Unexpected sequence similarity between nucleosidases and phosphoribosyltransferases of different specificity

ARCADY R. MUSHEGIAN¹ AND EUGENE V. KOONIN²

¹ Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546-0091

² National Center for Biotechnology Information, National Library of Medicine,

National Institutes of Health, Bethesda, Maryland 20894

(RECEIVED February 17, 1994; ACCEPTED April 29, 1994)

Abstract

Amino acid sequences of enzymes that catalyze hydrolysis or phosphorolysis of the N-glycosidic bond in nucleosides and nucleotides (nucleosidases and phosphoribosyltransferases) were explored using computer methods for database similarity search and multiple alignment. Two new families, each including bacterial and eukaryotic enzymes, were identified. Family I consists of *Escherichia coli* AMP hydrolase (Amn), uridine phosphorylase (Udp), purine phosphorylase (DeoD), uncharacterized proteins from E. coli and Bacteroides uniformis, and, unexpectedly, a group of plant stress-inducible proteins. It is hypothesized that these plant proteins have evolved from nucleosidases and may possess nucleosidase activity. The proteins in this new family contain 3 conserved motifs, one of which was found also in eukaryotic purine nucleosidases, where it corresponds to the nucleoside-binding site. Family II is comprised of bacterial and eukaryotic thymidine phosphorylases and anthranilate phosphoribosyltransferases, the relationship between which has not been suspected previously. Based on the known tertiary structure of E. coli thymidine phosphorylase, structural interpretation was given to the sequence conservation in this family. The highest conservation is observed in the N-terminal α -helical domain, whose exact function is not known. Parts of the conserved active site of thymidine phosphorylases and anthranilate phosphoribosyltransferases were delineated. A motif in the putative phosphate-binding site is conserved in family II and in other phosphoribosyltransferases. Our analysis suggests that certain enzymes of very similar specificity, e.g., uridine and thymidine phosphorylases, could have evolved independently. In contrast, enzymes catalyzing such different reactions as AMP hydrolysis and uridine phosphorolysis or thymidine phosphorolysis and phosphoribosyl anthranilate synthesis are likely to have evolved from common ancestors.

Keywords: nucleosidases; phosphoribosyltransferases; sequence similarity

Enzymes that catalyze hydrolysis or phosphorolysis of the *N*-glycosidic bond in nucleotides, nucleosides, and related compounds are central to salvage pathways of nucleotide metabolism and are also important in de novo synthesis of nucleotides and certain amino acids (Table 1; reviewed by Lin, 1987; Neuhard & Nygaard, 1987). Nucleosidases are involved in the regulation of the intracellular concentration of nucleotides and allow utilization of ribose and deoxyribose as a source of carbon and energy. Phosphoribosyltransferases provide, via 5-phosphoribosyl-1-pyrophosphate (PRPP), a crucial link between nucleotide and amino acid metabolism. The substrates of these enzymes are very diverse, but the reacting groups always involve phosphate and ribose or deoxyribose (Table 1). The interest to the nucleosidases has been enhanced by the recent observation that human

platelet-derived endothelial cell growth factor is identical to thymidine phosphorylase (Barton et al., 1992; Ishizawa & Yamada, 1992). Phosphoribosyltransferases also have attracted considerable attention because deficiency in these enzymes leads to various metabolic disorders in humans, e.g., Lesch-Nyhan disease (Stout & Caskey, 1985).

A single organism, i.e., *Escherichia coli*, which has been studied in the most detail, encodes numerous nucleosidases and phosphoribosyltransferases, including enzymes that catalyze essentially identical reactions but differ in their specificity toward the nucleotide base (e.g., thymidine phosphorylase, uridine phosphorylase, and purine phosphorylase; see Table 1). A number of nucleotide sequences of genes encoding these enzymes from all types of organisms have been reported (Table 1). The 3-dimensional (3D) structure has been determined for human purine nucleoside phosphorylase (PNP; Ealick et al., 1990) and *E. coli* thymidine phosphorylase (DeoA; Walter et al., 1990), leading to detailed characterization of the respective active centers. Except for the obvious similarity between human TYPH

Reprint requests to: Eugene V. Koonin, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894; e-mail: koonin@ncbi.nlm.nih. gov.

Protein/ gene ^b	Organism(s)	Enzymatic activity	Reaction	M _r /quaternary structure ^c	Metabolic pathway	References
Udp/ <i>udp</i>	E. coli	Uridine phosphorylase	Uridine + $P_i =$ ribose-1-P + uracil	8 × 22	Pyrimidine salvage	Neuhard & Nygaard, 1987
DeoD/deoD	E. coli	Purine nucleoside phosphorylase	Purine (deoxy)- ribonucleoside + P _i = (deoxy)- ribose-1-P + purine	6 × 23.7	Purine salvage	Neuhard & Nygaard, 1987
Amn/ <i>amn</i>	E. coli	AMP glycosylase	AMP + H ₂ O = adenine + ribose- 5-P	6 × 52	Purine salvage	Leung & Schramm, 1980; Leung et al., 1989; Neuhard & Nygaard, 1987
PNP	Mammals, B. subtilis, M. leprae	Purine nucleoside phosphorylase	Purine (deoxy)- ribonucleoside + P _i = (deoxy)- ribose-1-P + purine	3(2) × 32	Purine salvage	Neuhard & Nygaard, 1987; Lin, 1987; Ealick et al., 1990
DeoA/deoA	E. coli	Thymidine phosphorylase	Thymidine + P _i = ribose-1-P + thymine	2 × 45	Thymidine salvage	Neuhard & Nygaard, 1987; Lin, 1987; Walter et al., 1990
ТҮРН	Human	Thymidine phosphorylase (=PD-ECGF)	Thymidine + P _i = ribose-1-P + thymine	2 × 45	Thymidine salvage	Yoshimura et al., 1990; Bartonet al., 1992
TrpD/ <i>trpD</i> (Eubacteria)	Eubacteria, archaea, yeast, plants	Anthranilate phosphoribosyl- transferase	Anthranilate + PRPP = N- phosphoribosyl- anthranilate + PP _i	2(?) × 36	Second step in tryptophan biosynthesis	Crawford, 1989; Kim et al., 1993
TrpG∕ <i>trpG</i>	E. coli and sev- eral other bac- terial species	Anthranilate phosphoribosyl- transferase (with N-terminal gluta- mine aminotrans- ferase domain)	Anthranilate + PRPP = N- phosphoribosyl- anthranilate + PP _i ; chorismate + L-glutamine = anthranilate + pyruvate + L-glutamine	2 × 58.3	First and second step in trypto- phan biosyn- thesis	Pittard, 1987; Crawford, 1989
Apt/apt (E. coli)	Eubacteria, eukaryotes	Adenine phospho- ribosyltransferase	$Adenine + PRPP = AMP + PP_i$	2×20	Purine salvage	Neuhard & Nygaard, 1987
Gpt/gpt (E. coli)	Eubacteria, eukaryotes	Guanine phospho- ribosyltransferase	Guanine + PRPP = $GMP + PP_i;$ xanthine + PRPP = XMP + $PP_i;$ hypoxan- thine + PRPP = $HXMP + PP_i$	3 × 16.9	Purine salvage	Neuhard & Nygaard, 1987
Hpt/hpt (L. lactis)	Eubacteria, eukaryotes	Hypoxanthine phosphoribosyl- transferase	Hypoxanthine + PRPP = IMP + PP _i	? × 20	Purine salvage	Neuhard & Nygaard, 1987
Upp/ <i>upp</i> (E. coli)	Eubacteria, eukaryotes	Uracil phospho- ribosyltransferase	$Uracil + PRPP = UMP + PP_i$	3 × 23.5	Pyrimidine salvage	Neuhard & Nygaard, 1987
PyrE/ <i>pyrE</i> (E. coli)	Eubacteria, eukaryotes	Orotate phospho- ribosyltransferase	$Orotate + PRPP = OMP + PP_i$	2 × 23.4	Fifth step in pyrimidine biosynthesis	Neuhard & Nygaard, 1987

