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Abstract 

We describe a neural  network system that  predicts  the  locations  of  transmembrane helices in integral  membrane 
proteins. By using evolutionary  information  as  input  to  the  network  system,  the  method  significantly  improved 
on a  previously published  neural  network  prediction  method  that  had been based on single sequence information. 
The  input  data were derived from multiple  alignments for each  position  in  a  window of 13 adjacent residues: amino 
acid  frequency,  conservation weights, number  of  insertions  and  deletions,  and  position of the  window with re- 
spect  to  the  ends  of  the  protein  chain.  Additional  input was the  amino  acid  composition  and  length of the whole 
protein. A rigorous  cross-validation test on 69 proteins  with  experimentally  determined  locations  of  transmem- 
brane  segments yielded an  overall  two-state  per-residue  accuracy  of 95%. About 94% of all  segments were pre- 
dicted  correctly.  When  applied to  known  globular  proteins  as a  negative control,  the  network system incorrectly 
predicted fewer than 5% of globular  proteins  as having transmembrane helices. The  method was applied to  all 
269 open  reading  frames  from  the  complete yeast VI11 chromosome. For 59 of these,  at least two  transmembrane 
helices were predicted.  Thus,  the  prediction is that  about  one-fourth of all  proteins  from yeast VI11 contain  one 
transmembrane helix, and  some 20’70, more  than  one. 

Keywords: evolutionary  information;  integral  membrane  proteins;  multiple  alignments;  neural  networks;  pro- 
tein structure  prediction;  secondary  structure; yeast VI11 chromosome 

Given the  rapid  advance of large-scale gene-sequencing  projects 
(Oliver et  al., 1992; Johnston et al., 1994), most  protein se- 
quences  of key organisms will be known  in  about 5 years’ time. 
Experimental  structure  determination is becoming  more  of a 
routine  (Lattman, 1994); and  the  number  of  proteins  with 
known sequence for which the three-dimensional (3D) structure 
can be predicted rather accurately by homology  modeling is con- 
stantly increasing (today  more  than 25% of all  sequences  in the 
SWISS-PROT  sequence  data  base  [Bairoch & Boeckmann, 
19941 can be modeled  with  reasonable  accuracy by homology 
[Sander & Schneider, 19941). Even in such  an  optimistic sce- 
nario,  experimental  knowledge  about  membrane  proteins is 
likely to  be  sparse.  However,  membrane  proteins  represent a 
very important class  of protein  structures.  To  what  extent  can 
structural  aspects  for  membrane  proteins be predicted from se- 
quence  information? 

Two types of rnembraneproteins. So far,  the 3D structures 
of  two  types  of  membrane  proteins  have been determined.  The 
first  type  are helical proteins:  photosynthetic  reaction  center 
(Deisenhofer et  al., 1985), bacteriorhodopsin  (Henderson et al., 
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1990), and  the light harvesting  complex I1 (Wang et al., 1993; 
Kuhlbrandt et al., 1994); these proteins consist  of typically apo- 
lar helices of some 20 residues that  traverse  the  membrane  per- 
pendicular to its surface (Fig. 1). The second  type is represented 
by the  structure  of  porin (Weiss & Schulz, 1992; Cowan & 
Rosenbusch, 1994), a 16-stranded /3-barrel. 

Membrane proteins easier to predict than  globular ones. Typ- 
ical methods for the  prediction of transmembrane  segments 
focus  on helical transmembrane  (HTM)  proteins  (von  Heijne, 
1981, 1986; Argos et al., 1982; Eisenberg  et  al., 1984a; Engel- 
man et al., 1986; von  Heijne & Gavel, 1988). It is commonly be- 
lieved that  the  prediction  of  structure is simpler for  membrane 
proteins  than  for  globular  ones  as  the lipid  bilayer imposes 
strong constraints on the degrees of freedom  of structure (Taylor 
et  al., 1994). 

Prediction of transmembrane segments. Methods  for predic- 
tion of transmembrane helices are usually based  on (1) hydro- 
phobicity  analyses  (Argos  et  al., 1982; Kyte & Doolittle, 1982; 
Engelman  et al., 1986; Cornette et al., 1987; Degli Esposti  et al., 
1990); (2) the  preponderance of  positively charged residues on 
the  cytoplasmic  side  of  the  transmembrane  segment  (interior), 
established as  the “positive  inside  rule” (von Heijne, 1981,  1986, 
1991, 1992; von  Heijne & Gavel, 1988; Sipos & von  Heijne, 
1993); or (3) statistical  procedures that  perform significantly bet- 
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protein sequence (1D) 
FHEPIWIAGI ILGLALVGLITYFGKWI‘YLWLWLTS 
VDHKR~IMYITVAIVMLL~FADAIMMRSQQA~SAGEA 
GnPPHHMOIFTAHGVlMIFNAMPFVIGZMNLVVPLOI 

Fig. 1. Prediction of the  location of transmembrane  helices.  In  one  class of membrane  proteins,  typically  apolar  helical seg- 
ments are  embedded in the lipid bilayer oriented  perpendicular to  the  surface of the  membrane. Helical segments  can be regarded 
as  more  or less rigid cylinders.  Thus,  the 3D structure of the  membrane  spanning  protein region can  be  determined by: the  location 
of segments  with  respect  to  sequence;  the  orientation  of  helical  axes;  the  inclination  of helical axes  with  respect to lipid  bilayer; 
and  the  phase of helices with  respect to each  other  (orientation of helical wheel). Here, we simplify  extremely  by  projecting 3D 
structure  onto a 1D string  describing  which  residues of the  protein  are  part of a  transmembrane helices. Input  to  the  prediction 
tool  (neural  network  system) is a  protein  sequence  (in  general  a  sequence  alignment),  output is a  prediction of the  location of 
transmembrane  segments.  The  example  shown  (sequence of cytochrome 0 ubiquinol  oxidase  subunit I ,  cyob-eco in SWISS- 
PROT;  Bairoch & Boeckmann, 1994) contained  one of the few segments  that  were  underpredicted  (missed).  The  numbers give 
the  reliability of the  prediction for each  residue on a  scale of 0-9 (Fig. 2). Nontransmembrane  regions,  when  predicted  correctly, 
usually  reached  the  highest  reliability (9). Thus,  the  unusually  low  reliability  values  for  the  underpredicted  segment  might  have 
enabled  the  expert  user  to  improve  the  automatic  prediction by interpreting  this  region  as  nonloop. 

ter when combined with multiple alignments (Persson & Argos, 
1994). In general, prediction of transmembrane segments is rel- 
atively straightforward.  But, can detailed aspects of 3D struc- 
ture be predicted from sequence for  HTM proteins? 

