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Abstract 

The  proteolytic enzyme stromelysin-1 is a member of the family of matrix  metalloproteinases and is  believed to 
play a  role in pathological  conditions  such as arthritis and  tumor invasion. Stromelysin-1 is synthesized as a  pro- 
enzyme that is activated by removal of an N-terminal prodomain.  The active enzyme contains  a catalytic domain 
and a  C-terminal hemopexin domain believed to participate in macromolecular substrate recognition. We have 
determined the three-dimensional structures of both  a  C-truncated form of the proenzyme and  an inhibited com- 
plex of the catalytic domain by X-ray  diffraction analysis. The catalytic core is very similar in the  two  forms and 
is similar to the homologous domain in fibroblast and neutrophil collagenases, as well as to the stromelysin struc- 
ture determined by NMR. The  prodomain is a  separate  folding unit containing  three a-helices and  an extended 
peptide that lies in the active site of the enzyme. Surprisingly, the amino-to-carboxyl direction of this peptide chain 
is opposite to  that  adopted by the inhibitor and by previously reported  inhibitors of collagenase. Comparison of 
the active site of stromelysin with that of thermolysin reveals that most of the residues proposed to play signifi- 
cant roles in the enzymatic mechanism of thermolysin have equivalents in stromelysin, but that three residues im- 
plicated in the catalytic mechanism of thermolysin are not represented in stromelysin. 
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Stromelysin-1 (EC 3.4.27.17) is a proteolytic enzyme and a 
member of the matrix metalloproteinase (MMP) family. These 
proteins represent attractive  targets for drug development be- 
cause their ability to degrade the protein  components of con- 
nective tissue is believed to underlie fundamental events in both 
rheumatoid arthritis  and osteoarthritis.  In addition, there is 
evidence that this activity also plays a  role in tumor invasion 
(Murphy et al., 1991; Woessner, 1991; Docherty et al., 1992; 
Birkedal-Hansen et al., 1993). The MMPs comprise three broad 
families, defined by their substrate specificity: the collagenases, 
which digest interstitial collagen (Welgus et al., 1981; Schmid 
et al., 1986; Seltzer et al., 1989), the gelatinases, which digest 
denatured collagens and gelatins (Murphy et al., 1985; Seltzer 
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et al., 1989), and the stromelysins, which  display a broader spec- 
ificity (Galloway et al., 1983; Chin et al., 1985; Okada et al., 
1989). This broad specificity, together with the observations that 
they are induced by the inflammatory  mediator interleukin-1 
(Gowen et al., 1984; Saus et al., 1988; MacNaul et al., 1990) and 
can activate other members of the  MMP family (Murphy et al., 
1987; He et al., 1989; Ogata et al., 1992; Knauper et al., 1993), 
suggests that  the stromelysins may  play a particularly significant 
role in the physiological processes mediated by this family of 
enzymes. 

The MMPs show structural similarity to other metalloprotein- 
ases such as thermolysin and the astacin family of  zinc endopro- 
teinases. MMPs  are synthesized as inactive  precursors and 
comprise three distinct structural domains:  an N-terminal pro- 
peptide, a catalytic domain of approximately 180 amino acid  res- 
idues, and a  C-terminal domain  that  appears  to play a role in 
recognition of macromolecular substrates and interaction with 
macromolecular inhibitors. Active  enzyme  is produced by cleav- 
age of the  propeptide that can be induced by heat, mercurial re- 
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agents,  proteolytic  enzymes, or nitric oxide (Okada et al., 1988; 
Okada & Nakanishi, 1989; Nagase  et  al., 1990;  Koklitis  et al., 
1991; Murre11 et  al., 1995). The  enzymatic  activity, specificity, 
and sensitivity to  inhibitors  of  the  catalytic  domain  of  strome- 
lysin are  similar  to  that  of  the  full-length  protein  (Marcy et al., 
1991; Ye et al., 1994). This finding has established that  truncated 
stromelysin  is an  appropriate  model  for  the  structure-based de- 
sign of  inhibitors of the  full-length  protein.  In  addition,  use of 
the  truncated  enzyme  has  facilitated  structural  studies  on  stro- 
melysin because it  precludes the  structural heterogeneity caused 
by  autolysis  in  the  C-terminal  domain of the full-length protein 
(Okada et al., 1986,  1988,  1989; Nagase  et  al., 1990). 