 Table 1. Nucleosidases, phosphoribosyltransferases, and related enzymes^a

(continued)

Table 1. C	Continued
------------	-----------

Protein/ gene ^b	Organism(s)	Enzymatic activity	Reaction	M _r /quaternary structure ^c	Metabolic pathway	References
PurF/ <i>purF</i> (E. coli)	Eubacteria, eukaryotes	Glutamine phospho- ribosyltransferase	L-glutamine + PRPP = L-glutamate + PP _i + 5-phos- phoribosylamine	4(3) × 53	First step in de novo purine biosynthesis	Neuhard & Nygaard, 1987
HisG/hisG (E. coli)	Eubacteria, eukaryotes	ATP phosphoribo- syltransferase	ATP + PRPP = 1-(5-phospho-D- ribosyl)-ATP + PP _i	6 × 33	First step in histidine biosynthesis	Winkler, 1987
PncB/pncB (E. coli)	E. coli	Nicotinate phospho- ribosyltransferase	Quinolinate + PRPP = $NaMN + PP_i +$ CO_2	? × 44	NAD biosynthesis	White, 1982; Tritz, 1987
NadC/ <i>nadC</i>	S. typhimurium	Quinolinate phos- phoribosyltrans- ferase	Nicotinate + PRPP + ATP = NaMN + PP _i + ADP + P _i	2 × 31	NAD biosynthesis	White, 1982; Tritz, 1987
PrsA/prsA (E. coli)	Eubacteria, eukaryotes	Ribose-phosphate pyrophosphokinase (PRPP synthetase)	ATP + ribose- 5-phosphate = AMP + PRPP	5(?) × 31	PRPP synthesis for de novo and salvage pathways of nucleotide metabolism	Neuhard & Nygaard, 1987

^a Only enzymes for which sequence information is available were included.

^b Where sequences are available for several organisms, the protein/gene name is for the organism(s) indicated in parentheses.

^c The first number is the number of identical subunits and the second number is the M_r .

(endothelial growth factor) and *E. coli* thymidine phosphorylase encoded by the *deoA* gene (Barton et al., 1992), and the somewhat lower similarity between human PNP and partial nucleosidase sequence from *Bacillus subtilis* (Wu et al., 1992), no significant relationships have been derived from analysis of amino acid sequences of nucleosidases. On the other hand, comparative analysis of the amino acid sequences of phosphoribosyltransferases has revealed a conserved motif that has been implicated in PRPP binding (Busetta, 1988; de Boer & Glickman, 1991).

In this work, using computer methods for sequence analysis, we delineate 2 new families of nucleosidases and phosphoribosyltransferases, each including unexpected relationships between enzymes that catalyze very different reactions.

Results and discussion

Comparison of the amino acid sequences of nucleosidases with the nonredundant sequence database (National Center for Biotechnology Information, NIH) using the BLASTP (Altschul et al., 1990) program revealed highly significant similarity between *E. coli* purine phosphorylase (DeoD) and uridine phosphorylase (Udp), with the probability of matching by chance (*P*) about 10^{-8} . More unexpectedly, significant similarity (*P* = 3.6×10^{-5}) was observed between human thymidine phosphorylase (TYPH) and *E. coli* anthranilate phosphoribosyltransferase (TrpG). Further analysis by iterative database search using BLASTP, TBLASTN (screening of a nucleotide sequence database translated in 6 reading frames for similarity to an amino acid sequence), and multiple alignment using the MACAW program (Schuler et al., 1991) showed that these pairs of relatively strongly similar proteins belonged to 2 distinct families of enzymes that have not been described previously.

Family I: Bacterial nucleosidases and plant vegetative storage proteins

Family I included DeoD, Udp, E. coli AMP glycosidase (Amn), uncharacterized proteins from E. coli, Bacteroides uniformis, and Treponema pallidum, and, unexpectedly, bark storage proteins and wound-induced proteins (BSP-win4 family) from poplars (Fig. 1). Other than the aforementioned relationship between DeoD and Udp, these proteins showed only limited similarity to each other, with P values between 0.1 and 0.01. Nevertheless, analysis of BLAST outputs for mutually consistent pairwise alignments and multiple alignment using MACAW (Schuler et al., 1991) showed that the similarity concentrated in 3 distinct, conserved motifs (Fig. 1). The probability of obtaining each of these blocks by chance alone, as computed using MACAW, was below 10⁻⁵ (only 1 of the closely related BSPwin4 sequences was used for these calculations; see Methods and Schuler et al. [1991] for details of significance evaluation by MACAW), suggesting that the observed relationship is functionally and evolutionarily relevant. Therefore, it is likely that the uncharacterized proteins belonging to this family, including the plant stress-induced proteins, possess nucleosidase activity.