Prediction of 3 0  structure for  HTMproteins. Cytoplasmic 
and extracellular regions  have different amino acid compositions 
(von Heijne & Gavel, 1988; Nakashima & Nishikawa, 1992). 
This difference allows for  a successful prediction of not only the 
location of helices but, as well,  of their orientation with respect 
to  the cell (pointing inside or outside  the cell) (Landolt- 
Marticorena et al., 1992; Sipos & von Heijne, 1993; Jones et al., 
1994). Going further, Taylor and colleagues enumerate all pos- 
sible models for packing seven-helix transmembrane  proteins 
and select the “better models” (Taylor et al., 1994). The selection 

criterion for  “better models” is the crucial point of the  method. 
The authors report that  the native conformation is found in 
“most cases” tested.  However, the N- and C-terminal  ends of 
the  transmembrane helices have to be predicted very accurately 
for a successful automatic prediction of 3D structure  from se- 
quence (Taylor et al., 1994). Can  the accuracy of predicting not 
just  the  location of transmembrane helices but, as well, of the 
N- and C-terminal ends be improved? 

Better prediction of transmembrane helix location. Predic- 
tion accuracy has recently been improved significantly (Sipos & 
von Heijne, 1993; Jones et al., 1994; Persson & Argos, 1994). 
A system of neural networks using single sequences as input 
(Fariselli et al., 1993; R. Casadio, P. Fariselli, C.  Taroni, & 
M. Compiani, submitted for publication) appears to be slightly 
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inferior  to  these  methods.  However, using information  from High reliability in discriminating between proteins 
multiple  sequence  alignments  as  input,  neural  networks  have with and without transmembrane helices 
been shown  to yield the  most  accurate  prediction  of  secondary 
structure  for  globular  proteins  (Rost & Sander, 1993a,  1993c, 
1994a). Here, we used a similar system of  neural  networks  to 
predict  transmembrane helices based on evolutionary  informa- 
tion (Figs. l ,  2). The  goal was to  predict  the  location  of  trans- 
membrane helices (defined  as helix caps given in SWISS-PROT 
[Bairoch & Boeckmann, 19941) more accurately than  alternative 
methods (Sipos & von  Heijne, 1993; Jones  et  al., 1994; Persson 
& Argos, 1994; R.  Casadio  et  al.,  submitted).  The  neural  net- 
work system was  tested in fivefold  cross-validation on  69  pro- 
teins  with  experimentally  well-determined  transmembrane 
helices (Materials  and  methods).  Network  input was the  infor- 
mation  derived  for successive windows of  13 adjacent residues 
from a multiple  sequence  alignment (Fig. 3). Output were two 
units,  one  for  each  state of the  central residue (in membrane he- 
lix/not in membrane helix;  Fig. 2). 

Results and discussion 

Evolutionary  information  improves  prediction 
accuracy significantly 

Better prediction in terms of per-residue and segment-based 
scores. Compared  to a simple  neural  network,  the  per-residue 
accuracy of the full  three-level  system  using  explicitly various 
aspects  of evolutionary  information increased by some five per- 
centage  points  (Table 1). The  improvement in prediction  accu- 
racy was even more significant in terms of  segment-based scores: 
from  some 75% correctly  predicted  segments  to  94%. 

Reliability index of practical use to refine prediction accu- 
racy. For  some 70% of all proteins, 100% of all segments were 
predicted  correctly  (data  not  shown).  The reliability of  the  pre- 
diction (reliability  index defined in Fig. 4) can  help  to  estimate 
whether or not a protein is likely to  belong  to  the  majority of 
proteins  for which  all segments  are  predicted  correctly (Fig. 4). 
Furthermore,  the reliability  index  was  used to  control  the filter- 
ing procedure  (Fig. 5 ) .  

Performance similar to that of 
the best alternative methods 

Recently, two  groups  reported significant improvements  in pre- 
dicting  transmembrane helices. Jones et al. (1994) use a new 
method with five output states (HTM-inside/middle/outside and 
not-HTM  inside/outside, where inside/outside refers to  inside/ 
outside  the cell). Persson and Argos (1994) use four  output states 
(HTM-begin/middie/end  and  not-HTM)  plus  multiple  align- 
ment  information.  The system  described here resulted  in an ac- 
curacy  in  predicting  the  transmembrane helices similar  to  these 
two  methods  although we used only  two  output  states.  An ex- 
act  comparison  of  the  performance  accuracy is made  difficult 
because  for  both  methods  neither  are  per-residue  scores  pub- 

Does  the  prediction  method  distinguish  transmembrane  from 
nontransmembrane  proteins?  Two  questions  are of interest. 
First,  did  the  network system correctly  predict  all  transmem- 
brane  proteins used for  the  cross-validation  analysis  as  trans- 
membrane  proteins?  And  second, were some  globular  proteins 
falsely predicted to  contain  transmembrane  segments? 

Transmembrane proteins correctly identifed. Both  the net- 
work system  using  single sequences  as  input  and  the  network 
using  only  profiles  identified all but  two  proteins  in  the  test set 
as  transmembrane  proteins:  melittin  (2mlt)  and  immunoglob- 
ulin G-binding  protein  precursor (iggb-strsp).  Melittin is a spe- 
cial case because the  DSSP (Kabsch & Sander, 1983) assignment 
of  secondary structure splits the long helix of the 26-residue mol- 
ecule into  two  that were so short  that  the  filtering  procedure 
would miss this  protein even on  the basis of the known  3D  struc- 
ture.  The  ultimate  network system PHDhtm missed only melit- 
tin; all other  membrane  proteins were correctly  identified. 

Fewer  than 5% falsepositives. To test whether  globular pro- 
teins were  falsely predicted  to  contain  transmembrane helices, 
we chose a set of 278 unique globular  proteins. (No network pre- 
dicted a transmembrane helix in the  0-barrel  porin.)  PHDhtm 
mispredicted fewer than 5% of  the  globular  proteins  (Table 3). 
False  positives  were often  globular  water-soluble  proteins with 
highly hydrophobic  0-strands in the  core.  An exception  was the 
only  globular  protein predicted to  contain  more  than  three seg- 
ments:  photosynthetic  reaction  center (4rcr) for which 11 seg- 
ments with an  average  length  of 21 residues  were predicted  as 
transmembrane helices (mandelate  race  mace  [2mnr] was pre- 
dicted  with three  long helices). The  network using only profiles 
as  input  predicted  transmembrane helices for less than  2%  of 
the  globular  proteins. 

Multilevel system  improves significantly 
over simple neural network 

Alignment information improves performance. The most sig- 
nificant  improvement in prediction  accuracy  (compared to a sim- 
pler neural  network  prediction)  stemmed  from  including  the 
information  contained in  multiple  alignments.  Roughly one half 
of  the  improvement  attributed  to  simply using residue  substi- 
tution  frequencies  (Table  4),  and  one  half to  using additionally 
more  details  contained in the  alignments  (conservation weight, 
number  of  insertions  and  deletions)  and  information  about  the 
whole  protein  (Table 4). 