Several three-dimensional  structures  of  MMPs  have recently 
been published.  The  structure of the  inhibited  catalytic  domain 
of human stromelysin-1  was  determined recently by multidimen- 
sional  NMR  methods  (Gooley  et  al., 1994), and  the  structures 
of  inhibited  human  fibroblast  (Borkakoti  et  al., 1994; Lovejoy 
et al., 1994a, 1994b; Spurlino et al., 1994) and  neutrophil  (Bode 
et al., 1994; Stams  et  al., 1994) collagenases  have been deter- 
mined by X-ray diffraction analysis. These  structures show con- 
siderable similarity to  one  another  and belong to  the “metzincin” 
family  of  proteins, which is characterized by an HExxHxxGxxH 
sequence  motif,  and  includes digestive enzymes,  snake  venom 
metalloproteases,  and  bacterial  proteases  as well as  MMPs 
(Bode et al., 1993; Gomis-Ruth et al., 1994; Stocker et al., 1995). 
This  family  of  proteins is also  structurally  related  to  bacterial 
metalloenzymes  such  as  thermolysin (Matthews, 1988) that  con- 
tain a related  sequence  motif,  HExxH(-20x)NExSD. 

Here, we report  the three-dimensional structure of two  forms 
of  stromelysin-I:  the  C-truncated  proenzyme  and  the  complex 
of  the  catalytic  domain  with  the  N-carboxyalkyl  peptide  inhib- 
itor I (Fig. 1) used  in the previously reported  NMR  structure 
(Gooley et al., 1994). The  structure of the  catalytic  domain  of 
the  proenzyme is remarkably similar to  that of the active form, 
and  the  pro-domain is a separate  folding unit characterized by 
three a-helices and  an extended propeptide  that occupies the ac- 

Fig. 1. N-carboxyalkyl peptide inhibitor (I, K, = 0.23 pM [Chapman 
et al.,  19931) used to inhibit the catalytic domain of strornelysin. 

tive  site and  blocks  the  catalytic zinc ion.  Surprisingly,  the 
N-to-C  direction of the  propeptide  chain is the reverse of that 
adopted  by all peptide-based  inhibitors  observed in  complexes 
of stromelysin  and  collagenase  to  date.  The active  site contains 
a groove  in  the  protein  surface  and  an  extraordinarily  large SI’ 
specificity pocket  that  extends  through  the  full width of the  cat- 
alytic domain.  The active site  of  stromelysin  contains a basic 
structure similar to  that of  thermolysin but lacks residues equiv- 
alent to  three  groups believed to play key roles in the mechanism 
of  that  enzyme. 

Results 

The  structure  of  the  inhibited  catalytic  domain  of  stromelysin 
determined in this  study is similar to  the  solution  structure de- 
termined by multidimensional  NMR  (Gooley et al., 1994). The 
protein is folded  into a single globular unit approximately 35 A 
in diameter,  and  the folding is dominated by a single five-stranded 
0-sheet, with one antiparallel and  four parallel strands,  and three 
a-helices  (Fig. 2A). The  propeptide (residues 16-82) makes  up 
a separate smaller domain,  approximately 20 A in diameter  and 
containing  three  a-helices  (Fig. 2B). No  electron  density is vis- 
ible for residues 1-15 and 31-39 of the  prodomain.  The  cata- 
lytic domain  contains  two  tetrahedrally  coordinated ZnZ+ ions: 
a “structural” zinc ion  whose  ligands  are  the side chains of 
Asp 153, His 15 1,  His 166, and  His 179, and a “catalytic” zinc 
ion whose ligands  include  the side chains of His 201, His 205, 
and  His 21 1. In the  inhibited  complex,  the  fourth ligand of the 
catalytic zinc is the  carboxylate group  of  the inhibitor; in the  pro- 
enzyme, it is the  sulfur  atom of Cys  75.  Two  electron  densities 
with roughly  octahedral  coordination,  apparently  Ca2+  ions, 
are  also present  in both  the  complex  and  the  proenzyme.  The 
first  calcium  site is defined by the ligands Asp 158 O*’ , Gly 159 
0, Gly 161 0, Val 163 0, Asp 181 O*’, and Gly 184 0”. The 
second  site includes  Asp 141 0, Gly 173 0, Asn 175 0, Asp 177 
06’, and  two  water  molecules,  one of which is also  hydrogen 
bonded  to Gly 171 0. In the  inhibited  complex,  there is an 
apparent  third  Ca2+ site defined by Asp 107 062, Asp 182 0, 
Asp 182 06’, and Glu 184 0. This site is probably  only partially 
occupied: the  temperature  factor is 19.4 A2, significantly higher 
than  those  for  the  other  metal  ions (3.1-10.1 A’), and  there is 
only weak electron  density  at  the  two  remaining  octahedral li- 
gand  sites,  consistent with partial  occupancy by water. In the 
proenzyme  structure,  this site apparently is occupied by a  wa- 
ter  molecule, or possibly by a very low occupancy  calcium  ion: 
attempts  to  refine a calcium  ion  produced very high tempera- 
ture  factors,  and  refinement with  a water  molecule results  in  a 
temperature  factor of  21.2 A*,  similar to  the  average  tempera- 
ture  factor  for  the  other ligand atoms, 24.6 A’. 