F N

Ι

τ

E

prediction		bblllllbbbbbllllllllaaaaaaa		
AMN_ECOLI	263	ALITADGOGITLVNIGVGPSNAKTICDALA		
NP BACUN	45	ISASAEGMTIINFGMGSPNAAIIMDLLSAI		
DEOD_ECOLI	48	FTGTYKGRKISVMGAGMGIPSCSIYTKELI		
UDP_ECOLI	52	WRAELDGKPVIVCSTGIGGPSTSIAVEELA		
PFS_ECOLI	33	YTGQLNGTEVALLKSGIGKVAAALGATLLL		
BSP1 POPLAR	81	ASGTLNGSSIVYVKTGSASVNMATTLQILL		
BSP2 POPLAR	76	AIGTLNARYIVYVKIGGNSVNAAIAVQILL		
consensus		hh.GUhGhh		
		A		
		<pre>II - nucleoside binding</pre>		
prediction		bbbbb211122222222222222222		
AMN ECOLI	5	VCYIGACGGLEKVEPL-ADYVLAAA 71		
NP BACUN	4	CLFLGKCGGIDKKNRI-GDLILPIA (58)	1.08	472a
DEOD ECOLT	10	IIRVGSCGAVLPAVKL-RDVVIGMG 62	200	1,59
UDP ECOLI	6	FLRIGTTGAIOPAINV-GDVLVTTA 75		
PFS ECOLI	8	IINTGSAGGLAPTLKV-GDIVVSDE 69		
BSP1 POPLAR	7	VIYEGNAGSLOKKTMVPGDVSVPEA 114		
BSP2 POPLAR	7	IIAFGSAGSLDKESIVPGDVSVPLA 114		
		β5A- •-β1B -β6A-		
PNPA_HUMAN	110	LVVTNAAGGLNPKFEV-GDIMLIRD 155	M13	953
PNPA_MOUSE	110	LVVTNAAGGLNPNFEV-GDIMLIRD 155	P23	492
PNPA YEAST	128	LIVTNAAGGINAKYQA-CDLMCIYD (0)	X69	426
consensus		hhGsUh .D&.h		
		III		
prediction	aaa	aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa		
AMN_ECOLI	NLS	RAVAIDMESATIAAOGYRFRVPYGTLLCVSD	53	P15272
DEOD ECOLI	EKY	GILGVEMEAAGIYGVAAEFGAKALTICTVSD	35	P09743
UDP ECOLI	OAM	GVMNYEMESATLLTMCASOGLRAGMVAGVIV	32	P12758
PFS ECOLI	NFF	OAIAVEMEATAIAAVCANFNVPFVVVRAISD	22	P24247
BSP1 POPLAR	DNF	DAKTADTTSASVALTSLSNEKLFVVFOGVSN	38	S135801
BSP2 POPLAR	KVF	NVSTADOESAAVAWTSLSNEKPFIVIRGASN	39	1.202330

The proteins of the nucleosidase family I also contained a region of low similarity to eukaryotic purine nucleoside phosphorylases (PNPs). This similarity has been detected by BLAST searches but failed to attain statistical significance. It was remarkable, however, that this region coincided with the conserved motif II (Fig. 1). The regular expression [&C][&C]x₂ [GN]x₂[GAS]Ux₅[UA]x₁₋₂D&x[UC] (alternative residues are shown in brackets; U designates a bulky aliphatic residue, namely I, L, V, or M; & designates a bulky hydrophobic residue, namely I, L, V, M, F, Y, or W; and x designates any residue) was specific for family I and eukaryotic PNPs, with only 1 false positive (insect general odorant-binding protein 1 precursor; SWISS-PROT P31418) selected during the database screening.

NP TREPA (31) REFGAAGVEMEGAAFAAVASVNGVPFVIIRCISD 31 M30941gh..hE..s..&h......h..&..h..

D

Inspection of the 3D structure of human PNP (Ealick et al., 1990) showed that the conserved motif comprised part of the active center. The central feature of the PNP structure is a distorted β -barrel that consists of 2 β -sheets, one of them 8-stranded (sheet A) and the other one 5-stranded (sheet B). Motif II includes 3 β -strands, two of which belong to sheet A and one to sheet B (Fig. 1). The turn between β 5A and β 1B (or in other words, at the interface between the 2 β -sheets) and β 1B strand itself are directly involved in nucleoside binding. In particular, the backbone amido group of alanine 116 (Fig. 1) forms a hydrogen bond with the ribose 3' hydroxyl (Ealick et al., 1990). Although this residue is not conserved in all of the proteins of family I, this and the adjacent positions contain mostly small residues, namely glycines and serines (Fig. 1), that are likely to

A.R. Mushegian and E.V. Koonin

Fig. 1. Conserved sequence motifs in the nucleosidase family I. The alignment of family I proteins was constructed using the MACAW program, and the boundaries of the 3 conserved blocks were determined so as to achieve maximum statistical significance. The distances between the blocks as well as the distances from protein ends are shown by numbers. For the putative ribose-binding motif (II), the alignment additionally includes mammalian purine nucleoside phosphorylases (PNPs) and the putative PNP from veast. The protein sequence from Mycobacterium leprae that is related to eukaryotic PNPs (GenBank U00022; E.V. Koonin, unpubl. obs.) is not shown; the related sequence from B. subtilis (PIR A42708) is incomplete and includes only the C-terminal part of the protein downstream from motif II. The consensus includes amino acid residues or pairs of similar residues that are conserved in all of the aligned sequences. U designates a bulky aliphatic residue (I, L, V, or M); & designates a bulky hydrophobic residue (I, L, V, M, F, Y, or W); h designates any hydrophobic residue (I, L, V, M, F, Y, W, C, or A); s designates a small residue (G, A, or S); and dot designates any residue. The secondary structure for human PNP is from the published 3D structure; A and B designate 2 distinct β -sheets found in this protein (Ealick et al., 1990). The secondary structure for family I proteins is the consensus of predictions for individual proteins (a designates an α -helix, b designates a β -sheet, and 1 designates a loop). The asterisk designates the alanine residue in human PNP that interacts with the nucleoside ribose. Each sequence is accompanied by its accession number in SWISS-PROT, PIR (P), or GenBank (g). The partial sequences of putative nucleosidases from yeast, Bacteroides uniformis (BACUN), and Treponema pallidum (TREPA) have not been described previously and were identified in this study by database searches using the TBLASTN program.

perform the same function. Therefore, we believe that the structure of the ribose-binding part of the nucleoside-binding site is partially conserved between family I and eukaryotic PNPs. Detailed comparisons failed to reveal any other sequence conservation between these groups of proteins.

The functions of the 2 other conserved motifs in the (putative) nucleosidases of family I remain unknown. It is plausible that motif I, which appears to contain a hydrophobic β -strand separated by a flexible loop from a downstream α -helix (Fig. 1), may be the phosphate-binding site (Saraste et al., 1990; Schulz, 1992).