Balanced  versus unbalanced training. The  balanced  training 
procedure (equally often presenting  residues  in transmembrane 
and residues not in transmembrane  segments;  Materials  and 
methods)  tended  to overpredict transmembrane helices, whereas 
an  unbalanced  training  procedure  (presentation of  examples ac- 
cording  to  the  distribution in the  training  set;  Materials  and 
methods)  tended to  underpredict  transmembrane  segments. 

lished nor  are  the segment  measures  used  defined (see footnotes Jury decision finds a  compromise between balanced and un- 
to  Table 1). Surprisingly,  the  errors  made by the  network sys- balanced training. Both  balanced  and  unbalanced  training  had 
tem  are  often  different  from  those  made by the  two  statistical advantages  and  disadvantages.  Which  of  the  two  methods 
methods  (Table 2  in comparison  to  Jones  et  al., 1994; Persson should  be  used  for  prediction? A reasonable  compromise (ef- 
& Argos, 1994). fectively  between over-  and  underprediction) was found by the 
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protein 1 
protein 2 

protein n 

I I \  

Fig. 3. Generating multiple alignments for 
the network input.  First,  for each protein 
the  SWISS-PROT data base of protein se- 
quences (Bairoch & Boeckmann, 1994)  was 
searched for putative homologues with a 
fast alignment method (FASTA; Pearson 
& Lipman, 1988; Pearson  &Miller, 1992). 
Second, the list of putative homologues  was 
reexamined with a more sensitive profile- 
based multiple alignment method (Max- 
Hom; Sander & Schneider, 1991). Third,  a 
length-dependent cutoff for the sequence 
identity between the search sequence and 
the aligned ones was applied to distinguish 
correct hits for homologues from false  pos- 
itives (for more than 80 residues aligned, 
the  cutoff was chosen 25% + 5%; where 
the "+5%" reflects a safety margin above 
the line observed to separate  correct and 
false homologues  [Sander & Schneider, 
19911). Fourth, a window of 13 adjacent 
residues was shifted along the  protein se- 
quence. Each  such  window constituted one 
training or testing example for  the neural 

0 network 

Table 1. Prediction accuracy cross-validated an helical transmembrane proteinsa 
" 

.~ 

Overall Helical transmembrane segments only 
"_ ." "~ 

Per-residue score Segment-based scores 
_ _ _ ~  

Set MethodC N Q2 Info  %Obs QTM %Prd QTM Corr ( L )  %Obs Sov %Prd Sov Nsegd over Nseg under 

Set 1 No profiles 69 90 0.45 84 70 0.71 23 90 81 15 47 

PHDhlm 69 95 0.64 91 84 0.84 23 96 96 5 10 
6.3% 17% 

1.9%  3.8% 

Set 2 PHDhtm 37  95  91 
Edelman ( I  993) 37  88  90 

Set 3 Jones et  al. (1994) 67 

Set 4 PHDhtm 28 

Persson and Argos (1994) 28 
Not cross-validatedf 

0.85 23 
0.70 26 

I5 6 
4.5% 1.9% 

3-2' 3 
1.6% 2.3% 
2-3' 3 
1.6% 2.3% 

a N ,  number of proteins used for prediction; QI, percentage of correctly predicted residues; Info, information or entropy of prediction (Rost 
& Sander, 1993b); QTM, accuracy of predicting transmembrane helices (HTM); %Obs QTM, correctly predicted residues in HTM as percentage 
of residues observed in HTM; %Prd QTM, correctly predicted residues in HTM as percentage of residues predicted as HTM; Corr, Matthews cor- 
relation  (Matthews, 1975) for residues in HTM; (L), average length of predicted HTM (the observed average is ( L )  = 22); %Obs Sov, segment 
overlap for  HTM computed  as percentage of observed segments (Rost et al., 1994); %Prd Sov, segment overlap for  HTM  computed  as percentage 
of predicted segments (Rost et al., 1994);  Nseg over, number of segments predicted but not observed as  HTM; Nseg under, number of segments 
observed but  not predicted as HTM. Bold indicates the reference levels. 

Set 1, set of 69 proteins with experimentally well-determined transmembrane helices  (see Materials and methods); set 2, set of 37 transmem- 
brane proteins used by Edelman (1993);  set  3,  set 1 without glra-rat and 2mlt; set 4, set  of 28 transmembrane proteins used by Persson and Argos 
(1994). 

No profiles, two-level network system using single sequences as  input  (R.  Casadio et al., submitted); PHDhtm, three-level network system + 
filter using all information  from multiple alignments as input (Fig. 2). 

Whenever predicted and observed segments overlapped by at least three residues, the segment  was counted as correct (Rost et al., 1993,  1994). 
A similar measure seems to have been used by others. A more reasonable score is the segment overlap Sov (Rost et al., 1994). 

e Discrepancy in assigning transmembrane helices for  atpi-pea;  both methods compared predict five transmembrane helices. In SWISS-PROT 
only  four are  annotated; thus, we initially counted our prediction as wrong, whereas Persson and Argos (1994) based their evaluation on the hy- 
pothesis that the  protein  contains five and not four transmembrane helices. 

All results except for those in the last row were based on cross-validation tests. Persson and Argos (1994) reported  that  for their method the 
results with or without cross-validation analysis are similar and only gave the non-cross-validated results on proteins in their training set. 
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A --e PHDhtm (input multiple alignment) 
----x--- no profiles (input  single sequences) 

94- .............. + .............. i ............... i ............... i .............. I .............. 4 
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65 ?'O j 5  80 d5 $0 95 100 

percentage of residues predicted 
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I I I I 

. .  .......... 

: v  . 
90 .................... .................... ; .................... .................... 

...................................................................................... * i .............. 3*y 
I I I I 

0 20 40 60 80 1 0 0  
percentage of residues predicted 

Fig. 4. Reliability  of  prediction.  Reliability  index ( R I )  for the  predic- 
tion was  defined  as proportional to the difference between  the  two out- 
put units: 

RI = INTEGER (10 X [OUtHTM - OUt,,,, HTM]) .  

The factor 10 scales the reliability  index to values 0-9. A: Overall  two- 
state per-residue  accuracy  versus  the  cumulative  percentage  of  residues 
with a reliability  index RI 2 n, n = 0, . . . .  9. Note that RI 2 0 is the 
rightmost  point  representing 100% of the  predicted  residues.  Results 
were averaged  over the residues  in all 69 transmembrane proteins used 
for the  cross-validation  test. A network  system that used  multiple align- 
ments  as  input was compared to a network  using  single  sequence infor- 
mation only. For example, 90% of all  residues were predicted with 
RI 2 6. For these, the prediction  accuracy  for  the  network  using multi- 
ple  alignment information  reached a value  of Q2 > 97%. B: Percentage 
of  residues correctly  predicted in transmembrane helices  versus cumu- 
lative  percentage of residues  predicted in transmembrane helices with 
a reliability  index RI 5 n. Results are given  as percentages of the num- 
ber of residues  observed  in  transmembrane  helices  (open  triangles)  and 
as percentages of the number of  residues predicted in transmembrane 
helices  (filled  circles). For example, about 70% of  all  residues  predicted 
in transmembrane segments  had a reliability  index RI 2 7. Ninety-five 
percent of  these  were predicted correctly. 

jury  decision,  i.e.,  the  arithmetic  average  over  the  output val- 
ues of  balanced  and  unbalanced  networks. 