The active  site consists of two distinct regions: a groove in the 
protein  surface,  centered  on  the  catalytic zinc (Fig.  3),  and a 
large,  predominantly  hydrophobic, S1’ site that  extends  com- 
pletely through  the  body of the molecule (Figs.  4, 5 ) .  In  both 
the proenzyme and  the inhibited protein,  the  groove is occupied 
by extended  peptide  chains that  make several (3-structure-like hy- 
drogen  bonds with the enzyme and provide the  fourth ligand for 
the  catalytic zinc ion  (Fig. 3). Despite  the  fact  that  the  propep- 
tide  and  the  inhibitor  make similar interactions  with  the  same 
groups  of  the  enzyme,  the  direction  of  the  polypeptide  chain is 
different in the  two  structures  (Fig. 3). The S1’ subsite is empty 
in the  proenzyme  structure  but  contains  the side chain of the 
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Fig. 2. A: Ribbon  drawing  of  the stromelysin complex with 1. Zinc and calcium ions are represented by violet and light blue 
spheres, respectively. Bound  inhibitor is shown in red. The N-terminus of the mature protein is indicated by N', the C-terminus 
by C. B: Ribbon  drawing  of prostromelysin. The first visible residue in the polypeptide chain, Leu 16, is labeled. Residue num- 
bers of  other  notable  features in  the pro-domain are indicated. 

homophenylalanyl residue in the inhibited complex. The  aro- cordon  that encircles half of the homophenylalanyl ring. The 
matic ring is surrounded by hydrophobic moieties punctuated carbonyl oxygen atoms of Leu 218 and Tyr 220 point directly 
by two carbonyl groups pointed directly at its edge (Fig. 4). The at adjacent carbon atoms on one side of the ring, and the edge 
side chain of His 201, a ligand of the catalytic zinc ion, is par- of the side chain of Tyr 223 is directed toward  the center of the 
allel to  the ring. From this  point, residues 218-223 make up a ring, approximately 180" from  the side chain of His 201. The 

Fig. 3. A: Active site groove of  the complex with I. Hydrogen bonds between the  bound inhibitor and the  protein  are indicated 
by dashed lines. Violet sphere represents the catalytic zinc ion. The large SI' pocket is at  the bottom center of  the figure. The 
orientation of the figure is similar to Figures 3B and 6A, and the  three hydrogen bonds at  the  top of  the  figure are,  from left 
to right, to Ala 165 0, Leu 164 N, and Asn 162 0. The lower hydrogen  bond is to Tyr 223  N. B Active site groove in the  proen- 
zyme. Hydrogen bonds between the residues 72-77 of the pro-peptide and the active site groove of prostromelysin are indicated 
by dashed lines. The orientation is similar to Figures 3A and 6B. The hydrogen bonding  groups in the catalytic domain are the 
same as in Figure 3A with the  addition of a hydrogen bond to  Pro 221 0 (lower left). Light blue sphere at the top center of the 
figure is calcium ion 1. 
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encirclement of this  ring is completed by Leu 197-Val  198. At Discussion 
thepara-position of the ring, the association is  less intimate: the 
side  chains of Leu 197 and Leu 218 flank this end of the mol- Comparison of the hydrogen bonds formed between MMPs and 
ecule and form a gateway into  the rest  of Sl', a large hydropho- their  inhibitors reveals a general pattern of conservation with 
bic tunnel that extends through the full  span of the molecule two  notable  variations (Fig. 6). All inhibitors and  the propep- 
(Fig. 5 ) .  tide of prostromelysin form P-structure-type hydrogen bonds 
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Fig. 6. Hydrogen  bonds  in  the  stromelysin  active  site. A: The complex  with I .  Compare  with  Figure 3A. B: The  proenzyme  pro- 
peptide.  Compare with Figure 3B. C: Interaction between human  fibroblast  collagenase  and  a  hydroxylamine  inhibitor  (Spurlino 
et al., 1994). Similar  interactions,  except  that  involving  Glu  2190",  were  observed  in  another  inhibited  complex of human 
fibroblast  collagenase  (Borkakoti  et  al., 1994). Similar  interactions  were  observed  in  an  inhibited  complex  of  human  neutro- 
phil  collagenase  (Stams  et  al., 1994). D: Interactions  between  human  fibroblast  collagenase  and  the  N-terminus  of  an  adjacent 
molecule  in  the  crystal  lattice  (Lovejoy  et  al., 1994b). E: Interactions between human  fibroblast  collagenase  and  a  carboxyalkyl 
amine  inhibitor  (Lovejoy  et al., 1994a). 

