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Abstract 

Dihedral probability grid Monte  Carlo  (DPG-MC) is a general-purpose method of conformational sampling that 
can be applied to many problems in peptide and protein modeling. Here we present the  DPG-MC method and 
apply it to predicting complete protein structures from C, coordinates. This is useful in such endeavors as  ho- 
mology modeling, protein structure prediction from lattice simulations, or fitting protein structures to X-ray crys- 
tallographic data. It also serves as an example of how DPG-MC can be applied to systems with geometric 
constraints.  The  conformational propensities for individual residues are used to guide conformational searches 
as  the  protein is built from the  amino-terminus to the carboxyl-terminus. Results for  a number of proteins show 
that  both the  backbone and side chain can be accurately modeled using DPG-MC. Backbone atoms are generally 
predicted with RMS errors of about 0.5 A (compared to X-ray crystal structure coordinates) and all atoms are 
predicted to  an RMS error of 1.7 A or better. 
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The C, coordinates of a protein provide a rough outline of its 
secondary and tertiary  structure.  Location of the C, coordi- 
nates is an important early step in structural determination from 
X-ray crystallography (Jones et al., 1991),  because  these atomic 
positions can provide a framework for the rest  of the  structure. 
In addition, purely theoretical schemes to predict tertiary struc- 
ture often use a simplified protein model containing only C, 
coordinates (Friedrichs & Wolynes, 1989; Cove11 & Jernigan, 
1990). Also, C, coordinates can form a template for homology- 
based molecular modeling (Plaxco et al., 1989). However, the 
C, coordinates do not provide sufficient information  for  un- 
derstanding  the most critical aspects of proteins such as bind- 
ing and catalysis, which are determined by the chemical and 
steric properties of the protein backbone and side chains. Thus, 
it is necessary to provide a means for using the C, coordinates 
of proteins to predict all other  atomic  coordinates. 

Several methods for modeling complete protein structures 
from C, coordinates have been published  in recent years 
(Purisima & Scheraga, 1984; Reid & Thornton, 1989; Correa, 
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1990; Holm &Sander, 1991; Jones et al., 1991;  Rey & Skolnick, 
1992). The primary purpose for such methods is to speed and 
automate the process of building a protein model from crystal- 
lographic data (Jones et al., 1991), but several other uses have 
been suggested. Holm and Sander (1991) described how correct 
and incorrect protein folds can be evaluated by such methods, 
and Rey and Skolnick (1992) mentioned that their procedure 
may enable complete protein structures to be built from the C, 
coordinates of a lattice representation. Our work  was motivated 
by both of these factors:  the desire to build full protein struc- 
tures from lattice structures,  and to provide a means for evalu- 
ating  different lattice conformations. In addition,  the “DPG 
Protein Builder” described here has been useful for homology 
modeling because it allowed us (Plaxco et al., 1989) to build a 
model of Hin recombinase from the C, coordinates of X Cro. 

The process of building full protein conformations from C, 
coordinates requires success in two areas: prediction of backbone 
conformations in the presence of explicit geometric constraints 
(the known C, coordinates)  and prediction of side-chain con- 
formations constrained only by the  conformation of the back- 
bone and the presence  of other side chains. Our method provides 
a consistent approach to solving both problems. Based primar- 
ily on Monte Carlo conformational searching, our technique dif- 
fers significantly from previously published techniques, which 
range from  the purely geometric (Purisima & Scheraga, 1984; 
Rey & Skolnick, 1992), to methods based primarily on database 
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searches  of several consecutive residues (Reid & Thornton, 1989; 
Holm & Sander, 1991; Jones et al., 1991), to molecular mechan- 
ics (Correa, 1990). 

Our  procedure  for building protein  structures  from C, coor- 
dinates uses the  conformational  probabilities  of  individual res- 
idues,  rather  than  groups of  residues. Thus, it does  not  depend 
upon  the  prior existence of  fragments in the  protein  database 
that  happen  to  have  the  same C, geometries  as  those we are 
trying  to  fit. We use  the  dihedral  probability  grid  Monte  Carlo 
(DPG-MC)  method  to  build  first  the  backbone  conformation 
(DPG-BACK)  then  the side chains  (DPG-SIDE).  The specific 
application of DPG-MC  to  the  problem  of  modeling  the  com- 
plete structure of a protein  from C, (CA)  coordinates is termed 
the  DPG  Protein  Builder.  The  DPG-MC  method  modifies  pro- 
tein conformations  one residue at a  time, by choosing  either new 
backbone (4, 4 )  or side-chain (x) dihedral angles from  proba- 
bility matrices. In  the  DPG-BACK  phase,  the  backbone is built 
one  residue  at a time.  As  the  protein  chain  grows,  the  confor- 
mational  space of the  backbone is sampled using (4, $) proba- 
bility grids.  The  DREIDING  force field (Mayo et al., 1990) is 
used to  evaluate  the energy  of each  structure, with additional 
harmonic  constraint  terms  added between the  template C, co- 
ordinates  and  the C, coordinates  of  the  growing  chain.  After 
the  entire  backbone is built in this  way,  side-chain positions  are 
optimized  during a second  DPG-MC  simulation.  The  DPG- 
SIDE  phase uses x probability  grids  to  modify  one side-chain 
conformation  at a time. Because DPG-MC uses random  num- 
bers both  to  determine whether new conformations  are accepted 
or rejected and  to choose new conformations, each run produces 
different results. Therefore, we generate  numerous  backbone 
conformations  and select those with the best energy to use in the 
DPG-SIDE  stage. Likewise, for  each  backbone  conformation, 
several independent  DPG-SIDE simulations are carried out  and 
the  structure  (backbone  and side chains) with the best overall 
energy is selected as  the  optimum  model. 