Second-level elongates helices. The effect  of the second-level 
(structure-to-structure)  network was to  elongate  or delete short 
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helical segments. The effect was an increase in the average  length 
of a predicted helical segment from 15 residues for  the first level, 
to  27 residues for  the  second level (Table 4). In  other  words,  the 
first-level networks (Fig. 2) yielded an  average length for  trans- 
membrane  segments 5-7 residues shorter  than  observed;  the 
second-level networks (Fig. 2) resulted  in  segments up  to 13 res- 
idues  longer  than  observed.  Thus,  the second-level networks 
tended  to  elongate helices (Table 4). 

Final filtering  procedure. Short  loop  regions were often 
missed by the  second  network, which tended  to  elongate heli- 
ces too much (note  that  the  input window is too  narrow  to learn 
a maximal  length for  transmembrane segments). This  drawback 
was  compensated by a  relatively straightforward  filtering  pro- 
cedure  (Materials  and  methods). Filtering improved  the predic- 
tion  accuracy  both in terms  of  per-residue  and  segment-based 
measures  for  prediction  accuracy  (Table 4). 

Conclusion 

Selection of data set. The  3D  structure is experimentally 
known  for  only five (Iprc-H,  lprc-L,  Iprc-M,  lbrd, 2mlt) of 
the  69  protein  chains used for the cross-validation  analysis. This 
implies that  the results ought  to  be  taken with caution. To in- 
crease  confidence in the  results, we deliberately  chose  proteins 
for which there is "reliable" experimental evidence about  the lo- 
cations  of  the  transmembrane  regions (list taken  from  Jones 
et  al., 1994), rather  than  working  with a larger  data set includ- 
ing less well-known  segments. 

Improvedprediction of transmembrane helices. Using vari- 
ous aspects of evolutionary  information  improved  the  overall 
per-residue  accuracy  of  predicting residues  in transmembrane 
helices by some five percentage points.  This  improvement could 
be significant enough  to  warrant use of the predictions as a start- 
ing point  for a complete ab initio  prediction of 3D  structure  for 
transmembrane regions (Baldwin, 1993; Taylor et al., 1994). Our 
best network system (called PHDhtm) correctly  predicted some 
94%  of  all  segments  and  the  correct  location  of  some  90%  of 
all residues observed in transmembrane helices. For only 4 of 
15 incorrectly  predicted (either under-, or overpredicted) seg- 
ments,  the  defined reliability  index would  have led the user to 
suspect a wrong  prediction (Fig. 1). 

Prediction for  globular proteins  sufficiently accurate. The 
two-level network system  using only  profiles  as  input mispre- 
dicted less than 2% of  globular  proteins as containing  transmem- 
brane helices (Table 3). An  unsatisfactory  disadvantage  of  the 
most  accurate  network system PHDhtm was that  this  error  rate 
was clearly higher (<5%) .  However, for most  practical  purposes 
this rate of  false positives is sufficiently  low.  All transmembrane 
proteins were predicted to  contain  at least one  transmembrane 
helix, except for melittin, which would not have been recognized 
as  transmembrane helix even from  the  crystal  structure:  the 
strongly  bent helix is split into  two  short helices by the  program 
assigning the  secondary  structure  automatically  from 3D struc- 
tures (DSSP; Kabsch & Sander, 1983). 

Weakpoint. A rather inconvenient  aspect  of the  method de- 
scribed  here is the necessity to  apply a  filter procedure (Fig. 5 )  
at  the  end  of  the prediction. This  disadvantage is one  of  the de- 
tails  that still has  to  be  improved  in a more  general  tool. 
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too short helices 

if ( L e 17 n R b 7  (at either  end of helix) I--> elongate helix by one residue 

if ( only one helix predicted ) 

if { at least 2 helices predicted } 

until L 1 17 

i f ( L < 1 7 )  --> cut helix 

if ( L <  11 ) --> cut helix 

too long helices 

if ( L > 3 5  ) 

if { L > n x 22, n=3.4, ... } 

--> split helix at position U2 
into  two  helices of length U2 

--> split helix into n of length U n  

Fig. 5. Filtering the prediction. Out- 
put of the third level (jury prediction) 
was filtered to delete too-short and  to 
split  too-long predicted transmem- 
brane helices. Splitting of too-long 
segments was usually done exactly in 
the middle of the segment by flipping 
the prediction for  one residue from 
HTM  to  not-HTM. Two exceptions 
were: ( I )  if there was a residue in a 
three-residue  neighborhood of the 
central residue  with a lower  reliability 
index than that of the  central one, 
then splitting was performed at that 
residue; (2) if the two residues on both 
sides of the central residue were pre- 
dicted with an RI < 3, then up to five 
residues in total were  flipped from the 
state HTM to not-HTM. 

Possible improvements of the prediction. There are methods 
that predict whether or not a loop region  is located inside or out- 
side the cell (von Heijne & Gavel, 1988; Nakashima & Nishi- 
kawa, 1992; von Heijne, 1992; Sipos & von Heijne, 1993; Jones 
et al., 1994). Such tools could be used to either complement the 
network  prediction, or directly to train  a network to predict 
transmembrane topology (direction of transmembrane helices 
with respect to cell). 

@-Strand membrane proteins. How can  transmembrane seg- 
ments for @-barrel  proteins such as porin be predicted from 
sequence? Interestingly, the network system trained on water- 
soluble globular proteins (PHDsec), predicts the @-strands of the 
membrane protein porin more accurately than  the helices  of the 
photoreaction  center,  bacteriorhodopsin, or the light harvest- 
ing complex. The reason may be that  the pore  of  porin is  ex- 
posed to solvent and thus resembles globular  proteins in some 
respects. The prediction of @-strands, combined with hydropho- 
bicity scales (Eisenberg et al., 1984b) and/or predictions of sol- 
vent  accessibility (Rost & Sander, 1994b), has been  used to infer 
which of the porin strands may be in contact with lipids. Un- 
fortunately, however, the structures of  very  few @-strand mem- 
brane proteins are known. Thus, training of neural  networks, 
as well as the  application of statistical methods, is premature. 

3 0  structure prediction. How can one come closer to the goal 
of 3D prediction for helical membrane proteins? One way to go 
from accurate predictions of HTM locations to 3D structure has 
been indicated by Taylor et al. (1994). Whether or not the net- 
work predictions described here, in combination with a predic- 
tion of segment orientation relative to  the membrane  surface, 
will be useful remains to be shown. 