with  residues that line the  peptide-binding  groove  of  the active 
site.  It is particularly  remarkable  that  the  propeptide  (Fig. 6B) 
forms  hydrogen  bonds  of  this  type  with  the  same  groups of the 
catalytic  core  despite  having  an  orientation  opposite  to  that 
of  all  the  other  inhibitors.  The  inherent  twofold  symmetry of 
@-structures allows  this groove  to  form a three-stranded @-sheet 
where the  inhibitor is the  central  strand,  but  where  that  strand 
can  adopt  either  chain  direction.  This  observation is similar 
to  the  finding  that  SH3  domains  can  bind helical peptides  in 

both  orientations  (Feng et  al., 1994; Goudreau et al., 1994; Lim 
et  al., 1994; Terasawa et al., 1994). Second,  the hydrogen bond 
between the  P2'  nitrogen  atom  and  Pro 221 (or  Pro 238 in the 
collagenases)  is not  formed  in every  case: prostromelysin  and 
two  forms of inhibited  collagenase  (Fig. 6B,C,D) have  this hy- 
drogen  bond,  but  the  stromelysin  complex with I and  another 
form of inhibited collagenase (Fig. 6A,E) d o  not, despite  the  fact 
that  there is no  large  conformational  change involving this res- 
idue.  The  opportunity  to reverse the  sense of the  peptide  chain 
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and  to eliminate one peptide element of inhibitors presents a 
clear opportunity  for  the design  of  novel and specific inhibitors 
of these enzymes. In fact, a compound lacking the P2’ nitrogen 
has been described as an  MMP inhibitor  (MacPherson, 1994). 

The structures reported here provide strong evidence for the 
cysteine-switch  model of activation (Springman et al., 1990;  Van 
Wart & Birkedal-Hansen, 1990; Salowe et al., 1992): the active 
site of the proenzyme is filled by the  propeptide and Cys  75 
interacts directly with the catalytic zinc ion, but the  structure 
of the catalytic domain is relatively unchanged by activation 
(Fig. 7). Previous studies have suggested that several paths can 
lead to  the activation of prostromelysin. Heat activation appar- 
ently depends on the presence of a small amount of active en- 
zyme and results in cleavage at the His 82-Phe 83 bond to 
produce the mature enzyme (P.M. Cameron, 1995, in press). 
Activation by other proteases apparently proceeds through  a 
stepwise mechanism, with early cleavage at sites involving resi- 
dues 34-39 and subsequent cleavage after residue 83 (Nagase 
et al., 1991). Activation by mercurial reagents was  originally  be- 
lieved to involve an initial cleavage of the Glu 68-Val 69 bond 
(Nagase et  al., 1990), but recent studies have shown that cleav- 
ages after residues 16,  20, 24, 34, 50, 53, 57-59,  69-70, and 
83 also occur (P.M.  Cameron, 1995,  in press). Of these sites 
(Figs. 7, 8),  those involving residues 56-59 are in the loop be- 
tween  helices 2 and 3 in the proenzyme and  appear readily ac- 
cessible without any substantial  conformational change in the 
structure of the proenzyme. Similarly, the bond between  resi- 
dues 15 and 16 and the bonds involving  residues 33-39 are prob- 
ably solvent accessible  in the zymogen. The  other cleavage  sites 
are located in the three helices  of the pro-domain, and it is  likely 
that some conformational change, probably following an ear- 
lier cleavage, must precede reactions at these sites. 