Results and discussion 

Cram bin 

Our  method  for  calculating  complete  protein  structures  from 
C, coordinates is described  in  detail in the  Methods  section. 
The  method was used to  calculate several complete  structures, 
ranging  in size from  crambin (46 amino  acid residues) to  myo- 
globin (153 residues), from  the crystallographic C, coordinates, 
and  the results were compared  to  the full  crystallographic struc- 
tures. We used the  “united  atom”  representation in  which  all 
heavy atoms  and  those  hydrogens  attached  to  heteroatoms  are 
represented explicitly, whereas  hydrogens  attached  to a carbon 
merely are represented implicitly as part of the  carbon  atom.  The 
full  structure  of  crambin  was  calculated using the C, coordi- 
nates  from  the  crystal  structure  (Hendrickson & Teeter, 1981). 
In the  first  phase,  the  DPG-BACK  method was  used to gener- 
ate 20 different  backbone  conformations.  Each  conformation 
was generated using  a different series  of random  numbers  to 
control  the selection of (4, $) dihedrals  as well as  to  determine 
which conformations would be accepted and which rejected. The 
conformational energies  of the  backbone,  the  RMS  deviations 
(RMSDs) in backbone  atoms,  and (4, $) dihedrals  from  each 
of these structures  are listed  in Table 1, ranked by energy.  The 
average  backbone  RMSD  for these 20 simulations was 0.527 A. 

Table 1. Energy and RMSDs  (atoms and dihedrals) 
for each of the 20 backbone  conformations 
generated by  DPG-BACK for crambin 

~- ~. -~ .” ~~ . _ _ _ _ _ _ _ _ ~ ~  ~~~ 

Energy Atoms Dihedrals“ 
( k c a l h o l )  (A) (deg) 

335.3 0.494 22.05 
338.4 0.430 19.43 
363.3 0.543 25.75 
363.8 0.495 26.00 
366.4 0.515 28.69 
376.9  0.576  29.40 
377.6 0.545 29.88 
393.2 0.582 32.96 
465.5 0.668 42.27 
577.1 0.483 28.94 
597.6 0.481 31.15 
652.7 0.572 33.77 
796.9 0.588 33.13 
797.1 0.430 21.49 
822.7 0.498  27.41 
850.3  0.505 27.14 
872.4 0.595 33.38 

1,445.3 0.589 32.08 
5,266.2 0.447 27.67 
5,700.5 0.513 34.44 

~.~ ~ _ _ _ _ _ _ _ _  -~ ~ ~~~~ ~~~~~ 

~~ ~ ~ _ _ _ _ _ _ _ _  - _ _ _ _ _ _ ~ ~  _ _ _ ~ ~ ~  ~ _ _ _ ~  ~ _ _ _ _ ~ ~ ~  - ~ ________- 

a RMSD in (4, $) dihedrals. 
~ ~~ 

The average  all-atom  deviation was 1.696 A. “All-atom” RMSDs 
refer to  deviations in all the  atoms  represented explicitly  in the 
united  atom  approach. It is apparent  that  there is only a small 
correlation between the  backbone energy and  the  RMS fit to  the 
crystal  structure  backbone.  The  backbone of the  crystal  struc- 
ture itself has  an energy of 759.8 kcal/mol, higher than 12 of 
the 20 model  conformations.  This is likely due  to  limitations  of 
the  force  field,  to  effects  of  crystal  packing  and  solvation,  and 
to  errors in the  crystal  structure. Nevertheless, in cases where 
the crystal structure is unknown,  the  backbone energy is the best 
criterion for selecting model  structures.  Other possible selection 
criteria, including C, constraint energy and  total energy  includ- 
ing side-chain  atoms,  had even worse  correlation with the  de- 
viation in the  backbone  coordinates  (unpubl.  data). 

The five lowest-energy backbone  conformations  from  DPG- 
BACK (Table 1) were used as  a  starting  point for  the  DPG-SIDE 
phase. For each  of the five backbone  conformations, five DPG- 
SIDE simulations were carried out, using different random  num- 
bers. Each  simulation involved  1,000 Monte  Carlo  steps using 
10”  probability  grids and a simulation temperature of 300 K. The 
25 conformations  produced  are listed  in Table 2. Again,  there 
is only a small  correlation between  energy and  RMS  fit  to  the 
crystal  structure.  Nevertheless,  the  fits  are  quite  good, with an 
average  RMSD  from  the  crystal  structure of 1.323 A. All five 
backbone  conformations were represented  throughout  the list 
of  complete  structures, so the  backbone energy  was not  the  de- 
termining  factor  in  the  overall  energy. 

The best energy conformation  from  the side-chain phase was 
chosen  as  the  “model”  conformation  of  crambin  for  detailed 
comparison  to  the  “true”  structure,  the  crystal  structure  (Hen- 
drickson & Teeter, 1981). Table 3 gives a breakdown of the 
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Table 2. Energy and RMSDs in atomic  coordinates 
for  each of the 25 crambin models produced 
by the DPG Protein Builder 

Energy  RMSD Energy  RMS 

668.1 1.386 
669.2 I .367 
688.2  1.132 
691.6 1.259 
706.6 1.313 
757.3 I .  170 
767.8 1 .449 
793.9 1.430 
801.3  1.278 
823 .O 1.243 
860.7 1.297 
947.9 1.111 
971.7 1.102 

1,039.0 1.337 
1,074.0 1.519 
1,111.8 1.153 
1,304.6 1.332 
1,696.1 1.468 
2,225.6 1.272 
2,576.8 1.393 
3,023.2  1.486 
3,077.1 1.391 
3,105.8 1.487 
3,334.5 1.221 
3,383.6 1.484 

RMSD  of  the  crambin  model  for  different  regions  of  the  pro- 
tein.  Some of this  information is shown  graphically in Figure 1, 
where the  backbone  RMSD of each residue is shown.  The largest 
deviations  occur at  the carboxyl-terminus, where residues 45 and 
46 are very poorly  modeled, especially considering  that  the C, 
atoms, because  of the  constraining  force, have  a  deviation from 
the crystal structure of less than 0.05 A. Excluding these two res- 
idues,  the  backbone  RMSD  drops  from 0.543 A to 0.361 A. The 
carboxyl-terminal residues are generally the worst  modeled res- 
idues  because there  are fewer constraints  on  the  structure.  They 
usually lie on  the  surface  of  the  protein,  where  there  are fewer 
interresidue  contacts  and  there is no I + 1 C, to  constrain  the 
orientation  of  the  terminal  carboxyl  group.  In  the  crambin 
model,  the  Asn 46 side  chain  and  the  terminal  carboxyl  group 
have  reversed positions, giving rise to a  large error even though 
the chemical  significance is small. The  backbone  RMSD is fairly 
consistent  throughout  the rest of the  protein, with 34 of the 46 
residues  having  deviations in the 0.1-0.4-A range.  The lowest 
backbone  deviations  are in the residues  of the  long  a-helix,  He- 