Delineation of family I resulted in prediction of nucleosidase activity for several uncharacterized proteins. In particular, pfs protein appears to be a new, not identified previously nucleosidase in E. coli; it is distinct from inosine phosphorylase (XapA) whose sequence is not yet available because the respective genes are located in different regions of the chromosome (Brun et al., 1990). Interestingly, the pfs gene is adjacent to the dgt gene encoding dGTP phosphohydrolase, another enzyme of nucleotide metabolism (Wurgler & Richardson, 1990). Conceivably, dGTP phosphohydrolase and the new nucleosidase may be functionally linked. BSP-win4 family proteins in poplars are encoded by a family of physically linked genes and are induced by various stress signals, namely, elevated nitrogen level, short photoperiod, or mechanical wounding; BSP proteins serve as transient nitrogen deposit in bark (Parsons et al., 1989; Clausen & Apel, 1991; Coleman et al., 1992; Davis et al., 1993). Nucleosidase activity appears to be compatible with a stress-related function because it would increase the intracellular pools of free bases and pentoses that could be reused for biosynthetic processes. Alternatively, it is possible that the storage function of BSPs is unrelated to their proposed nucleosidase activity; an obvious parallel is the recruitment of various enzymes as animal lens crystallins (Piatigorsky, 1993).

		I - α-helical domain
structure		-α1α2α3α4
DeoA Ec	8	IRKKRDGHALSDEEIRFFINGIRDNTISEGQIAALAMTIFFHDMTMPERVSLTMAMRDSO
ТҮРН Мр	6	IELKKNKKKLSQDQINFCISGLVNKSIPDYQISALLMAIWFNGLDDNBLYFLTKAMIDSO
TYPH hum	39	IRMKRDGGRLSEADIRGFVAAVVNGSAQGAQIGAMLMAIRLRGMDLEETSVLTQALAQSO
TrpG Ec 2	03	LEKLYQAQTLSQQESHQLFSAVVRGELKPEQLAAALVSMKIRGEHPNBIAGAATALLENA
TrpD Ac	6	LNRIVNQLDLTTEEMQAVMRQIMTGQCTDAQIGAFLMGMRMKSETIDBIVGAVAVMRELA
TrpD Vp	4	INKLYEQQSLTQEESQQLFDIIIRGELDPILMABALTALKIKGETPDBIAGAAKALLANA
TrpD Bl	9	LNAYLDNPTPTLEEAIEVFTPLTVGEYDDVHIAALLATIRTRGEQFADIAGAAKAFLAAA
TrpD Ba	4	FNKIYESKSLNQEESYQLFKSIALGKINEIQLESILTAMQMHGESEKEILGAIYAFSERM
TrpD Ll	4	LEKVMSGRDMTENEMNMLANSIIQGELSEVQIASFLVALKMKGEAASELTGLARALQKAA
TrpD Bs	4	LQLCVDGKTLTAGEAETLMNMMMAAEMTPSEMGGILSILAHRGETPEBLAGFVKAMRAHA
TrpD Tm	6	LKKLVEFEDLTFEESRQVMNFIMSGNATDAQIAGFLVALRMKEETGDELGGMASVMREKS
TrpD Mt	4	MNDIMDFRNLSEDEAHDLMEMIMDGEMGDVQIAALLTALAMKGETVDBITGFARAMRERA
TrpD Hv	4	IERVTGGADLTVEEARRPPRGRSSEDATEAQIGALLAALRAKGETEABIAGFAQGMRDAA
TrpD At 1	11	IETLIDRVALSETEAESSLEFLL-NEANEALISAFLVLLRAKGETYEBIVGLARAMMKHA
TrpD Sc	26	DALLVILSLLQKCDTNSDESLSIYTKVSSFLTALRVTKLDHKAEYIAEAAKAVLRHSDLV
YbiB Ec	10	GRGKNHARDLDRDTARGLYAHMLNGEVPDLELGGVLIALRIKGEGEABMLGFYEAMONHT
prediction		aaaaallllllaaaaaaaaaallllaaaaaaaaaalllaaaa
consensus		U
		D
		II - phosphate binding
structure		==
DeoA Ec	13	IVDKHSTGGVGDVTSLMLGPNVAACGGYIPMISGRGLGHTGGTLDKLESI
TYPH Mp	12	LIDKHSTGGIGDKVSIALRPILVSFDLGVAKLSGRGLGFTGGTIDKLESI
TYPH hum	12	LVDKHSTGGVGDKVSLVLAPALAACGCKVPMISGRGLGHTGGTLDKLESI
		1 • 1*** * 1* * **** ** 1 *111 1*1 • • 11
TrpG Ec	9	FADIVGTGGDGSNSINISTASAFVAAACGLKVAKHGNRSVSSKSGSSDLLAAF
TrpD Ac	10	LVDIVGTGGDGQNLFNVSTASSFVIAAGATIAKHGNRGVSSKSGSSDLLEQA
TrpD Vp	9	FADIVGTGGDGHNTINISTTAAFVAAACGLKVAKHGNRSVSSKSGSSDLLDSF
TrpD Bl	9	LLDSAGTGGDGANTINITTGASLIAABGGVKLAKHGNRSVSSKSGSADVLEAL
TrpD Ba	9	FSDIVOTGGDSKNTINVSTSSAFVAASCGFKIIKHCNKGVSSKSGSSDLLNKF
TrpD Ll	9	AMDNCOTGGDRSFSFNISTTAAFVLAAGGVNMAKHGNRSITSKSGSADVLEAL
TrpD Bs	8	IVDTCOTGGDGISTFNISTPSAIVASAAGAKIAKHGNRSVSSKSGSADVLEEL
TrpD Tm	10	TVDTCGTGGDGFGTFNISTTTAFVVAAaGIPVAKHGNRSVSSKVGSADVLEAG
TrpD Mt	10	VVDACGTGGDRFKSYNVSTAAAIIAAAAGVKVAKHGNRAVTGSCGGADILEAA
TrpD Hv	9	SSDTAGTGGDDYNTINVLDPTTRSSAAAPGAAAVAKHGNYBVSSSSGSADVLEVA
TrpD At	8	AVDIVGTGGDGANTVNISTGSSILAAACKVAKQGNRSSSACGSADVLEAL
TrpD Sc	17	ILDIVGTGGDGQNTFNVSTSAAIVASGIQGL-KICKHGGKASTSNSGAGDLIGTL
YbiB Ec	10	MPIVIPSYNGARKQANLTPLLAILLHKLGFPVVVHGVSEDPTRVLTETIFELM
prediction		bbbbbl11111111?????aaaaaaaa111 bbbbbb111111111aaaaaaaa
consensus		h.DsTGGUShh.sUGsGD.&h
		8 T S
		III - pyrimidine/anthranilate(?) binding
structure		α9 ===β4A===α10
Deel Re	БЭ	
DECA EC	ວງ ເວ	IIASILAKALAEG-LUALVMUVKVGSGAFMPTYELSEALAEAIVGV 213 P07650
TYPH hum	54	TENSILSANERDE-SUITFULKIGUGAFUHULETAKKISNIRKNU 224 LI32890
	- L -	TINGIDGARWEG-BOARWEGGARVEPNUEGARELAKTEVGV Z14 P199/1