Activation also appears to involve a substantial rearrangement 
of residues 83-89 (Fig. 7). When the  structures of the mature 

and proenzymes are aligned, residue 83 in one  structure is more 
than 17 A away from the corresponding residue in the  other. By 
residue 90, however, the  two  structures are in register and re- 
main remarkably similar throughout the remainder of the chain. 
In prostromelysin, residues 83-89 form  part of a large loop  that 
leads from helix A  through  the active site groove. During the 
activation process, these residues move to a completely differ- 
ent position,  terminating with a salt link between the amine ni- 
trogen of Phe 83 and  the side chain of Asp 237 in helix C. This 
interaction is strikingly similar to  that observed in “superacti- 
vated” collagenases. In  that system, active forms of collagen- 
ase that have Phe 79 (homologous to  Phe 83 in stromelysin) at 
their N-termini display 2-12-fold higher specific activity than 
those whose chains start  at residues 80 or 81 (Murphy et al., 
1987; Suzuki et  al., 1990; Knauper et al., 1993). In the three- 
dimensional structure of human neutrophil collagenase containing 
Phe 79 as the N-terminus, a salt link to the residue homologous 
to Asp 237, Asp 232,  which  is conserved among all MMPs, is 
formed (Suzuki  et al., 1990;  Reinemer et al., 1994).  In the struc- 
tures of forms of this protein with different N-termini, and 
correspondingly lower activities, the N-terminal residues are 
disordered, but  the active sites of all of these enzymes are re- 
markably similar. These observations led to the hypothesis that 
disorder of the N-terminus in protein lacking Phe 79 interferes 
with substrate binding, and that the Phe 79-Asp  232 salt link 
prevents such interference (Reinemer et al., 1994). The conser- 
vation of this feature in the structure of mature stromelysin  lends 
support to this hypothesis and suggests that the salt link from 
the N-terminus to the conserved Asp residue is a general feature 
of MMP  structure. 

This salt  link is sufficiently distant from the catalytic residues 
(12 A from the catalytic zinc ion, Fig.  2A) that its formation does 
not have a direct effect on the catalytic or substrate recognition 
sites. In addition, activation does not cause a  substantial re- 

C 

Fig. 7. Comparison of prostromelysin  with  the  active enzyme. a-Carbon traces of prostromelysin  (white)  and  active  strome- 
lysin  (red)  are  superimposed.  Residues 72-77 of the propeptide,  which  lie  in  the  active  site groove, are  drawn in yellow. White 
spheres  represent  peptide bonds that  have  been  reported to be  cleaved  during  mercurial activation of stromelysin.  Residue 83 
moves  more  than 17 A during activation. 
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Fig. 8. Schematic  representation of the  pro-domain of prostromelysin. 
Regions  belonging to a-helices  are  represented  as  jagged  lines  and  re- 
gions with no regular secondary  structures  as  thin  bars.  Parts of the  chain 
that  are  not visible in the  electron  density  maps  are  shown  as  open  bars. 
Sequence  numbers  refer to the  first  and  last  residues of the  prodomain 
and of the  helices.  Arrows  indicate  sites of cleavage  during  the  activa- 
tion of stromelysin. 

arrangement  of these  sites. When  the  structures of the  catalytic 
domain  and  proenzyme  are aligned  using all atoms  of  the resi- 
dues  that  make  contact with the  bound  inhibitor  as guides,  these 
atoms  differ by an  average  of  0.37 A. The  largest  difference is 
at  Pro 221,  where the  average  difference is 0.89 A. This residue 
participates in a  hydrogen  bond with the  propeptide  (Fig. 6B) 
but does  not  make a corresponding  interaction with the  bound 
inhibitor  (Fig. 6A). The  carbonyl oxygen of this  residue differs 
by 0.74 A between the  two  structures. 