Table 3. RMSDs for different regions of the crambin model 

Backbone (6, $) All adoms  Side chains 
Region Residues (A) (deg) (A)  (A) 

All 1-46 0.543 25.8 1.386 2.010 
No C-term 1-44 0.361 23.0 1.248 1.841 

Helix 1 7-19 0.209 13.7 1.658 2.347 
Helix 2 23-30 0.394 22.3 1.026 1.454 
Sheet 1 1-4 0.417 22.3 1.146 1.771 
Sheet 2 32-35 0.315 19.2 1.070 1.530 
Turn 1 41-44 0.571 32.9 1.853 1.853 

N-terminus 1-2 0.559 31.1 1.184 1.688 
C-terminus 45-46 1.872 67.9 3.175 4.682 
Coil Others 0.373 28.5 0.511 0.728 
~~ 

~ - .. ~. . ~ - .~ 
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lix 1, where the  deviation in atomic  coordinates is 0.209 A, and 
the  deviation  in (6, $) dihedrals is only 13.7". The  deviations 
are  equally low (0.232 A and 13.1') for  the  first seven  residues 
of Helix 2. However,  the  last  residue  in  the helix starts a turn 
and is poorly  modeled.  In  general,  the  turn  regions  before  and 
after  a-helices  are  the  most  poorly modeled  residues other  than 
those  at  the  C-terminus.  This is very apparent  from  both  the 
graph in  Figure 1 and  the picture in Figure 3. These regions (par- 
ticularly  residues 5 ,  20, and 30) have nonstandard (+, $) values 
that  have very low probabilities in the (4, $) probability  grids. 
No (+,$) probability grids  were specifically developed for  turn 
regions,  but  these  might  prove very valuable. 

The  side-chain  modeling is not  as successful as  the  backbone 
modeling, with the  average  deviation in atomic  coordinates be- 
ing near 2.0 A. This is not  surprising because the  backbone is 
more highly constrained  than  the side  chains: each  peptide unit 
in the  polypeptide  backbone is covalently  constrained at  both 
ends by the positions  of two consecutive C,'s, whereas the side 
chains  are usually constrained by only a  single covalent  attach- 
ment  to a C,. The  constraints  on  the side-chain conformations 
are primarily  steric in nature: side chains in the interior  of a pro- 
tein can have considerable  steric  overlap  and  their  conforma- 
tions  must  be  correlated  to  allow  for closest packing.  The 
DPG-SIDE  calculations  are  also  much slower than  the  DPG- 
BACK and  far fewer conformations  are  sampled per dihedral 
angle.  Figure 2 shows the residue-by-residue  side-chain RMS  for 
the crambin model. Two side chains stand  out: Arg 17, analyzed 
below in the discussion of Figure 5 ,  and  Asn 46, the  C-terminal 
residue that in the  model has the side chain  and  C-terminal  car- 
boxyls flipped,  as  mentioned  above. 

Another  measure of the modeling accuracy  of  the side chains 
is the  deviation in side-chain dihedral  angles, x, defined  as  the 
absolute value of  the  difference between the  dihedral in the 
model  and in the  crystal  structure.  Of  the 37 x "s in crambin, 
24 have  deviations less than 30". Eleven of the X I ' S  have  devi- 
ations between 90" and 150", indicating a rotation  from  one 
minimum to  the next.  Only two have  deviations between 30" and 
90". It is important  to  note  that 5 of the 13 side  chains with side- 
chain  deviations  greater  than 30" are cysteine  residues  involved 
in disulfide  bridges in the  crystal  structure.  The  DPG  Protein 
Builder does  not  currently  account  for  the presence of disulfide 

2.5 - 
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Residue 

Fig. 1. Distribution by residue of backbone RMS errors for the cram- 
bin  model  relative to the crystal structure. 
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Residue 

Fig. 2. Side-chain RMS errors for the  crambin  model  relative to the  crys- 1 
tal  structure. 
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bridges. The disulfide bonds are not included in  the Monte Carlo I 
energy evaluations. Such a term could be included and would 
certainly improve the results for these residues. RMSDs for  the 
different  backbone and side-chain dihedrals are shown in Ta- 
ble 4. Although the side-chain dihedrals are not as well modeled 
as  the backbone, the results are encouraging with respect to 
other methods. As discussed below, the  DPG  Protein Builder c 
provides  results for flavodoxin x dihedrals as good or better than 
other methods, and these results for crambin are better still. Fig. 3. Peptide backbone of the  model  and  crystal  structures of cram- 

ture  are shown in  detail  in Figures 3, 4, and 5 .  Figure 3 shows 
the model and crystal structure backbones for the entire protein. 
For most of the  protein, it is difficult to distinguish between the 
two structures. Only in the  turn regions after  the two helices is on the  C-terminal (right) end of the helix. As explained above, 
the difference readily apparent.  The two following figures show this residue begins a turn in the backbone  conformation and is 
the complete structures of the two helices of crambin. Helix 2, poorly sampled during  the DPG-BACK phase. The Helix 1 
shown in Figure 4, is  very  well  modeled,  with an all-atom RMSD backbone,  in contrast, is modeled quite well throughout its 
of 1.03 A. In terms of the all-atom deviation, it is the best mod- length, including Pro 19 at its C-terminal end. However,  Helix 1, 
eled region of the protein (see Table 3). The picture shows this shown in Figure 5 ,  has  many large side chains that  are difficult 
quite well, with both side-chain and backbone atoms showing to model. Large errors can be seen in Asn 14 and Arg 17. The 
little difference between the two  structures, except for  Thr 30 latter has a particularly large impact on  the RMSD. Excluding 

Arg 17, the crambin model has an RMSD of 1.207 A, rather 
than 1.386A. However, this incorrect conformation of Arg 17 
may be energetically more  favorable than other  conformations 
more similar to  the crystal structure. Of the next four lowest- 
energy conformations listed in Table 2, all five  have more native- 
like conformations of Arg 17, but all are higher in energy. 