-				
TYPH hum	51	ITASILSKKLVEG-LSALVVDVKFGGAAVFPNQBQARELAKTLVGV	214	P19971
		* . * . * * *		
TrpG Ec	65	VYSPELVLPIAET-LRVLGYQRAAVVHS-GGMDEVSLHAPTIVAEL	96	P00904
TrpD Ac	66	VFTQELCKPLAEV-LKRLGSEHVLVVHSRDGLDEFSLAAATHIAEL	109	P00500
TrpD Vp	66	VYSEELVRPIAET-MLQMGMKRAAVVHG-SGLDHVAIHGTTTVAEI	96	P22096
TrpD Bl	66	VANANHGQLIAEV-FRELGRTRALVVHG-AGTDBIAVHGTTLVWEL	107	P06559
TrpD Ba	66	VYKKDLVNPMSRI-LKKLKYQRGIILHG-DDTDEVTLHGTTYISEL	99	Z19055a
TrpD Ll	66	TSRPDLLELTANV-LKGLGRKRALVITGEGGMDEATPFGLNHYALL	98	002000
TrpD Bs	65	GYSVEKAGLMASA-LETFQPKHVMFVSSRDGLDELSITAPTDVIEL	102	P03947
TrpD Tm	66	VFDLSFASKLATA-LORLGTERSAVVNG-GFTDELTTCGKNNLLLV	110	S62627p
TrpD Mt	66	VFDPYLVGPVAEV-LRNLGVKRAMVVHGFDGNMNPAMDEISTVGPT	98	P26925
TrpD Hv	66	VYDADLVPVIAES-LSHMPVERALVVHG-SGMDBIALHDRTTVAEI	104	M83788a
TrpD At	66	VYHKDLVVKMAKA-LQRFGMKRALVVHS-CGLDEMSPLGGGLVYDV	103	Q02166
TrpD Sc	68	VYSKELAPEYAKAAALVYPGSETFIVWGHVGLDEVSPIGKTTVWHI	108	P07285
YbiB Ec	68	VSHPEYIGRVAKF-FSDIGG-RALLMHGTEGEVYANPORCPOIN	77	P30177
prediction		?????aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa		
consensus				

Family II: Thymidine phosphorylases and anthranilate phosphoribosyltransferases

Family II consisted of bacterial and mammalian thymidine phosphorylases and numerous anthranilate phosphoribosyltransferases from bacteria, archaea, and yeast (Fig. 2). Anthranilate phosphoribosyltransferase is a ubiquitous enzyme that catalyzes

> Fig. 2. Conserved sequence motifs in family II: thymidine phosphorylases and anthranilate phosphoribosyltransferases. The consensus shows the conserved amino acid residues with 1 possible exception; residues that conform to the consensus are highlighted by bold. Asterisks show identical residues, and colons show similar residues in the sequences of human TYPH and E. coli TrpG. The secondary structure for DeoA is from the published 3D structure (Walter et al., 1990); the secondary structure for anthranilate phosphoribosyltransferases is the consensus of predictions. Daggers denote the amino acid residue that directly contacts the phosphate in DeoA: exclamation marks show residues that contact the pyrimidine base. For the other details and designations see legend to Figure 1. Ec, E. coli; Mp, Mycoplasma pyrum; Ac, Acinetobacter calcoaceticus; Vp, Vibrio parahaemolyticus; Bl, Brevibacterium lactofermentum; Ba, Buchnera aphidicola; Ll, Lactococcus lactis; Bs, Bacillus subtilis; Tm, Thermotoga maritima; Mt, Methanobacterium thermoautotrophicum; Hy, Haloferax volcanii; At, Arabidopsis thaliana; Sc, Saccharomyces cerevisiae.

the second step in tryptophan biosynthesis (Table 1; reviewed by Crawford, 1989). Apart from the already mentioned highly significant similarity between human TYPH and E. coli TrpG, BLAST searches detected moderate similarity between various anthranilate phosphoribosyltransferases and thymidine phosphorylases, with P values between 0.1 and 0.001. The region of highest conservation in most of these analyses included a block of about 60 amino acid residues that in the majority of the family II proteins is located near the N-terminus (with the exception for 2 domain enzymes of tryptophan biosynthesis, e.g., E. coli TrpG that contain the N-terminal anthranilate synthetase domain). Subsequent multiple alignment analysis revealed 2 additional conserved blocks (Fig. 2). For the set of 6 sequences including the E. coli and human thymidine phosphorylases, together with 4 diverse sequences of anthranilate phosphoribosyltransferases, the random matching probabilities for each of the 2 N-terminal blocks were below 10^{-19} , as computed using MACAW.

The alignment of family II is readily interpretable in terms of the known 3D structure of E. coli thymidine phosphorylase, DeoA (Walter et al., 1990). The protein molecule consists of the small α -helical domain and the large α/β domain. The α -helical domain is comprised of amino acid residues 1-65 and 163-193. Strikingly, it is this domain that is most highly conserved between thymidine phosphorylases and TrpD (blocks I and III in Fig. 2 containing $\alpha 1$ -4 and $\alpha 9$, respectively). Secondary structure prediction indicated that the respective regions of TrpD have α -helical conformation and, for the N-terminal part of the domain, suggested an almost perfect alignment of the 4 helices in TYPH and TrpD (Fig. 2). The N-terminal portion of the α helical domain, and in particular $\alpha 1$ and $\alpha 3$, is involved mostly in subunit interaction in the DeoA dimer. On the other hand, sequence conservation in $\alpha 4$, including the nearly invariant glutamic acid (Fig. 2), may suggest a more specific, not yet described function. The distal part of the α -helical domain containing $\alpha 9$ is implicated in the pyrimidine base binding (Walter et al., 1990). Because the geometry of the anthranilate ring is similar to that of a pyrimidine, it seems likely that in TrpD this region contributes to the anthranilate-binding site.

