidera et al., 1992). There,  a  comparison  of the RMSF values 
of the residues determined from  the X-ray diffraction experi- 
ment showed a quantitative agreement with the normal  mode 
analysis results on  that protein.  Looking at Figure 4A, we see 
that here no such agreement exists. However, there are 2 essen- 
tial differences between this study and  that one.  In  the case of 
the  normal  mode refinement experiment, lysozyme was, first, 
in a crystal environment and, second, solvated by water. As for 
the  latter, in a previous paper,  a  comparison between an  MD 
simulation of BPTI in  water and in vacuum was made (Hayward 
et  al., 1993). The  difference between the water and vacuum re- 
sults found  there is not sufficient to account for the discrepancy 

found here. Below we make the argument that if one takes the 
crystal environment into  account,  one may then expect to find 
a  good agreement between the results from  the  normal mode 
analysis and those from  an MD simulation. 

Let us assume that,  for proteins in general, the unique  mo- 
tion represented by only the first principal component in the case 
of BPTI is actually represented by a small number  of the low- 
est frequency principal components. Let us call these modes the 
anharmonic modes and all others the harmonic  modes. 

In a crystal environment, large-scale motions, such as those 
represented by the  anharmonic modes, are expected to be  se- 
verely restricted. Evidence for this comes from the NMR exper- 
iments on the calcium binding protein calmodulin (Ikura et al., 
1992). Calmodulin is  very flexible in solution, undergoing ex- 
tremely large-scale bending hinged at the center of the long cen- 
tral helix. In the crystal, however, this helix is rigid. Further 
evidence for  the effect of the crystal environment on collective 
motions can be found in the work on hemoglobin crystals, where 
no cooperativity was found upon the binding of oxygen, sug- 
gesting that  the concerted conformational changes in structure 
are unable to occur in the crystal (Mozzarelli et al., 1991). We 
assume, then,  that  the motion represented by the  anharmonic 
modes is frozen when a  protein is in its crystal environment.  In 
the case of BPTI, we expect the  motion represented by the first 
principal  component only to be frozen.  However, directly re- 
moving the contribution  from  the first principal component, in 
the case  of BPTI, still  leaves the factor of 1.4  between the RMSF 
values from  the normal  mode analysis and those from  the  MD 
simulation to be accounted for. This discrepancy could be  ex- 
plained by a coupling between modes as found in the work by 
Horiuchi and Gd (1991) on lysozyme. There, the trajectories of 
a Monte  Carlo simulation and a vacuum MD simulation were 
projected onto the normal modes to determine the extent to 
which the  normal mode analysis predicted the  actual RMSF val- 
ues. It was found  that,  for some modes, the normal  mode  anal- 
ysis underpredicted their true RMSF values. This was explained 
by a coupling between the higher and lower modes, whereby 
movement along the lower mode  shifted the minimum point of 
the potential energy along the direction of the higher mode (see 
Fig. 6A). However, the picture here  is more accurately displayed 
by Figure 6B. Motion in the direction of the  anharmonic modes 
occurs as a series of barrier crossing events that  are relatively 
weakly coupled to the  harmonic modes. Given such a coupling, 
the freezing of the motion  along the  anharmonic modes would 
reduce the RMSF values along all other modes. It is suggested, 
therefore, that in the crystal environment,  the freezing of the 
motion along the  anharmonic modes brings the results into 
agreement with those from  the  normal mode analysis. We are 
currently investigating this possibility. 

Although normal mode analysis considerably underpredicts 
the MD RMSF values, as seen  in Figure 4A, the direction of the 
transition as described by the first principal  component  occurs 
to a significant extent in the subspace described by the first 10 
normal modes, a result also found in a comparison of a normal 
mode analysis with MD simulations in water and vacuum on the 
polypeptide melittin (Kitao et al., 1991). These results support 
the concept of an important subspace defined by a subset of low 
frequency normal modes used in normal mode refinement of 
X-ray data. 

One important question concerns the length of the simulation 
and how our results would have differed  had we done,  for ex- 
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Anharmonic Modes 

Fig. 6. A: Each  point  on  the  curved  line  represents  the  minimum  in 
potential  energy  along  the  direction  of  the  higher  mode  variable  (here 
labeled as  “Harmonic  Modes”  variable) for a given value  of  the  lower 
mode  variable  (here  labeled  as  “Anharmonic  Modes”  variable;  from 
Horiuchi  and Gd [1991]). B: Picture  developed  here.  Ellipses  represent 
potential  energy  minima, well separated  in  direction  of  anharmonic 
modes.  Due  to  coupling,  barrier  crossing  in  the  direction  of  the  anhar- 
monic  modes causes a slight increase in the  RMSF values of the  harmonic 
modes. 

ample, a 1-ns simulation.  Apart  from  the  first  principal  com- 
ponent,  the  plots  in  Figure 2 indicate  that,  for  these  modes, 
convergence  has been achieved.  However,  in a longer  simula- 
tion new transitions  are expected to  occur.  Here  the  transition 
in the  final 100 ps  occurred largely in  the  same  direction  as  the 
transition  in  the  first 100 ps  of  the  simulation, suggesting the 
possibility that  the  results  would  not  change  qualitatively  for a 
longer  simulation. 

One  further  important  question is to  what  extent  the  results 
would have  been affected if the  simulation  had been performed 
in  water.  In a previous  work  (Hayward  et  al., 1993), a compar- 
ison between an MD simulation  in  vacuum  and in water was 
made.  The results  of that work  show that  many of the plots  pre- 
sented here  would have been affected by the presence of  a  water 
solvent. However,  the differences were explained by treating the 
principal components as harmonic oscillators, the solvent  influ- 
encing  the  dynamics  through  the  friction  term  in  the  Langevin 
equation  for a damped  harmonic oscillator. If that  model is cor- 
rect,  then  none  of  the  main  conclusions  would  be  affected by 
the presence of a water  solvent. 

The  picture  emerging  for  protein  dynamics is one in  which  a 
small  number  of  variables  are necessary to  describe large-scale 
motions of possible  functional  significance.  In  this  work a sin- 
gle  variable  appears to  be  unique  in  describing  the  motion in 
BPTI and  represents  apparent  barrier  crossing  of  the  multiple- 
minima  conformational energy surface.  The  motion  in  the  di- 
rection of  this  variable  obscures  the  actual  correspondence with 
the  normal  mode analysis  results. It is thought  that  this  motion 
is frozen in  the crystal  environment and  the correspondence then 
becomes  exact. 
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