The crambin model illustrates several  general findings for sim- 
Deviation ulations using the DPG Protein Builder. The lowest-energy 

structures from the DPG-BACK and DPG-SIDE phases are usu- 
RMSD <30" 

Dihedral 
>go0 ally among the best  models built, but are not necessarily the very 

Number (de& (%o) best. Regardless, the backbone models from DPG-BACK are 

+ 45 22.3  86.7 o.o consistently good, and almost  any  one of them provides an ac- 

4 45 28.8  75.6 2.2 ceptable model of the  true backbone. The model backbones are 
0 45 5.4 100.0 0.0 especially good in regions of regular secondary structure such 
X' 37  69.6  62.2  29.7 as helices and sheets, but rather  poor  in turn regions. These re- 
X 2  21 84.5 38.1 28.6 sults are obtained consistently in  different simulations. There 
xJ 8 75.1  25.0  37.5 is a much larger variation  among the results from DPG-SIDE. 
x4 7 34.9 71.4 0.0 This may be due to the constraints of time; the number of 1 ,OOO 
x 5  2 9.8  100.0 O-O Monte  Carlo steps was  selected  largely in order to keep the sim- 

Differences between the crambin model and the crystal struc- bin- RMSD is 0.538 A. 

Table 4. RMSDs in various types of dihedrals for the 
crambin model and  percentages of each type of dihedral 
with deviations less  than 30" or  more than 90" 

ulation  time below 10 min, so that large numbers of different 
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Crambih 
Helix 2 

k 

Model vs. Crystal Structure 

Fig. 4. Comparison of helii 2 (residues 23-30) in the model and crys- 
tal structures. RMSD  is 1.026 A for all  atoms and 0.394 A for backbone 
atoms. 

conformations could be evaluated. Better and more  consistent 
results  might  be obtained by substantially longer  calculations. 
Nevertheless,  between 40% and 60% of x' dihedrals are mod- 
eled correctly. 

Larger proteins 

Although the variables  discussed in the Methods  section  could 
be tuned to specific  classes of proteins, the same  values  were 
used for six different proteins listed in Table 5 .  These proteins 

Table 5 .  Proteins modeled using the  DPG Protein Builder" 

Protein PDB Reference  Size Vo Helix Vo Sheet 

Crambin lCRN 111 46 45.7 17.4 
BPTI 5PTI 121 58 27.6 25.9 
Plastocyanin 7PCY i31 98 7.1 58.2 
Ribonuclease A 7RSA [41  124 26.7 46.8 
Flavodoxin 3FXN 151  138 37.7 26.8 
Myoglobin lMBD [6] 153 79.1 0.0 
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have  widely different  structures, as  indicated  by  the  percentages 
of  their  secondary  structures that are a-helical  and &sheet. Four 
of  the six proteins are included  in the subset  of 64 crystal struc- 
tures used to develop the Monte Carlo probability  grids. Of the 
other two, the flavodoxin structure is  merely a different form 
(oxidized) than the one used  in the data set  (semiquinone),  and 
the plastocyanin is homologous, but not identical, to a struc- 
ture used in the data set. It is  unlikely that this  has  any  signifi- 
cant effect on the results  because  individual 4, J/, and x values 
from any one  structure have  only a small  influence on the  prob- 
abilities  used in the conformational sampling. 

For each  of  these  six proteins, the C, coordinates from the 
listed  crystal structure were  used to rebuild the backbone  con- 
formation 20 times,  as  described  in  the  preceding  sections for 
crambin. In each  case,  all prosthetic groups, such  as the myo- 
globin  heme, were  removed from the crystal structure, as were 
any cofactors or solvent  molecules.  Each  of the 20 backbone 
conformations was  compared to the  crystal  structure and the  re- 
sults were analyzed.  Table 6 lists  the  average  RMSD as well as 
the standard deviation (u) for the 20 structures. Also listed are 
the RMSDs for  the lowest  energy conformation and the confor- 
mation with the best fit. Again, it is  seen that the  lowest  energy 
conformation is  never the one  with the best fit to the crystal 
structure. However,  the  lowest  energy conformation was bet- 
ter than average for five  of the six proteins. We were not able 
to identify  any  systematic  differences between the low  energy 
structures and the best fit structures. During  homology  model- 
ing or crystallographic  model  building, it would  be  best to try 

Crambin 
Helix 1 

Model vs. Crvstal -Structure I a The reference  crystal structure is  given along with the number of 
residues in the protein and the percentage of these that are in a-helices 
and &sheets.  References: [l], Hendrickson and Teeter (1981);  [2], 
Wlodawer  et al. (1984); [3], Collyer  et al. (1985);  [4], Wlodawer et al. Fig. 5. Helii 1 (residues 7-19) in the model and crystal structures. 
(1988);  [5], Smith  et al. (1977); [a], Phillips (1980). RMSD  is 1.658 A for all atoms and 0.209 A for backbone atoms. 
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Table 6. Results from  DPG-BACK constructions of 
the backbone  conformations for several proteins 

- 

Backbone  RMSD 
Crystal 
structure  Average U Best E Best fi t  

" " ..__ 

lCRN 0.527 0.062 0.494 0.430 
5PTI 0.610 0.065 0.582 0.506 
7PCY 0.550 0.048 0.602 0.470 
7RSA 0.601 0.052 0.551 0.530 
3FXN 0.593 0.050 0.577 0.509 
IMBD 0.453 0.033 0.451 0.366 

several of the  backbone  models,  rather  than merely the lowest 
energy one, in order  to  provide several templates  for side-chain 
modeling or refinement. 