The middle conserved alignment block II in Figure 2 belongs to the large α/β domain of DeoA and contains the phosphatebinding site (Walter et al., 1990). This region includes 2 flexible loops between β 1A and α 5, and between β 2A and α 6, both of which contribute to phosphate binding. The conservation in the first of these loops, which bears general resemblance to the phosphate-binding loops in other classes of enzymes, e.g., ATPases and kinases (Saraste et al., 1990; Schulz, 1992; Koonin, 1993), is particularly striking (Fig. 2; this loop is dramatically altered in E. coli YbiB, suggesting that despite the highly significant similarity to TrpD, this protein may lack the phosphoribosyltransferase activity). This segment belongs to one of the regions of highest conservation in the complete alignment of TrpD (Kim et al., 1993). Previous sequence comparisons and structural modeling indicated that this motif appears to be conserved in almost all phosphoribosyltransferases and is located in a β -strand-loop- α -helix unit within the putative structural core (Argos et al., 1983; Busetta, 1988; de Boer & Glickman, 1991; Fig. 3). It has been speculated by these authors that the conserved motif is part of the PRPP-binding site. The conservation in thymidine phosphorylases that do not interact with PRPP rather indicates that it is a specific form of the phosphate-

sec. str	ruct.	bbbbbiiiiiaaaaaa		
DeoA Ec	79	NGPIVDKHSTOGVGDV	түрн	
түрн мр	76	KKILIDKHSTGGIGDK		
TYPH hum	n 109	ROOLVDKHSTOGVGDK		
Troc Fo	270	DYLEADIVERGEDEEN	Anthr DDT	
TIPO LC	270		AIICIII FAI	
TIPD BI	76	GAGLLDSAGTOGDGAN		
TrpD Ll	71	LTNAMDNCGTGGDRSF		
TrpD Bs	70	LPDIVDTCGTGGDGIS		
TrpD Tm	320	SPRTVDTCGTGGDGFG		
TrpD Mt	74	SHRVVDACGTOGDRFK		
TroD Hy	72	ARSSDTAGTOCDDYN		
TroD At	176	LUDAUDTUCEOCOCAN		
	101	CONTRACTOR CODORI		
Trpu se	101	GPVILDIVGTOGDGQN		
HIS1_ECO) 163	ADALCOLVSTGATLEA	ATP-PRT	P10366
HIS1_LAC	: 149	ADAIVDIVETGNTLSA		Q02129
HIS1_YEA	164	GDAIVDLVESCETHRA		P00498
APT ECOL	119	VLVVDDLLATOGTIEA	APRT	P07672
VSCAPRT	1 123	VVVVDDVT.ATGCTAYA		1.14434
LETADRU	1 120	MILTONIA MOCHAIC		125411
DEINDFH_	1 139	VILIDDVDATOSTALS		523411
APT_ARAT	122	AIIIDDLIATGGTLAA		P31166
APT_HUMA	120	VVVVDDLLATOGTNNA		P07741
S19720	94	VLVVEDIIDTGHTISK	UPRT	S19720
BCPYROP	1 97	VILVDDVLFTGRTVRA		X76083
PYR5 BOV	116	CLITEDVVS8GS8VWE		P31754
UPP FCOL	123	AT.TUDPHT.ATCCEVIA		P25532
OTT_DCOL	1 124			107702
SIRFIFA_	1 124	IF VUPRIATOGSAIL		D10560
FURI_IEA	105	VFLLDPRLATGGBAIM		P18202
XGPT_ECO) 81	FIVIDDLVDTGGTAVA	HPRT	P00501
HPRT_VIE	91	VLIVEDIIDTGNTLNK		P18134
HPRT_PLA	137	VLIVEDIIDTGKTLVK		P20035
HPRT SCH	187	VLVVEDIIDTGKTITK		P09383
TRBHGPRT	104	VI.TVRDTVDTALTINY		1.07486
LETHODE	118	TLTUEDTVDBALTUOV		125412
	110			023412
HPRT_HOM	121	ALIVEDIIDIGKINOI		P00492
PYRE_ECO) 117	VMLVDDVITAGTAIRE	OPRT	P00495
PYRE_BAC	: 119	TVVIEDLISTOGSVLE		P25972
NGRUMPA_	122	CILIEDVITSGASIVE		L08073
CET07C4	123	LILIEDVVTTGGSILD		Z29443
PYRE YEA	125	TLTTDDVNTAGTATNE		P13298
DVDV VDA	120	W.T.T.DOWN A OTD THE		P30402
PIRA_IEA	111	VEILDDVWIAGIRINE		P30402
ATPIKSFA	111	CHIIBDLALBORALE		X/1842
PYR5_DIC	114	VLVVEDLVTSGASVLE		P09556
PYR5_DRC) 117	CLIVEDVVT8GS81LD		Q01637
PYRE_CRY	123	IVIIDDVLTSGKAIRE		P18132
PYR5_HUM	116	CLIIEDVVTSGSSVLE		P11172
PURI ECO	360	VLLVDDSIVRGTTSEO	AmPRT	P00496
	210	VUNUDDCTUDOTTCDD		D00107
PURI_BAC	, 343	VVAVDDSI VRGITSKR		P00497
PURI_YEA	366	VLIVDDSIVRGITSKE		P04046
JC1414	382	IVLVDDSIVRONTISP		JC1414
KPRS_ECC) 213	CVLVDDNI DTGGTLCK	RPPK	P08330
KPRS_YEA	318	AIILDDMIDRPG8FIS		P32895
LEIPRPP	263	CIIVDDNIDTGGTLVK		M76553
KPR1 HIM	213	ATLYDDWADTCGTTCH		P09329
CONVER	012	CLITDDWADMCONT UP		¥7E075
SCUNAPRS	210	CHILDDRADICGTLVK		X/20/2
				. 10000
RP4TRANC) 135	YIVVDDTLTMCGTIAS		P10330
YORF_HAE	5 190	VALVDDVITTOSTLNE		P31773
YPYB_BAC	98	VILVDDVLYTGRTVRA		P25982
consensu	ıs	hbbbDDbb.TG.Tb		

Fig. 3. Conservation of the phosphate-binding motif in thymidine phosphorylases and various groups of phosphoribosyltransferases. Closely related sequences are omitted. The consensus shows amino acid residues conserved in the majority of the enzyme groups. The motif could not be identified in nicotinate phosphoribosyltransferase and quinolinate phosphoribosyltransferase. Secondary-structure prediction is based on the experimentally determined 3D structure of DeoA, our prediction for anthranilate phosphoribosyltransferases, and the published model of the conserved phosphoribosyltransferase core (Busetta, 1988; de Boer & Glickman, 1991). The designations are as in Figures 1 and 2. Phosphoribosyltransferases: AnthrPRT, anthranilate; ATP-PRT, ATP; APRT, adenine; UPRT, uracil; HPRT, hypoxanthine (guanine); OPRT, orotate; AmPRT, glutamine; RPPK, ribose pyrophosphate kinases (PRPP synthetases).

binding loop, the function of which is not limited to PRPP binding. It has to be emphasized that the conservation of the phosphate-binding site between family II and other phosphoribosyltransferases is very limited, barely detectable by automatic methods of sequence analysis, and becomes apparent only upon comparison of multiple alignments for different families (Fig. 3).