Keeping up with thejlow of genome data. All results reported 
here refer to completely automatic usage of PHDhtm. In some 
cases, prediction accuracy can certainly be improved by expert 
knowledge, e.g., by fine tuning the alignment.  However, fully 
automatic use permits the analysis of many proteins,  e.g., all 
open reading  frames of complete  chromosomes. For example, 
less than an  hour  of CPU time  (on a SUN SPARClO  worksta- 
tion) was required for  the transmembrane helix prediction of all 
proteins of  yeast chromosome VI11 (Johnston et al., 1994),  given 
the multiple sequence alignments. For 59 of the 269 proteins at 

least two transmembrane helices were predicted (Table 5 ) ;  for 
another 27 of the proteins one transmembrane helix was pre- 
dicted. Given an error  rate of 570, this implies that 20-2570 of 
all yeast VI11 proteins were predicted to contain transmembrane 
helices. 

Availability of the network prediction. Predictions of trans- 
membrane helices  (as  well as secondary structure and solvent ac- 
cessibility for globular proteins) using the method presented  here 
are provided via an automatic electronic mail server. If you  send 
the sequence of your protein,  the server will return  a multiple 
sequence alignment and a prediction of the location of trans- 
membrane helices. For further information, send the word help 
to  the Internet address PredicfProtein@EMBL-Heidelberg.DE 
by electronic mail, or use the World Wide Web (WWW) site 
http://www.embl-heidelberg.de/predictprotein/predictprotein. 
html. 

Materials and methods 

Database 

Selection of proteins. We based our analyses on a set of 69 
proteins for which experimental information  about  the location 
of  transmembrane helices is annotated in the SWISS-PROT 
database (Manoil & Beckwith, 1986; von Heijne & Gavel, 1988; 
von Heijne, 1992; Sipos & von Heijne, 1993; Jones et al., 1994). 
This set in particular was chosen to meet three  criteria: (1) reli- 
ability: the experimental information should be as reliable as 
possible (Manoil & Beckwith, 1986;  von Heijne, 1992);  (2) com- 
parability: to enable a  comparison to similar methods,  the data 
set should be similar to those used by others; (3) availability: the 
list (Table 2) was the subset of those  proteins used by Jones 
et al. (1994) that were available in SWISS-PROT when we had 
started the project (melittin [2mlt] and the glutamic acid receptor 
[glra-rat,  O’Hara et al., 19931 were added). For the few known 
3D  structures, the location of the  transmembrane regions was 
taken from DSSP (Kabsch & Sander, 1983). The exact locations 
of the transmembrane helices are  often controversial. To enable 
a  straightforward  comparison to  future methods and  for  mak- 
ing our results easily reproducible for others, we decided to  al- 
ways  use the definitions  found in SWISS-PROT (Bairoch & 
Boeckmann, 1994). 
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Table 2. Observed and predicted transmembrane helices for 69 proteinsa 

Protein  Observed HTM  Predicted  HTM 
.- c 

1 brd 
(bacr-halha) 

lprc-H 

lprc-M 

I prc- L 

2mlt 

4f2-human 

5ht3Lmouse 

alaa-human 

a4Lhuman 

aalr-canfa 

adt-ricpr 

23-42 
57-76 
95-1 14 

121-140 
148-167 
191-210 
217-236 

12-35 

52-76 

11 1-137 
143-166 
198-223 
260-284 

33-53 

84-1 I 1  
116-139 
171-198 
226-249 

2-10 
12-25 

82-104 

246-272 
278-296 
306-324 
465-484 

54-79 
92-117 

128-150 
172- 196 

- 

- 

210-233 
307-33 1 
339-363 

34-59 
71-96 

107-129 
150- 173 
193-217 
375-399 
407-430 

700-723 

11-33 
47-69 

81-102 
- 

124- 146 
177-201 
236-259 
268-292 

8-30 
44-66 
78-100 

121-143 
174-198 

267-290 

34-54 
68-88 
93-113 

148-168 

185-205 

235-258 

- 

24-43 
55-87 
92-116 

121-143 
145-169 
185-21 1 
213-239 

12-3 I 

43-59 
63-78 

110-130 
143-170 
198-223 
262-292 

21-38 
42-58 
81-103 

115-146 
173-196 
223-255 

- 

- 

82-104 

238-270 
282-301 
307-33 1 
457-484 

56-79 
92-116 

128-150 
173-189 
213-235 
309-329 

- 

32-60 
69- 100 

106-133 
151-169 
196-221 
375-399 
405-429 

702-722 

12-35 
39-53 
61-74 
80- 1 10 

125-144 
176-206 
235-261 
266-291 

10-32 
40-7 1 
77-105 

122-141 
174-203 
234-260 
266-290 

3 1-46 
60-87 
92-115 

134-148 
156-170 
185-206 

~- 

Protein  Observed  HTM  Predicted  HTM 
~~ 

adt-ricpr 
(continued) 

bach-halhm 

cb2lLpea 

cek2-chick 

cyoa-ecoli 

:yob-ecoli 

:yoc-ecoli 

:yodLecoli 

:yoe-ecoli 

Zdgl-human 

egfr-human 

fce2Lhuman 

glp-pig 

~" 

2 19-239 
280-300 
321-341 
349-369 
380-400 
439-459 
466-486 

23-42 

95-1 14 
121-140 
148-167 
191-210 

57-76 

217-236 

62-8 1 
114-134 
182- 198 

365-389 

5 1-69 
93-1 11 

- 

17-35 
58-76 

102-121 
144-162 
195-213 
232-250 
277-296 
320-339 
348-366 
382-401 
4 10-429 
457-476 
494-5 13 
588-607 
6 14-634 

32-50 
67-85 

102-120 
143-161 
185-203 

18-36 
46-64 
81-99 

10-28 
38-56 
79-97 

108-126 
- 
- 

198-216 
229-247 
269-287 

47-71 
79-107 

122-140 
160-185 
202-222 
256-277 
294-3 14 

646-668 

22-47 

63-85 

~" 

217-239 
27  1-298 
322-342 
348-371 
377-400 
444-461 
469-485 

24-43 
55-87 
92-1 I6 

121-143 
145-169 
185-211 
213-239 

69-75 
115-134 
184-196 

371-389 

12-24 
44-66 
90- 109 

61-77 
101-131 
146-158 
191-212 
227-252 
286-302 
315-335 
349-368 
380-401 
415-440 
457-470 
498-519 
592-608 
6 12-626 