Comparing  Tables 5 and 6 ,  it is clear that  the size  of the  pro- 
tein has little effect on  the accuracy of DPG-BACK. In fact,  the 
largest protein,  myoglobin, is consistently  modeled  most  accu- 
rately.  This is not  surprising  considering  the  crambin  results, 
where  the  average  backbone  deviations were approximately 
0.2 A for helical  residues. The  protein  myoglobin,  with  almost 
80% of its  residues  in a-helices, is greatly  benefited by the  ac- 
curacy  with which the  method  models helices. Plastocyanin is 
also  modeled relatively well, even though it is a  0-sheet protein, 
with  little helical content.  The large P-sheet content is probably 
also  a  favorable factor, as these conformations  are  also very well 
represented by the  probability  grids.  It is proteins  such  as  bo- 
vine pancreatic  trypsin  inhibitor  (BPTI), with only  about  50% 
a-helix  and P-sheet content, which are relatively poorly  mod- 
eled.  Even in this  case,  most  of  the  protein is modeled  quite  ac- 
curately  and  the  overall  RMSD is greatly  increased by the  poor 
modeling of the C-terminal residues. The average  RMSD for res- 
idues 1-54 is 0.501 A .  

DPG-SIDE  simulations were carried  out  on  flavodoxin  and 
plastocyanin, building five complete  structures  from each of the 
top five backbone  conformations  from  DPG-BACK.  The  same 
parameters were  used for  these  simulations  as were  used for 
DPG-SIDE  simulations of crambin.  The energy and  all-atom 
RMSD for each of  the 25 conformations were evaluated and  the 
results  were analyzed.  Table 7 lists the results for these two  pro- 
teins, along with those  for  crambin. Unlike DPG-BACK,  the re- 
sults  for  DPG-SIDE  are highly dependent  on  the size of  the 
protein, with the  average  deviation  increasing  substantially  for 
larger  proteins.  In  DPG-BACK  simulations,  each  residue was 

Table 7. Results from DPG-SIDE constructions of the 
side chains of crambin, plastocyanin, and flavodoxin 
~~ 

~~~~~ . " ~- .. - 
~ " . _ ~ _ _  

All-atom  RMSD 
Crystal 
structure 

__ 
Average 

-~ 

Best E Best fi t  

lCRN 1.323 1.386 1.102 
7PCY 1.483 1.398 1.299 
3FXN 1.796 1.663 1.607 

sampled  the  same  number  of  times, regardless of  the size of  the 
protein.  In  the  DPG-SIDE  simulations,  however,  each  simula- 
tion  involved a total  of  1,000  Monte  Carlo steps. For crambin, 
this  meant  that  the  average  residue was varied 27 times  during 
the  simulation  (alanine  and glycine residues  are  not  affected). 
For plastocyanin,  the 73  relevant dihedrals were sampled an av- 
erage of 14 times; for  flavodoxin,  the  average was  8.5. Clearly, 
the side  chains  of  flavodoxin are  not being adequately  sampled. 
Unfortunately,  the  cpu  time  required  for  the  simulations  also 
grows  substantially  as  the size  of the  protein  grows.  Although 
the 1,000 Monte  Carlo  steps  take 7 min for crambin, they re- 
quire nearly 20 min  for  plastocyanin (on one processor of a Sil- 
icon  Graphics  4D/380  workstation)  and  more  than 40 min  for 
flavodoxin.  Therefore, it is computationally expensive to  in- 
crease  the  number of steps  for  flavodoxin. Nevertheless, the re- 
sults  for  flavodoxin  are  comparable  to  or  better  than published 
results  using other  methods. 

The lowest energy conformation of  flavodoxin was chosen for 
comparison with other methods.  This  protein  has  become a stan- 
dard test case for published methods  of building complete  struc- 
tures  from C, coordinates.  This  includes  both  methods  based 
on molecular  mechanics  (Correa, 1990) and  those  using  data- 
base  searches to  determine  conformations  for  multiple-residue 
peptide  fragments  from  the  protein (Reid & Thornton, 1989; 
Holm & Sander, 1991). Table 8 lists  several measures  of  the ac- 
curacy of these  models.  "Peptide flips" refer  to  the  number of 
peptide  units  (the  planar  backbone  unit between the C, coor- 
dinates) that  are  rotated by more  than 90" from  the crystal  struc- 
ture.  This  occurs seven times in our  model,  compared  to  only 
five and  four  times in the  fragment-matching  methods (Reid & 
Thornton, 1989; Holm & Sander, 1991). This is the  only  mea- 
surement by which the  DPG  Protein Builder appears  deficient, 
using flavodoxin  as the case study.  The  other proteins we studied 
did  not  have  such a large  number  of  peptide flips. The lowest 
energy structures of these  proteins  had between zero  (crambin) 
and five (plastocyanin and ribonuclease  A)  peptide  flips. In most 
of  the  other  measures,  the  DPG  Protein Builder is comparable 
to, or better  than,  the  other  published  methods. It is currently 
not  quite  as  accurate  as  the  method  of  Holm  and  Sander (1991) 
but is comparable in most  respects, even though it is based on 
a more  general  approach  to  protein  modeling:  dihedral  proba- 
bility grid  Monte  Carlo.  The  DPG-MC  method is applicable to  

Table 8. Comparison of the results for 
flavodoxin versus other methods 

~~ ~. ~ ~ . _ _ _ _ _ _ _ _  ~~~~~ - 

Reference 

Atoms 
~~~ ~ _ _ _ ~ ~  

[RT]  [C]  [HS]  DPG  model 

RMSD,  all  atoms (A) 1.73 1.64 1.57 1.66 
RMSD, main  chain (A) 0.57 0.49 0.48 0.57 
RMSD, side  chain (A) 2.41 - 2.19 2.31 
Peptide flips 5 - 4 7 
Correct x ' (vo) 40 - 44 41 
Correct X I ,  x* (070) 17 - 25 24 

a "Correct"  refers to dihedrals  predicted to within 20" of their crys- 
tal structure values. [RT], Reid and  Thornton (1989); [C],  Correa (1990); 
[HS],  Holm  and  Sander (1991). 

~~ 
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unconstrained  systems  as well as  those  constrained by a priori 
knowledge  of  the C, coordinates. 