Comparison of the  amino  acid sequences  of the  pro-domains 
of the  MMP  family suggests that they are likely to  have similar 
structures.  When the sequence of the  prodomain of  stromelysin- 
1 is aligned  with those  of  stromelysin-2,  matrilysin,  72-kDa  and 
92-kDa  gelatinases,  and  fibroblast  and  neutrophil collagenases, 
it  shows 38-77% identity with  these other  proteins  (data  not 
shown).  A  multiple  alignment  of these sequences  shows  two 
regions of above average similarity (Fig. 9): a region correspond- 
ing to  the  first helix and  a  second region encompassing  the sec- 
ond  and  third helices and  the  peptide  that lies in the  active site. 
Two of the residues from  the first helix (Tyr 20 and Leu 21) and 
residues surrounding Cys 75 are nearly  invariant among  MMPs, 
and  mutagenesis  studies  have  established  their  importance in 
maintaining  the  latent  state  (Sanchez-Lopez et al., 1988; Park 
et al., 1991; Freimark et al., 1994). These  sequence  similarities 
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Fig. 9. Plot of similarity of amino  acid  sequences  among  the  pro- 
domains of MMPs  calculated  with  the  program  PLOTSIMILARITY 
(Genetics  Computer  Group,  Madison,  Wisconsin).  Horizontal  bars  cor- 
respond to the  three helices observed in the  structure of prostromelysin- 
255. Arrow  indicates  the  position of the  conserved  cysteine  residue  that 
interacts  with  the  catalytic  zinc  ion. 

suggest that  the  prodomains of  these proteins resemble one  an- 
other in three-dimensional  structure,  as  the  catalytic  domain of 
stromelysin-1 resembles the  catalytic  domains  of  fibroblast  and 
neutrophil  collagenase. 

Comparison  of rhe structures  of  stromelysin  and  thermoly- 
sin reveals that several  residues proposed  to play  critical  roles 
in the  proteolytic  mechanism  of  thermolysin  (Matthews, 1988) 
are conserved in stromelysin  (Figs. IO,  1 I) .  However,  three res- 
idues proposed to play a stabilizing role in the thermolysin mech- 
anism have no  counterparts in stromelysin. The essential features 
of  the thermolysin  mechanism  involve  nucleophilic attack by ac- 
tivated  water on  the  carbonyl  group of the scissile bond  to  form 
a  hemiketal.  The  carbonyl  group is a ligand  of the catalytic  zinc 
ion  and  the  water molecule is hydrogen  bonded with the side 
chain of Glu 143, which appears to function  as  a  general  acid/ 
base during catalysis. The side chains of Tyr 157 and His 23 1 
stabilize the  oxyanion  of  the  hemiketal,  whereas  the  carbonyl 
oxygen atom  of  Ala 113 and  the side chain of  Asn 112 hydro- 
gen  bond to the  amide  nitrogen of the scissile bond  (Fig. IOA). 
Superimposition of the active sites of  stromelysin and  thermol- 
ysin reveal an  equivalent, but smaller, set of catalytic residues 
in stromelysin  (Fig. 1 I ) .  The zinc ions of both  proteins  are  po- 
sitioned to play equivalent roles as are Glu 143 (thermolysin) and 
Glu 202 (stromelysin). Consistent with this  model,  substitution 
of the  analogous glutamyl  residue in gelatinase A with an  aspar- 
tyl residue  causes a 100-fold decrease in specific activity;  mu- 
tants with alanine  or  glutamine  at  this site  have only 0.01% of 
wild-type  activity (Crabbe et al., 1994). Further  comparison in- 
dicates that  the  carbonyl oxygen atom of  Ala 165  in stromelysin 
appears  to act analogously  to  the  carbonyl  group  of  Ala 113 of 
thermolysin.  Surprisingly,  the  volumes  occupied by the side 
chains of  Tyr 157 and His 23 1 in thermolysin  are  empty in stro- 
melysin, and  there  do  not  appear  to be any  nearby  groups  that 
can play an  equivalent  role in stabilizing the  oxyanion of the 
hemiketal.  The  volume  occupied by the side chain of Asn 112 
in thermolysin is occupied by the side chain of Val 163 in stro- 
melysin, a group clearly incapable of hydrogen  bonding with the 
scissile amide  nitrogen.  A similar lack of  thermolysin-equivalent 
residues has been reported in the  structure  of  C-truncated  hu- 
man  fibroblast  collagenase  (Lovejoy et al., 1994b; Spurlino 
et al., 1994). In  one  of these studies, it was suggested that  the 
side chain  of  Asn 180  (collagenase) may  substitute for the side 
chain of  Asn 112 (thermolysin)  (Spurlino et al., 1994). Such  a 
substitution is not possible in the  structure  presented  here. It is 
possible that in full-length stromelysin or collagenase  the sites 
equivalent to  the  thermolysin residues Asn 112, Tyr 157, and 
His 231 may be occupied by groups  from  the  C-terminal  do- 
main.  However,  the  observation  (Marcy et al., 1991; HO et al . ,  
1994) that  removal  of  this  domain  does  not significantly affect 
the  peptidase  activity, specificity, and  inhibition  of these  en- 
zymes makes it unlikely that such residues play a significant  role 
in catalysis.  The present comparison of stromelysin  and  ther- 
molysin  suggests that  the zinc ion,  glutamyl  side  chain,  and 
carbonyl  groups  that  are  shared by these proteins  constitute  a 
minimal  constellation of catalytic  elements necessary to  support 
proteolysis by this class of enzymes. 