29-50 
67-85 

101-116 
138-162 
178-202 

20-39 
45-64 
80-101 

12-24 
44-66 
90- 109 

109-127 
142-158 
166-181 
198-222 
228-252 
265-287 

45-72 
80- 107 

116-145 
160-180 
201-227 
254-282 
288-3 12 

648-666 

27-47 

63-84 

- 
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- ~. ~ ~~~ 

Protein  Observed  HTM  Predicted  HTM 
~ 

glpa-human 

glpc-human 

glra-rat 

gmcr-human 

gplb-human 

gpt-crilo 

hema-cdvo 

hema-measi 

h e m a ~ p i 4 h a  

hg2achuman 

iggb-strsp 

il2a-human 

il2b-human 

ita5Lmouse 

lacy-ecoli 

lech-human 

leci-mouse 

lep-ecoli 

magl-mouse 

malf-ecoli 

motb-ecoli 

mprd-human 

mypO-human 

ngfr-human 

92-1 14 

58-81 

539-558 
585-603 
614-632 
806-826 

321-346 

148-172 

7-32 
58-79 
95-1 14 

126-145 
165-184 
195-211 
222-240 
253-269 
275-294 
379-397 

35-55 

35-55 

35-59 

46-72 
- 

- 

423-443 

241-259 

241-265 

356-381 

11-33 
47-67 
75-99 

103-125 
145-163 
168-187 
2 12-234 
260-281 
291-310 
315-334 
347-366 
380-399 

40-60 

40-60 

4-22 
58-76 

517-536 

17-35 
40-58 
73-91 

277-295 
319-337 
371-389 
418-436 
486-504 

28-49 

186-210 
- 

154-179 

25 1-272 

~~~ 

91-1 14 

57-81 

536-557 

615-636 
807-826 

326-35 1 

147-171 

12-38 
59-83 
96-115 

127-150 
157-181 
187-210 
224-242 
249-269 
277-292 
379-402 

37-58 

37-58 

37-59 

50-67 

18-32 
91-103 

425-439 

235-258 

236-267 

- 

355-383 

11-36 
46-67 
75-98 

104- 126 
148-161 
169-187 
219-238 
265-288 
294-314 
320-337 
343-371 
377-400 

40-59 

40-59 

4-23 
63-82 

515-534 

21-35 
43-58 
7 1-93 

278-306 
318-339 
370-390 
418-444 
486-505 

30-5 1 

185-21 1 

14-3 I 
155-183 

253-272 

(continued) 
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Table 2. Continued 

Protein Observed HTM Predicted HTM 

nep-human 

oppb-salty 

oppc-salty 

opsl -calvi 

ops2-drome 

OpS3-drome 

28-50 

10-30 
100-121 
138-158 
173-190 
227-250 
272-293 

38-59 
102-122 
140-160 
164- 180 
216-236 

268-290 

48-72 
85-1 10 

125-144 
164- 187 
212-239 
275-298 
306-330 

- 

57-81 
94-1 I9 

134-153 
173-196 
221-248 
284-307 
315-339 

58-82 
95-1 I9 

30-49 

10-29 
96- 120 

130- 162 
168-193 
228-259 
273-298 

39-59 
98-126 

141-158 
166- 182 
2 10-22s 
232-248 
268-289 

47-75 
85-1 10 

116-145 

212-239 
275-298 

162- 187 

306-329 

55-84 
94-118 

124-153 
171-196 
221 -248 
284-307 
315-338 

57-85 
95-119 

Protein Observed HTM Predicted HTM 

ops3-drome 
(conrinued) 

ops4-drome 

opsb-human 

opsd-bovin 

opsg-human 

134-152 
172- I96 
22 1-248 
285-308 
317-341 

54-78 
91-113 

130-149 
168- 192 
217-244 
28 1-304 
313-337 

34-58 
7 1-96 

111-130 
150- 173 
200-227 
250-272 
282-306 

37-61 
74-99 

114-133 
153-176 
203-230 
252-276 
285-309 

53-77 
90-115 

130-149 
169-192 

125-153 
169-194 
22 1-248 
285-308 
3 17-340 

53-81 
91-115 

121-150 
166-191 
2 17-244 
28 1-304 
3 13-336 

33-59 
71-100 

112-135 
149-173 
200-227 
251-275 
281-306 

36-62 
74- 104 

115-139 
152-176 
203-230 
253-279 
285-309 

52-78 
90- 1 20 

131-155 
168-192 

Protein Observed HTM Predicted HTM 

opsg-human 
(continued) 

opsr-human 

pigr-human 

pt2m-ecoli 

sece-ecoli 

suis-human 

tcbl -rabit 

trbm-human 

trsr-human 

vmt2Liaann 

vnb-inbbe 

" 

2 19-246 
269-292 
301-325 

53-77 
90-1 I5 

130-149 
169-192 
2 19-246 
269-292 
301-325 

62 1-643 

25-44 
5 1-69 

135-154 
166- 184 

274-291 
- 

314-333 

19-36 
45-63 
93-1 1 1  

13-32 

292-3 I3 

5 16-539 

63-88 

25-42 

19-40 

2 19-245 
269-295 
301-325 

52-78 
90-1 I9 

131-155 
168- 192 
219-245 
270-295 
301-325 

624-643 

20-42 
54-65 

133-156 
167-181 
249-262 
270-283 
312-332 

20-34 
42-62 
93-123 

12-33 

285-312 

5 15-536 

67-86 

27-5 1 

19-42 

_" 
a For the 69 transmembrane  proteins used for cross-validation,  the  following  data  are  listed: (1) the  protein  name, given by  the  SWISS-PROT 

identifier  (Bairoch & Boeckmann, 1994); if the 3D structure is known,  then  the  PDB  code plus chain  identifier is used (Bernstein  et  ai., 1977; Kabsch 
& Sander, 1983); (2) the  positions for the  transmembrane helices observed  (=SWISS-PROT  documentation, or DSSP  [Kabsch & Sander, 1983]), 
counted  from  the  first  residue  in  SWISS-PROT or DSSP;  and (3) the  cross-validated  prediction by the  network  system  PHDhtm.  Except for 2mlt 
and glra-rat.  the list comprises a subset of the proteins used by David Jones (Jones et al., 1994) and  Gunnar von Heijne (von Heijne & Gavel, 1988; von 
Heijne, 1992; Sipos & von Heijne, 1993). 

Generation of multiple alignments. For  each of the initial 69 
proteins, a multiple  sequence  alignment was generated  using the 
program  MaxHom  (Sander & Schneider, 1991;  Fig. 3). All se- 
quences  from  SWISS-PROT  with a sequence  identity  above a 
length-dependent  cut-off were included in the alignment  (Sander 
& Schneider, 1991), assuming that this is valid not  only  for glob- 
ular  but  also  for  membrane  proteins. 

Cross-validation test. The set  of 69  transmembrane  proteins 
(Table 2) was  divided  into 52 proteins used for  training  and 17 
used for  testing  the  method.  This  was  repeated five times (five- 
fold  cross-validation),  until  each  protein  had been in a  test set 
once.  The  sets were chosen  such  that  no  protein in the  multiple 
alignments used for  testing  had  more  than 25% sequence  iden- 
tity to  any  protein in the  multiple  alignments  of  the  training set. 
All  results  reported  are  averages  over  proteins in various test 
sets. 

Neural network  system 
First level: Sequence-to-structure. The  principles  of  neural 

networks  for  secondary  structure  prediction (Fariselli et  al., 

1993; Rost & Sander, 1993a) and of coding  multiple  sequence 
information (Rost & Sander, 1993b, 1994a, 1994b) are described 
in detail elsewhere. Here,  only  some basic concepts will be re- 
capitulated  and  details  regarding  the  application  to  transmem- 
brane helices will be introduced. 

Input  to  the first-level network consisted of two  contributions, 
(1) one  local  in  sequence,  Le.,  taken  from a window of 13 ad- 
jacent  residues;  and (2) another  global  in  sequence,  i.e.,  com- 