Conclusions 

The  DPG  Protein Builder is a new method  for building complete 
protein  structures  from C, coordinates  using  DPG-MC.  Most 
of the  previous  methods (Reid & Thornton, 1989; Holm & 
Sander, 1991; Jones  et  al., 1991) use database  searches  to  find 
conformations  for several consecutive  residues  that  match  the 
configuration  of  the C, coordinates being  used as a template. 
DPG-MC, in contrast, uses probabilities for individual residues 
to  guide  Monte  Carlo  searches.  The  DPG  Protein Builder pro- 
duces  results  as  good  as  or  better  than  previously  published 
methods  for  the  protein  flavodoxin.  In  general,  backbone  con- 
formations  are modeled  accurately to within 0.6 A RMSD  from 
the  crystal  structure.  Most of the  error  comes  at  the  C-terminal 
ends  and in turns,  whereas  the  extended  secondary  structures 
(a-helices  and @-sheets) are  modeled  much  better, with  a typi- 
cal  RMSD  of 0.3 A or better. Side-chain conformations  are  not 
modeled  as  accurately.  Side-chain  RMSDs  greater  than 2.0 A 
can be expected for large  proteins, where the  computational cost 
of optimizing  all  side  chains concurrently is very large. The side- 
chain  deviation  for  the  small  protein  crambin was much  better, 
averaging 1.87 A for 25 models.  Overall  RMSDs  are typically 
better  than 2.0 A ,  and  depend  primarily  upon  the  amount of 
time  spent  optimizing  the side-chain conformations.  The calcu- 
lations  performed  here were not  optimized  for  accuracy  alone 
but  for  speed  as well. In  real-world cases where  the best  possi- 
ble model is desired, it would be possible to significantly increase 
the  number of conformations  sampled in both  the  DPG-BACK 
and  DPG-SIDE  stages,  thereby  improving  the  accuracy  of  both 
the  backbone  and  side  chains. 

Methods 

Dihedral probability grid Monte  Carlo 

DPG-MC is a method  developed  for  predicting  the  conforma- 
tions  of  peptides  and  proteins by searching  their  torsional  de- 
grees of  freedom.  The  DPG-MC  method  combines  two  of  the 
best features  from  other  torsion-space  conformational  search 
methods  developed to  study  peptide  conformations:  Monte 
Carlo  importance  sampling  and grid searching.  Like  the  impor- 
tance sampling method  of  Lambert  and Scheraga (1989) and bi- 
ased  probability  Monte  Carlo  (Abagyan & Totrov, 1994), the 
method  described  here  assigns  probabilities  to  different (4, $) 
combinations,  and  conformations  are  generated  according to 
those  probabilities, rather  than completely at  random or through 
an exhaustive  search  of all possibilities. However,  unlike either 
of these methods,  our  probabilities  are designed to work  within 
the  framework  of a grid  search  method,  i.e.,  only  discrete val- 
ues are  chosen  for  the  dihedral  angles.  There  are  three  primary 
advantages  to using discrete values for  dihedral  angles,  rather 
than  sampling  from a continuum: (1) the  conformational  space 
is reduced to  a finite  number  of possible conformations  per di- 
hedral  angle, (2) the  probabilities  can  be  generated  to reflect 
known (4, $) distributions  more accurately  because  they are  not 
forced to fit a functional  form,  and (3) the  method is easily ex- 
tended to  side  chain (x) dihedrals. Because no  functional  form 
is necessary to  specify the  probabilities,  grids  can  be  developed 

for  any  necessary  dimensionality.  They  range  from  one- 
dimensional grids for small  side chains  to five-dimensional  grids 
for  arginine. 

Grid  searches  have been employed  in  many  conformational 
studies, such as  those designed to predict protein  loop  structures 
(Bruccoleri & Karplus, 1987) and  those  employed in the  study 
of  organic molecules (Lipton & Still, 1988). The  conformational 
space in  a  grid method is still large, as each dihedral  can  assume 
360/S conformations,  where S is the grid spacing.  Therefore, 
these  methods  usually  employ  sophisticated schemes for elimi- 
nating  combinations  that  cause  steric  overlap.  In  contrast,  the 
DPG-MC  method implicitly includes a great  deal  of  steric  in- 
formation  through  the use  of probability grids:  probabilities are 
assigned to  different protein backbone (4, $) and side  chain (x) 
dihedrals  according to their  distributions in known  protein  struc- 
tures. The sampling is biased toward  the sterically allowed amino 
acid conformations seen in nature, so the simulation  focuses on 
optimization  of  long-range  interactions. 

In  the  DPG-MC  method,  conformations of a peptide  or  pro- 
tein are generated by rotating  backbone (+, $) and/or side  chain 
(x) dihedral angles of  individual amino acids. The  conformations 
are  not chosen randomly, but are selected from probability  grids 
calculated  from a  selected subset of proteins  from  the  Brook- 
haven Protein  Data Bank  (PDB).  Each  grid is an Nd-dimensional 
matrix, where Nd is the  number  of  dihedrals  involved.  For in- 
stance,  backbone sampling involves two-dimensional grids,  and 
each  point  on  the  grid is the  probability  of  choosing a particu- 
lar (4, $) pair.  The  grids  have So spacing, where S = 5 ,  10, 15, 
30, or 60. Therefore, (4, $) grids have Ns points,  where Ns = 
(3601s) X (3601s). The  probabilities were derived from a set of 
high-resolution  protein  crystal  structures by partitioning every 
(4, $) pair  into  S-degree bins. The  probabilities, P(+, $), are 
normalized so that 

Side-chain  probability  grids  have varying dimensionality,  de- 
pending  upon  the  number  of  dihedrals needed to  specify the 
conformation.  This  ranges  from Nd = 1 for  small side chains 
like serine  and  threonine,  to Nd = 5 for  arginine. For alanine 
and glycine, Nd = 0. 