Concluding remarks: Implications for enzyme evolution

The present analysis of the relationships between the amino acid sequences of nucleosidases and phosphoribosyltransferases showed that in these enzymes sequence similarity does not necessarily reflect similarity between the catalyzed reactions. Enzymes that catalyze the same reaction and may be even capable of utilizing identical substrates may show no appreciable sequence similarity to each other, like uridine phosphorylase (Udp) and thymidine phosphorylase (DeoA), or very weak similarity at the level of a degenerate conserved motif, like anthranilate phosphoribosyltransferases and other groups of phosphoribosyltransferases. Functional convergence may account for the analogous specificity in at least some of these cases (Doolittle, 1994).

In contrast, enzymes that catalyze very different reactions may share significant sequence similarity and probably have evolved by divergence from a common ancestor. Examples of such unexpected similarities were found in both enzyme families described here. In family I, there is a clear distinction between the reactions catalyzed by Amn and such proteins as Udp and DeoD, with the former being a hydrolase and the latter being phosphotransferases (Table 1); thus, this family unites enzymes that formally even belong to different classes. Obviously, however, the chemical moieties involved in both reactions are the same, i.e., phosphate, ribose, or deoxyribose, and a purine or pyrimidine base. This identity of the chemical constituents may account for the conservation of the enzyme structure. Essentially the same pertains to thymidine phosphorylases and anthranilate phosphoribosyltransferase in family II that catalyze superficially very different reactions and are involved in different biochemical pathways (salvage pathway of nucleotide metabolism and amino acid biosynthesis, respectively). Again, however, chemically, the ingredients are very similar, namely phosphate, ribose, or deoxyribose, and a nitrogen-containing compound with a single aromatic ring (thymidine or anthranilate, respectively).

Significant sequence conservation between enzymes that catalyze different reactions may be widespread. Relevant examples include haloalkane dehalogenase and epoxide hydrolase (Janssen et al., 1989; Ollis et al., 1992); creatinase, methionyl amino peptidase, and prolidases (Murzin, 1993); asparagine synthetase and aspartyl tRNA synthetase (Furukawa et al., 1992); and putative active centers of numerous phosphoesterases that hydrolyze a wide variety of substrates (Koonin, 1994).

Materials and methods

Sequences and databases

Amino acid and nucleotide sequences were retrieved from the nonredundant sequence database (NRDB) that is constructed by merging nonidentical entries from SWISS-PROT, PIR, and translated versions of GenBank and EMBL sequence databases at the National Center for Biotechnology Information (NIH).

Computer-assisted sequence analysis

Amino acid sequences were compared with the NRDB using programs based on the BLAST algorithm (Altschul et al., 1990). The BLASTP program was used to screen the amino acid sequence database and the TBLASTN program was used to screen the conceptual translation of the nucleotide sequence database in 6 reading frames. The BLAST algorithm provides the significance estimate for each ungapped pairwise alignment produced in the database search using the statistical theory of asymptotic extremal distribution for high-scoring segments (Karlin & Altschul, 1990, 1993; Altschul et al., 1994). For all database searches, the amino acid substitution matrix BLOSUM62 (Henikoff & Henikoff, 1992, 1993) was employed. Compositionally biased segments in the query sequences that may produce spurious "hits" in database searches were detected and masked using the SEG program (Altschul et al., 1994; Wootton & Federhen, 1993).

Multiple amino acid sequence alignments were constructed using the MACAW program (Schuler et al., 1991). MACAW produces alignments consisting of ungapped blocks separated by unaligned spacers of variable length by parsing compatible high-scoring segments detected by pairwise comparison of all sequences in a set. The statistical significance of each block is calculated separately using a generalization of the theory for pairwise alignments (Karlin & Altschul, 1990; Schuler et al., 1991). The boundaries of the blocks are adjusted so as to maximize the significance. The probability of obtaining a block by chance increases with the growth of the "search space." Usually, the search space is set to be equal to the product of the lengths of the compared sequences. Therefore, MACAW actually provides significance estimates given that the set of sequences under comparison has been initially delineated using some independent criteria. In addition, MACAW may overestimate the significance if a subset of closely related sequences is included in the analysis. To alleviate this problem, only 1 representative of each of such subsets was included in the calculations.

Screening of the NRDB for amino acid patterns (regular expressions) was performed using the program PAST (R.L. Tatusov, unpubl.).

Protein secondary structure was predicted using the recently developed neural network method (Rost & Sander, 1993).

Acknowledgment

We are grateful to Dr. Roman L. Tatusov for providing unpublished computer programs.

References

- Altschul SF, Boguski MS, Gish W, Wootton JC. 1994. Issues in searching molecular sequence databases. Nature Genet 6:119-129.
- Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J Mol Biol 215:403-410.
- Argos P, Hanei M, Wilson JM, Kelley WN. 1983. A possible nucleotidebinding domain in the tertiary fold of phosphoribosyltransferases. J Biol Chem 258:6450-6457.
- Barton GJ, Ponting CP, Spraggon G, Finnis C, Sleep D. 1992. Human platelet-derived endothelial cell growth factor is homologous to *Escherichia coli* thymidine phosphorylase. *Protein Sci 1*:688-690.
- Brun YV, Breton R, Lanouette P, Lapointe J. 1990. Precise mapping and

comparison of two evolutionarily related regions of the *Escherichia coli* K-12 chromosome. Evolution of *valU* and *lysT* from an ancestral tRNA operon. *J Mol Biol 214*:825-843.