piled from  the whole protein (Fig. 2 ) .  (1) The local information 
computed  for  each  residue in the  window was the  frequency 
of  occurrence  of  each  amino  acid  at  that  position in the  multi- 
ple alignment,  the  number of insertions  and  deletions in the 
alignment  for  that residue, and a  position-specific conservation 
weight (Fig. 2) .  ( 2 )  As  global  information, we used the  amino 
acid  composition  and  length of the  protein  and,  furthermore, 
the  distance  (number of  residues)  of the first  residue  in the win- 
dow of 13 adjacent residues from  the  protein begin (N-term), 
and  the  distance  of  the  last  residue in the  window to the  pro- 
tein  end  (C-term). 

Output  of  the first-level network was two  units,  one  repre- 
senting  examples  with  the  central  residue  of  the  window  in a 
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Table 3. Prediction accuracy on globular proteins (negative control) a 

Method 

Number of Number of 
Number of proteins HTM segments 

globular predicted longer than % False 
proteins used with HTM 16 residues classifications 

No profiles 
Profiles only 
PHDhtm 

278 
278 
278 

Jones et al. (1994) 155 
Edelman (1993) 14 

18 
5 

12 

5 
3 

6.5% 
1.8% 
4.3% 

3.2% 
21.4% 

a Abbreviations for methods  as in Table  1 and Table 4. We considered a  globular  protein to be mispredicted if either at least 
two transmembrane segments are predicted with more than 10 residues, or at least one with more than 17 residues. Results from 
Edelman (1993) and Jones et al. (1994)  were taken from the  literature. 

transmembrane helix; the  other representing  examples with  the 
central  residue  not  in  transmembrane helices (Fig. 2 ) .  

Balanced  and unbalanced training. Training was performed 
with the usual  gradient descent (also  known as  back-propagation 
[Rumelhart  et  al., 19861): 

where tis  the  algorithmic  time  step  (i.e.,  change  of  all  connec- 
tions  for  one  pattern), E is the  error, given by the  difference be- 

tween  actual  network  output  and  the  desired  output (i.e., the 
value  observed  for  the  central  residue); J j  is the  connection 
from  unit j to  unit i on  the next  layer (input to hidden,  hidden 
to  output); E is the  learning  speed,  chosen  here  to be 0.01; and 
CY the  momentum  term  (permitting uphill  moves) chosen here to 
be 0.2. Two modes were used. First,  unbalanced  training: at each 
time  step  of  the  error  minimization  one  pattern was chosen  at 
random  from  the training  set, and all connections of the network 
were changed.  Second,  balanced  training:  at  each  time  step  of 
the  error  minimization  (Equation l) ,  one  pattern  from  the class 
“transmembrane helix” and  one  from  the class “not  transmem- 
brane helix”  was  used to change  all  connections. 

Table 4. Analysis of the performance for each element of the network systema 

Overall 
~ ~ 

System 
” 

Set Methodb levels‘ Q2 

Set 5 No profiles 2 + filter 90 
Profiles only 2 + filter 94 
PHDhtm 3 + filter 95 

Set 1 First unbalanced 1 93 
First balanced 1 91 
First unbalanced-second unbalanced 2 93 
First balanced-second unbalanced 2 93 
First unbalanced-second balanced 2 91 
First balanced-second balanced 2 93 
Jury over four networks 3 91 
PHDhtm 3 + filter 95 

~ 

Info 

0.45 
0.56 
0.65 

0.52 
0.53 
0.52 
0.52 
0.55 
0.58 
0.58 
0.64 

Transmembrane helices only 
”” 

Per-residue score Segment-based scores 
~~ 

%Obs %Prd %Obs %Prd 
QTM QTM Corr ( L )  Sov sov 

84 70 0.71 23 90 81 
86 82 0.80 23 93 90 
91 84 0.85 23 96 96 

78  81 0.75 15 84 80 
91  71 0.76 17 80 72 
83 80 0.77 22 88  83 
83 80 0.77 22 88  83 
91 69 0.75 36  71  63 
93 75 0.79 29  80  75 
94 69 0.75 36  71 63 
91 84 0.84 23 96 96 

.”~. 

a See Table 1 for  abbreviations of measures. Bold indicates the reference levels for each set. 
PHDhtm, three-level network system + filter using all information  from multiple alignments as input (Fig. 2); No profiles, two-level network 

system using single sequences as  input (R. Casadio et al.,  submitted);  Profiles only, same as before,  but using evolutionary profiles (and no fur- 
ther  information derived from the multiple alignment) as  input; First unbalanced, first-level network with unbalanced training (see Materials and 
methods); First balanced, first-level network with balanced training (see Materials and methods); First x-second JJ, a second-level network with 
JJ (balanced or unbalanced)  training that uses as input  the prediction from a first-level network with x (balanced or unbalanced) training; Jury over 
four networks, arithmetic average over the four different second-level networks given above. 

Levels of the network system used (Fig. 2): 1, only first level; 2, first and second level; 3, jury average over different second-level networks 
(see Materials and methods);  filter,  application of the filtering procedure (Fig. 5) .  Set 1  contains 69 transmembrane proteins (see Materials and 
methods). Set 5 is the subset of set 1 without the PDB proteins 2mlt, lprc (chains H,  L, M), and  lbrd. 
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Table 5. Prediction of transmembrane helices for yeast  chromosome VUIa 

Identifier  Nresb  Nalib 

YHL040c 

YHL047c 

YHR092c 

YHR096c 

YHR094c 

YHR026w 

YHR002w 

YHL048w 
YHR190w 
YHR129c 
YHR005c 
YHR183w 
YHR046c 
YHR176w 
YHR039c 
YHLOl I C  
YHR028c 
YHR007c 
YHR037w 

YHL016c 

YHL035c 

YHL036w 

YHR048w 

YHRO5Ow 

YHR123w 

YHL003c 

YHL017w 

YHRO5Ow 

627 

637 

5  60 

592 

570 

213 

357 

381 
444 
3 84 
472 
489 
295 
373 
644 
320 
818 
530 
575 

735 

1,592 

546 

514 

549 

391 

41 1 

532 

549 

-~ -~ 

5 

5 

21 

18 

17 

18 

8 

4 
4 

258 
153 
39 
7 
6 

22 
5 

8 
7 
4 
1 

1 

1 

1 

1 

2 

3 

2 

1 

205-216 
75-88 

363-387 
568-581 

200-21 1 
70-83 

358-382 
563-576 

215-226 
70-87 

435-459 
85-101 

230-241 
450-475 
64-80 

209-220 
429-453 
20-37 

180-205 
37-53 

271-281 
39-62 

272-283 
137-153 
337-347 
360-371 
103-117 
262-272 
49-66 
13-92 
26-44 
25-47 

209-227 
17-33 

358-375 
193-213 

500-516 

335-357 
33-48 

574-591 
1,141-1.158 

69-92 
21  1-235 
398-413 
75-91 

197-221 
390-407 
92-  106 