The PDB subset 

Dihedral  probabilities  integral to  DPG-MC  must be based on 
a judicious  choice of structural  data  that  are  both diverse and 
accurate.  The  PDB now contains  more  than 2,000 protein crys- 
tal  structures;  however,  many  proteins  are  represented  numer- 
ous times or are highly homologous to  other proteins in the  PDB 
data set.  Including  identical or nearly  identical structures would 
distort  the  probability  distribution in favor of  geometries found 
in those  particular  proteins.  In  order  to  eliminate highly redun- 
dant  structures, we carried  out pairwise sequence  comparisons 
among 503 proteins  in our initial PDB  data set using the “Align” 
program  from W.R. Pearson’s FASTA sequence analysis pack- 
age  (Pearson & Lipman, 1988). Any  protein with greater  than 
25% sequence  identity with another  protein  of higher  resolution 
was eliminated.  This  homology elimination  process  reduced our 
data set from 503 proteins  to 121. We further  reduced  the  data 
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Table 9. Crystal structures used in the H64 data set 
” .. ~ 

Resolution 
- 

PDB  code  (A) R PDB  code  (A) R PDB  code  (A) R 

lAMT 1.5 0.155 lUBQ 1.8 0.176 
1BP2 

3BLM 2.0 0.163 

lCSE 
3GRS 1.54 256B 1.4  0.164 1.7 0.188 lCSC 
3DFR 1.7 0.152 1XY 1 1.04 0.088 1.5 0.1 14 lCRN 
3CLA 1.75 0.157 1 UTG 1.34 0.23 1.7 0.171 

0.186 
1.2 0.178 2AZA  1.8 0.157 3RNT  1.8 0.137 

1 CTF 1.7 0.174 2CA2 1.9 0.176 451C 1.6 0.187 
lECA 1.4  0.183 2CCY 1.67 0.188  4CPV  1.5 0.215 
1 FB4 1.9  0.189 2CDV 1.8 0.176 4FD 1 1.9 0.192 
lGDl 1.8 0.177 2CPP 1.63  0.19 4FXN  1.8  0.200 
lGMA 0.86 0.071 2CY P  1.7  0.202 41NS 1.5 0.153 
lGPl  2.0 0.171 2ER7 1.6 0.142 
1 HOE 

4PTP 1.34 0.171 

5PTI 1 .o 0.200 2MHR  1.7 0.158 1.5 0.153 1L19 
5CYT 1.5 0.171 2LTN 1.1  0.177 l I lB  2.0 0.189 
5CPA 1.54 0.190 2GBP 1.9 0.146 2.0 0.199 

Resolution Resolution 

- - ~~ ~. . . ~~~ 

lLZl  1.5 0.177 

3BCL 1.9 lTHB 1.5  0.196 
3B5C 1.5 1 PPT 1.37 0.279 

9WGA  1.8 0.175 2WRP 1.65 1 PCY  1.6  0.17 
9PAP 1.65 0.161 2SNS 1.5  N.A. I .55 0. I8 1  PAZ 
7RSA 1.26 0.15 2SGA 1.5 0.126 lNXB 1.38  0.24 
6TMN I .6 0.171 2RSP  2.0  0.144 1.4 0.188 lMBD 
5TNC  2.0 0.155 2 0 v o  1.5 0.199 1 MBA  1.6 0. I93 
5RXN  1.20 0.115 2MLT  2.0 0.198 