The active site of stromelysin is characterized by a catalytic zinc 
ion  that lies in  a  groove  containing several protein  groups  ca- 
pable of making  0-structure-like  hydrogen  bonds with substrates 
and  inhibitors  as well as  an  extraordinarily large hydrophobic 
SI’ recognition site. Comparison of the structures presented here 
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Y157 

Fig. 10. Thermolysin and stromelysin catalytic residues and mechanism. A: Proposed mechanism for thermolysin (Matthews, 
1988). B Analogous mechanism for proteolysis by stromelysin. Three residues (Tyr 157, His 231, and Asn 112) believed to par- 
ticipate in thermolysin-catalyzed proteolysis have no equivalents in stromelysin. 

N112 N112 

E20WE143 

H209H 146 
H2011H142 

H211/E166 H21 llE166 

Fig. 11. Superposition of the active sites of thermolysin (thin bonds,  PDB [Bernstein et al., 19771 entry  4TMN) and strome- 
lysin (thick bonds). The zinc ion of thermolysin is drawn as  a sphere. The thermolysin structure also contains the transition state 
analogue carbobenzoxy-L-PheP-L-Leu-L-Ala. (PheP indicates that the  trigonal  carbon of the peptide linkage is replaced by the 
tetrahedral  phosphorus of a  phosphonamidate  group.)  Three residues in thermolysin (white captions), Asn 112, Tyr 157, and 
His 231, do not have structural equivalents in stromelysin (yellow captions). 
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Table 1. Data collection and reduction 
~ ~ - ~ ~ _ "  - - ~ - ~  - - ~ ~ _ _  ~ ~~~ -. 

~" 

dm,," Total  Unique R,, Completeness 
Structure Detector (A) observations reflections (%) (070) 

SLN255:I Siemens 2.26 22,355 8,044 7.58 83.1 
proSLN255 R-AXIS IIC 1.90  34.939 24,166 5.55 98.2 

~- - ~~ - ~ ~ ~~-~ " ~ - - ~ ~ ~ ~ . 

~ - ~ ~ " - ~~ ~ - -~ ~ - ~~~ " ~~ - - - ~~ ~ 

"d,,,,, is the  Bragg  spacing  of  the  highest  resolution  datum used in the  structure  solution  and  refinement. 
R,,,, the  R-factor  corresponding to the  averaging of equivalent  reflections  during  data  reduction. R,,, = [ I I (h )  - Iou(h)l]  / 

x I o L , ( h ) ,  where I ( h )  is an  individual  measurement of the  intensity of reflection h ;  and  I,,.(h) is the  average of multiple 
observations of reflection h. The  summation is over all reflections h. 

with the  previously  known zinc metalloprotease  structures ex- 
tends our understanding  of  the essential features of  substrate rec- 
ognition  and catalysis by these  enzymes. The large S1' site of 
stromelysin, in particular,  contains  an extensive volume  that is 
not even half filled by the  homophenylalanyl  group  of  the in- 
hibitor used in this  study.  The  exploitation  of  this  large  hydro- 
phobic  space,  punctuated by hydrophilic  groups,  particularly 
carbonyl oxygens directed  toward  the  hydrophobic PI' side 
chain, represents an  opportunity  for  the  structure-based design 
of more  potent  and  more specific inhibitors of this  enzyme. The 
fact that  the  peptide chain of  inhibitors  can interact with the ac- 
tive site groove in two  different  orientations  presents  an  addi- 
tional  opportunity  to design compounds of particular  potency 
and selectivity. 