- Busetta B. 1988. The use of folding patterns in the search of protein structure similarities: A three-dimensional model of phosphoribosyltransferases. Biochim Biophys Acta 957:21-33.
- Clausen S, Apel K. 1991. Seasonal changes in the concentration of the major storage protein and its mRNA in xylem ray cells of poplar trees. *Plant Mol Biol* 17:669-678.
- Coleman GD, Chen THF, Fuchigami L. 1992. Complementary DNA cloning of poplar bark storage protein and control of its expression by photoperiod. *Plant Physiol* 98:687-693.
- Crawford IP. 1989. Evolution of a biosynthetic pathway: The tryptophan paradigm. Annu Rev Microbiol 43:567-600.
- Davis JM, Egelkrout EE, Coleman GD, Chen THH, Haissig BE, Riemenschneider DA, Gordon MP. 1993. A family of wound-induced genes in *Populus* share common features with genes encoding vegetative storage proteins. *Plant Mol Biol* 23:135-143.
- de Boer JG, Glickman BW. 1991. Mutational analysis of the structure and function of the adenine phosphoribosyltransferase enzyme of Chinese hamster. J Mol Biol 221:163-174.
- Doolittle RF. 1994. Convergent evolution: The need to be explicit. Trends Biochem Sci 19:15-18.
- Ealick SE, Rule SA, Carter DC, Greenhough TJ, Babu YS, Cook WJ, Habash J, Heliwell JR, Stoeckler JI, Parks RE, Chen S, Bugg CE. 1990. Three-dimensional structure of human erythrocytic purine nucleoside phosphorylase at 3.2 Å resolution. J Biol Chem 265:1812-1820.
- Furukawa T, Yoshimura A, Sumizawa T, Haraguchi M, Akiyama SI, Fukui K, Hinchman SK, Henikoff S, Schuster SM. 1992. A relationship between asparagine synthetase A and aspartyl tRNA synthetase. J Biol Chem 167:144-149.
- Henikoff S, Henikoff J. 1992. Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci USA 89:10915-10919.
- Henikoff S, Henikoff J. 1993. Performance evaluation of amino acid substitution matrices. Proteins Struct Funct Genet 17:49-61.
- Ishizawa M, Yamada Y. 1992. Angiogenic factor. Nature (Lond) 356:668. Janssen DB, Pries F, van der Ploeg J, Kazemier B, Terpstra P, Witholt B. 1989. Cloning of 1,2-dichloroethane degradation genes of Xanthobacter autotrophicus GJ10 and expression and sequencing of the dhlA gene. J Bacteriol 171:6791-6799.
- Karlin S, Altschul SF. 1990. Methods for assessing the statistical significance of molecular sequence features by using general scoring schemes. Proc Natl Acad Sci USA 87:2264-2268.
- Karlin S, Altschul SF. 1993. Applications and statistics for multiple highscoring segments in molecular sequences. Proc Natl Acad Sci USA 90: 5873-5877.
- Kim CW, Markiewicz P, Lee JJ, Schierle CF, Miller JH. 1993. Studies of the hyperthermophile *Thermotoga maritima* by random sequencing of cDNA and genomic libraries. J Mol Biol 231:960-981.
- Koonin EV. 1993. A superfamily of ATPases with diverse functions containing either classical or deviant ATP-binding motif. J Mol Biol 229:1165– 1174.
- Koonin EV. 1994. Conserved sequence pattern in a wide variety of phosphoesterases. Protein Sci 3:356-368.
- Leung HB, Kvalnes-Krick KL, Meyer SL, de Riel JK, Schramm VL. 1989. Structure and regulation of the AMP nucleosidase gene (amn) from Escherichia coli. Biochemistry 28:8726-8733.
- Leung HB, Schramm VL. 1980. Adenylate degradation in *Escherichia coli*. The role of AMP nucleosidase and properties of the purified enzyme. *J Biol Chem* 255:10867-10874.

- Lin ECC. 1987. Dissimilatory pathways for sugars, polyols, and carboxylates. In: Ingraham JL, Low KB, Magasanik B, Schaechter M, Umbarger HE, eds. Escherichia coli and Salmonella typhimurium. Cellular and molecular biology. Washington, D.C.: American Society for Microbiology. pp 244-284.
- Murzin AG. 1993. Can homologous proteins evolve different enzymatic activities? Trends Biochem Sci 18:403-405.
- Neuhard J, Nygaard P. 1987. Purines and pyrimidines. In: Ingraham JL, Low KB, Magasanik B, Schaechter M, Umbarger HE, eds. Escherichia coli and Salmonella typhimurium. Cellular and molecular biology. Washington, D.C.: American Society for Microbiology. pp 445-473.
- Ollis DL, Cheah E, Cygler M, Dijkstra B, Frolow F, Franken SM, Harel M, Remington SJ, Silman I, Schrag J, Sussman JL, Verschueren KHG, Goldman A. 1992. The alpha/beta hydrolase fold. Protein Eng 5:197-211.
- Parsons TJ, Bradshaw HD, Gordon MP. 1989. Systemic accumulation of specific mRNAs in response to wounding in poplar trees. *Proc Natl Acad Sci USA 86*:9851-9855.
- Piatigorsky J. 1993. Puzzle of crystallin diversity in eye lenses. Dev Dyn 196:267-272.
- Pittard AJ. 1987. Biosynthesis of aromatic amino acids. In: Ingraham JL, Low KB, Magasanik B, Schaechter M, Umbarger HE, eds. Escherichia coli and Salmonella typhimurium. Cellular and molecular biology. Washington, D.C.: American Society for Microbiology. pp 368-394.
- Rost B, Sander C. 1993. Prediction of protein secondary structure at better than 70% accuracy. J Mol Biol 232:584-599.
- Saraste M, Sibbald PR, Wittinghofer A. 1990. The P-loop A common motif in ATP- and GTP-binding proteins. *Trends Biochem Sci* 15:430-434. Schuler GD, Altschul SF, Lipman DJ. 1991. A workbench for multiple align-
- ment construction and analysis. *Proteins Struct Funct Genet* 9:180–190. Schulz GE. 1992. Binding of nucleotides by proteins. *Curr Opin Struct Biol*
- 2:61-67. Stout JT, Caskey CT. 1985. HPRT: Gene structure, expression and muta-
- tion. Annu Rev Genet 19:127-148.
 Tritz GJ. 1987. NAD biosynthesis and recycling. In: Ingraham JL, Low KB, Magasanik B, Schaechter M, Umbarger HE, eds. Escherichia coli and
- Salmonella typhimurium. Cellular and molecular biology. Washington, D.C.: American Society for Microbiology. pp 557-566.
- Walter MR, Cook WJ, Cole LB, Short SA, Koszałka GW, Krenitsky TA, Ealick SE. 1990. Three-dimensional structure of thymidine phosphorylase from *Escherichia coli* at 2.8 Å resolution. J Biol Chem 265:14016– 14022.
- White HB. 1982. Biosynthetic and salvage pathways of pyridine nucleotide coenzymes. In: Everse J, Anderson BM, You KS, eds. Pyridine nucleotide coenzymes. New York: Academic Press. pp 1-17.
- Winkler ME. 1987. Biosynthesis of histidine. In: Ingraham JL, Low KB, Magasanik B, Schaechter M, Umbarger HE, eds. Escherichia coli and Salmonella typhimurium. Cellular and molecular biology. Washington, D.C.: American Society for Microbiology. pp 395-411.
- Wootton JC, Federhen S. 1993. Statistics of local complexity in amino acid sequences and sequence databases. *Comput Chem* 17:149-163.
- Wu JJ, Schuch R, Piggot PJ. 1992. Characterization of a Bacillus subtilis sporulation operon that includes genes for an RNA polymerase sigma factor and for a putative DD-carboxypeptidase. J Bacteriol 174:4885-4892.
- Wurgler SM, Richardson CC. 1990. Structure and regulation of the gene for dGTP triphosphohydrolase from *Escherichia coli*. Proc Natl Acad Sci USA 87:2740–2744.
- Yoshimura A, Kuwazuru Y, Furukawa T, Yoshida H, Yamada K, Akiyama S. 1990. Purification and tissue distribution of human thymidine phosphorylase: High expression in lymphocytes, reticulocytes and tumors. *Biochim Biophys Acta 1034*:107-113.