246-257 
434-45 1 

267-286 
40-67 

82-100 
256-288 
194-212 
331-353 
92-106 

246-257 

Locations of predicted segments 

231-252 
404-4 1  8 

111-122 
226-247 
400-41 3 

116-127 

124-139 
247-261 
474-492 
138-154 
262-276 
489-507 
118-133 
241-255 
468-486 

56-80 

102-115 

70-93 
295-310 
349-360 
377-387 
41  8-429 
201-216 
338-351 
247-264 

91-108 

402-421 
256-266 

172-187 

977-998 
1,226-1,247 

100-122 
261-273 
433-445 

229-249 
112-126 

415-438 

620-642 

378-395 

309-333 
135-156 

518-538 
123-156 
294-3  12 
133-160 
303-3  19 
227-243 

135-156 
376-399 

309-333 

285-308 
429-441 

141-157 

136-152 
280-303 
425-436 

369-385 
152-171 

500-5  18 
167-  186 
385-400 
515-533 
146-165 
363-379 
494-512 
94-  122 

141-153 

233-252 
425-440 

137-153 
287-3 1 I 
429-450 
65  1-674 
201-217 
465-486 

1,042-1,058 1 
1.255-1.274 

298-3  15 
149-171 

461-477 
143-160 
308-334 
478-498 

361-376 
164-181 

177-  199 
320-342 
181-198 
353-383 
260-290 
420-438 
164-181 
361-376 

326-342 
173-190 

458-477 

168-185 
321-337 
453-473 

179-196 
400-41 3 

194-212 
415-428 

173-191 
394-407 

145-  168 

201-227 

260-277 

167-186 
339-350 
458-476 

229-239 
490-5 10 

,120-1,137 

187-203 
345-367 
492-5  19 
168-184 
343-364 

199-21 8 
409-423 

218-235 
350-372 
216-238 

307-3 18 

199-218 
409-423 

Nhtmb 
~ 

13 

13 

11 

11 

5 

5 
4 
3 
2 
2 
2 
2 
2 
2 
1 
1 
1 
1 

15 

15 

12 

11 

10 

8 

7 

7 

a As a typical example for  the  application of the  method  and  as an independent test of the predictive power of the  method, 
we predicted  the  transmembrane helices for all proteins  from  the  complete yeast chromosome VI11 (Johnston  et  al., 1994). For 
59 proteins (of 269). two or more  transmembrane helices were predicted.  Proteins  are labeled by the identifier used in Johnston 
et  al. (1994). Shown are  the predictions only for those proteins for which sufficient alignment information was available (P. Bork, 
C. Ouzounis, & C. Sander,  manuscript  in  prep.) or which were predicted to  have  more  than six transmembrane segments. In 
some  cases,  confirmation of the  correctness  of  the  prediction comes from  detailed  sequence analysis (Johnston  et  al., 1994; P. 
Bork, C. Ouzounis, & C. Sander,  unpubl.):  the likely function identified on  the basis of sequence similarity to proteins of known 
function is consistent with the presence of HTM regions. Examples are: YHR026w, an ATPase; YHR048w. a resistance pro- 
tein,  probably  works by pumping substances out of the cell through  a  membrane  pore; YHR050~/92~/94~/96c, potential trans- 
porters; YHR190w, farnesyltransferase; YHR123w, phosphor  transferase; YHROOSc, G-protein a subunit; YHR183w/39c, 
dehydrogenase. 

Nres, length of protein; Nali, number of sequences in  the  multiple alignment (“1”  means  that  the  prediction is based on a 
single sequence only);  Nhtm, predicted number of transmembrane segments. 
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Networkparameters. All  units were connected to all those  on 
the next  layer (input to  hidden,  hidden to  output).  Network  pa- 
rameters  such  as  criterion  to  terminate  the  training  procedure, 
number  of  hidden  units,  training  speed ( e  in Equation l), and 
momentum  term (a in Equation 1) were chosen  arbitrarily  based 
on our experience with  secondary  structure  prediction  for  glob- 
ular  proteins.  In  other  words,  these  parameters were not  influ- 
enced by the test set.  Training was stopped  when  the  training 
set had been learned  to  an  accuracy  of 93% for  the  first-  and 
of 95% for  the second-level network. As for  the  number of  hid- 
den  units, we started  arbitrarily with 3 hidden  units  for  the  first 
level of  network  and  increased  the  number  for  the second-level 
network  to 15 because training  too  often ended  in local minima. 

Second level: Structure to structure. The  input  to  the second- 
level network  consisted - as for  the first-level - of a contribu- 
tion  local  in  sequence  and a contribution  global  in  sequence 
(Fig. 2). (1) For  each  residue  in  the  input  window,  the local 
input were the values  of the  two  output  units  of  the first-level 
network  and  the  conservation weight. (2) The  global  input in- 
formation was the  same  as  for  the first-level network.  The  out- 
put  of  the second-level network - as  for  the  first - consisted  of 
two units for  the central residue either being in a transmembrane 
helix or not. 

Third level: Jury  decision. To find a compromise between 
networks  with  balanced  and  those  with  unbalanced  training, a 
final  jury  decision was performed (effectively  a compromise 
between over-  and  underprediction, Results). The  jury decision 
was  a  simple arithmetic  average over four  differently  trained 
networks:  all  combinations (2 x 2) of first-level network  with 
balanced  and  unbalanced  training,  and with balanced or unbal- 
anced  training of second-level network. Final  prediction was as- 
signed to  the  unit  with  maximal  output  value  (“winner  takes 
all”). 

Fourth level: Filtering the prediction. In  contrast  to  earlier 
prediction  methods  (Jones  et  al., 1992; von  Heijne, 1992; Pers- 
son & Argos, 1994), which  explicitly  fix the  length  of  predicted 
transmembrane segments to typically 17-25 residues, the second- 
level network  occasionally resulted  in transmembrane helices 
that were either  too  short or too  long.  This  was  corrected by a 
nonoptimized filter that was guided by the experiences of pre- 
vious work  (von  Heijne, 1986,  1992; von  Heijne & Gavel, 1988; 
Sipos & von  Heijne, 1993; Jones et al., 1994; R.  Casadio et al., 
submitted). 

Too  long helices were either split  in the  middle  into  two 
shorter helices or were shortened (Fig. 5 ) .  Too  short helices were 
either  elongated or deleted. All  these  decisions (split or shorten; 
elongate or delete)  were based  both  on  the  strength  of  the  pre- 
diction (reliability index,  Fig. 2) and  on  the  length of the  pre- 
dicted  transmembrane helix (Fig. 5 ) .  
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