Materials and methods 

Recombinant  human  proSLN-255 was  expressed in Escherichia 
coli, purified,  and  activated  to  the  mature  form  (residues 83- 
255) by published procedures  (Marcy et al., 1991; Gooley et al., 
1993). Both  proSLN-255  and  the  inhibited  complex of mature 
SLN-255 were crystallized by hanging drop  vapor  diffusion.  For 
proSLN-255,  protein  solution (10 mg/mL  proSLN-255, 5 mM 
CaCI,, 0.05 mM Zn[OAc],, 0.02%  NaN,,  20mM  MES,  pH 6.5) 
was mixed with an  equal  volume  of reservoir buffer (14% PEG- 
6000, 5%  sat.  Na-citrate, 100 mM  cacodylate,  pH 5.8) and in- 
cubated  at  4°C.  The  protein  solution  also  contained a trace 
amount of an inhibitor to prevent autoactivation (approximately 
0.02 mole inhibitor per mole  protein).  Crystals formed  after sev- 
eral weeks and belong to  the  orthorhombic  space  group F222, 
with a = 1 1  1.04, b = 145.56, c = 76.75 A. For the  complex, 
the  protein  solution  contained 9 mg/mL  SLN-255, 1.5 mM I ,  
5.0 mM  CaCI,, 0.02%  NaN,, 20 mM Tris-HC1, pH 7.5,  and 
the reservoir contained 10% PEG-6000, 15% sat. NH,OAc, 
0.02%  NaN,, 0.1 M cacodylate, pH 5.54. The  crystals belong 
to the  trigonal  space  group  P3,21, with a = 47.23, c = 150.85 A. 
Three-dimensional  diffraction  data  (Table 1) were  collected 
using a Siemens area detector (inhibited complex) and  an R-Axis 
IIC area  detector  (proSLN-255)  and  CuKa  radiation  from a 
Rigaku  RU-200  rotating  anode  X-ray  generator.  Data were 
processed  using the  XENGEN  (Howard et al., 1987), RAXIS 
(R-Axis  IIc  Data  Processing  Software v. 2.1,  Rigaku  Corpora- 
tion,  Tokyo),  and  FBSCALE  (Weissman, 1982) packages. 

Both  structures were  solved by molecular  replacement  meth- 
ods using X-PLOR  (Briinger, 1990) and a probe  consisting  of 
the  protein  portion of the  stromelysin  complex with  a different 

inhibitor, which had been solved by heavy-atom  methods (J.W. 
Becker et al., in prep).  Electron  density  corresponding  to  the 
portions of these structures that  are not in the search probe (e.g., 
the  pro-peptide  and  the  bound  inhibitor) was  clearly visible in 
initial maps.  Complete  models were constructed by interactive 
model-building (Sack, 1988) and  refinement using X-PLOR in- 
cluding  one cycle of  simulated  annealing  (Briinger, 1992b). A 
bulk  solvent mask  was  included in the  model,  and in the  later 
stages  of each  refinement,  each  model  was  confirmed by 10% 
simulated-annealing  omit  maps  (Hodel et al., 1992). The  final 
model of the  inhibited  complex  comprises residues 83-250, 2 
Zn2+  ions, 3 Ca2+  ions,  the  bound  inhibitor,  and 51 ordered 
water  molecules. For proSLN-255,  the  model  contains residues 
16-30,41-250, 2 Zn" ions, 2 e a 2 +  ions,  and 119 ordered wa- 
ter molecules.  Final refinement  parameters  are  presented in Ta- 
ble  2. At least some  of  the missing portions  of  the  proSLN-255 
chain  may be due to proteolysis. Electrospray mass spectral anal- 
ysis indicates that freshly prepared  protein is homogeneous  and 
of the expected mass, but that  protein  from redissolved  crystals 
contains several  species (data not shown). 

Protein sequences were analyzed using the GCG package  (Ge- 
netics Computer  Group,  Madison,  Wisconsin). 
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Table 2. Refinement statistics 
~ -~ ~- ~~ 

~ -~ ~ . ~~ . ~~ 

(b(Bopds))' 
Name  R" R,, (A) (G(Angles))' 

SLN255:I  0.2232  0.2975  0.009 1.440" 
proSLN255 0.2185 0.2569 0.009 1.329" 

~ ~~ ~" ~~~ ~~ ."" ~ 
~ ~ 

~ ~~~~. -~ - "~ ~~~ 

~~~ ~~ ~~ ~- ~- 
~~ ~ ~ 

~~ 

c f I F ( h )  - C,~Jh)Il/Z Id t . (h) .  
R, the crystallographic  R-factor for the  refined  structures.  R = 

R,rc,',, the  cross-validation  R-factor  (Brunger, 1992a) correspond- 
ing to 10% of  the reflection  data  that were omitted  from  refinement  of 
the structures. 

L' RMS deviations of bond  lengths  and angles in the  refined  structures 
from ideal values  (Engh & Huber, 1991) 
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