::F I 
” . _ _ _ ~  O. ~ l I  - ~~~ _ _ ~ ~  ~~ 

~~~ _ _ _ ~ . ~ ~  ~~ ~ 

set to  64  high-quality  crystal  structures  that  had 1.5 A resolu- 
tion  data  or  better  or  had  better  than  2.0 A resolution  and R -  
factors below 20%.  This  data  set, which we call H64, was  used 
to  create our probability grids  in  this work.  The  64 crystal struc- 
tures  comprising  this  data set are listed  in Table  9. 

Backbone (4, $) probability grids 

The  backbone  probability  grids were determined by partition- 
ing  every (4, $) pair in the  proteins  comprising  the  H64  data set 
into bins of size So X So and  normalizing. We have  determined 
separate  probability  grids  for  each  amino  acid,  but it is suffi- 
cient to  use  individual  grids  for  the  three  major  residue  types: 
glycine, which has  no side  chain;  proline, whose side chain forms 
a closed loop with the  backbone;  and  the  other 18 “standard” 
L-amino acids.  The (4, $) probabilities  are  significantly  differ- 
ent  for these three residue types,  as  can  be seen  in  Figure 6.  The 
shape  of  the  grid  depends  not  only  on  the  data,  but  on  the  grid 
spacing, S .  A narrower spacing  allows for much greater  confor- 
mational flexibility, which is especially important in simulations 
of  constrained  systems.  It is clear from  Figure 6 that  no  simple 
functional  form  would  accurately  represent  the (6, $) proba- 
bilities  seen  in protein  crystal  structures. 

We have  also used the  secondary  structure  designators  in  the 
protein  database  (HELIX,  SHEET,  and  TURN)  to  obtain  sep- 
arate  probability grids for  the  a-helix, @-sheet, and  random coil 
structural classes. Coil residues were defined as those not  marked 
as belonging to  HELIX,  SHEET, or TURN regions. We decided 
not  to  create  grids  for  &turn residues  because the  four residues 
involved  in  a turn usually  have  completely different (4, $) con- 
formations  and it would be counterproductive  to  treat  them 
identically.  Eight-dimensional  probability  grids  generated  for 

sequences  of four consecutive (4, $) pairs  would  have  peaks for 
particular  turn  conformations  as well, but  the  total  number of 
turns in our set of  crystal  structures is tiny  compared  to  the  im- 
mense  number  of  grid  points on  an eight-dimensional grid. Such 
grids would have little advantage over  a method  that simply tries 
all known  turn  configurations. Six proteins in the  H64  database 
had  no  HELIX,  SHEET, or TURN  designators,  and we excluded 
these from  secondary  structure analyses. The remaining 58 pro- 
teins with secondary  structure  designators  comprise  the SS58 
data  set, which we used to  create  the  probability grids shown in 
Figure 7 .  The coil grid in Figure 7 contains significant proba- 
bilities for  both a-helix and 0-sheet conformations, but the  prob- 
abilities are  much lower than  those in the  “all-structures”  grid. 
Presumably, residues  in the coil  regions are  not  participating 
in  the  extended  hydrogen  bonding  networks or involved  in the 
large-scale  dipole-dipole interactions of a-helices  and 0-sheets. 
Therefore,  the coil probability  grids  are  more  indicative  of  the 
inherent  conformational energies of  individual residues and, 
therefore,  are  the grids that  most closely resemble classic Rama- 
chandran plots (Ramachandran et al., 1963) and (6, $) potential 
energy  maps  (Brant et al., 1967). These  secondary  structure- 
specific grids  are  useful  only when the  secondary  structure is 
known  beforehand.  This is not  the  case  for  an  ab  initio  pre- 
diction  of  protein  conformation,  but is for  simulations used  in 
conjunction with C ,  coordinates,  homology  modeling,  or sec- 
ondary  structure  prediction  algorithms. 

Side-chain (x) probability grids 

Although every amino  acid  backbone  can be specified by the 
same  three  dihedral  angles, 4, $, and w ,  there is a far  greater 
diversity among side-chain dihedrals, x. At  the extremes are gly- 
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Glycine Proline 

Non-Pro, Non-Gly 

Fig. 6 .  The 30" (6, $) grids for the  three  major  residue  types:  glycine,  proline,  and  standard  (non-Pro,  non-Gly).  The  height 
of the  plot  (vertical  axis)  at  a  particular (6, $) is the  normalized  probability P ( 4 ,  $). 

cine, which has no side chain,  and  tryptophan, which has 12 x 
dihedral angles if you include those in the indole ring. Our sim- 
ulations do not modify dihedral angles that affect only hydro- 
gen positions (i.e., rotation of methyl groups), or those involved 
in rings, so the number of dihedrals is significantly reduced. 
Both alanine and glycine have zero DPG-MC side-chain dihe- 
drals (N, = 0),  whereas tryptophan, tyrosine, phenylalanine, 
and histidine have only two, despite being  very large side chains. 
The values of N, for  the common amino acids, excluding ala- 
nine and glycine, are given  in Table 10. Although  proline is a 
ring, we allow x to vary while holding the C6 atom fixed. This 
enables reasonable conformations of x I to x4 to be sampled by 
modifying only a single dihedral, x I .  

Table 10 also lists the number of occurrences of each amino 
acid  in the H64 data set as well as the number of populated (non- 
zero) grid  points and  the maximum possible grid points at each 

spacing level. Many of the probability grids are sparse, with  only 
a small fraction of the grid points populated. In most instances, 
this implies that a random search would sample many confor- 
mations never  seen  in nature.  In some cases, however, it  is clear 
that the number of populated grids is limited by the sample size 
rather than conformational propensities of the side chains. The 
multidimensional grid points (Nd 2 3) at the finer spacings have 
nearly as many occupied grid points as the sample size (almost 
every conformation occupies a  different grid point).  This ex- 
treme variability is due primarily to  the enormous number of 
possible conformations available for these structures (Table lo), 
rather  than unusual flexibility in the individual torsions of these 
side chains. The (x I ,  x2) distributions of these residues makes 
this more clear (Mathiowetz, 1992): only lysine has an unusu- 
ally large number of populated conformations (98 of 144 at 30") 
when only x' and x* are considered. Arginine (60), methionine 
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AH Structures Coil 

&=- -x* 
Helix 

Fig. 7. The 30" (9, $) grids of different  structural  classes  for  standard  residues  (non-Pro,  non-Gly)  in  the SS58 data set. The 
vertical  axis is E'(+, $). 

(48), glutamine (67), and glutamic acid (86) have values typical 
of the smaller amino acids. 

Several two-dimensional x probability grids are shown in  Fig- 
ure 8. One-dimensional grids are simple probability versus di- 
hedral graphs (Mathiowetz, 1992), whereas higher dimensional 
grids cannot easily be visualized. There is a  great  deal  of vari- 
ety even among residues with the same number of significant x 
dihedrals. We should point out that some of the x's actually have 
a periodicity of 180", rather than  the 360" as shown.  This arises 
when two  branches are  the same (as in Asp, where the two  car- 
boxylate oxygens are chemically identical but  only the  one la- 
beled O6 is used to specify x*). This labeling in the  PDB is not 
always done  the same way, hence there are separate peaks at 
150" and -30". This  does not affect our Monte Carlo simula- 
tions, because the orientations will  be simulated identically, with 
a total probability  equal to  the sum of the individual probabil- 

ities. The great variety in side-chain conformations can also be 
seen in Table 1 1, which lists the highest probability side-chain 
conformation  for each amino acid. 

It is interesting to compare the values in Table 11 to the side- 
chain rotamers of Ponder  and Richards (1987). The methods are 
not equivalent in that  Ponder  and Richards divide side-chain 
conformations  into a small number of rotamers and then find 
the average x values for each rotamer. Ponder and Richards also 
use a  different set of proteins than  are used here. Nevertheless, 
the results are very similar. If the Ponder and Richards rotamer 
x values are rounded  off to  the nearest 30°, the most probable 
conformations  for 14 of the 18 amino acids are the same as in 
our work (Table 11). The four  that  do not match are threonine, 
proline,  glutamic acid,  and histidine. The results for threonine 
are nearly the same because  it  has two conformations with  nearly 
equal probabilities and  the two  methods simply reverse their 
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Table 10. Number  of populated (non-zero) grid points for various side chains 
at different grid spacings as tabulated from the H64 set of crystal structures 

Amino  acid NX Sample 120”  60” 30” 15” 10” 5” 

CYS 1 283 3  4 10 15  21  34 
Pro 1 568 2  3 5  9 13  22 
Ser 1 925 3  6 12  24 35 70 
Thr 1 79 1 3  6 12  23 32  54 
Val 1 99 1 3  6 12  23 30 51 
Maximum 1 3  6 12 24 36 72 

Asn 2 634 9 28 82 198 282 465 
ASP 2 728 9 31 84 200 296 485 
His 2 317 9 27 66 125 170 253 
Ile 2 603 8 23 56 89 134 238 
Leu 2 1,025 9 27 67  135 191 343 
Phe 2 49 1 8 23 51 1 I9 175 318 
TrP 2 179 8 19 39 73 98 141 
TYr 2 453 9 22 52  107 172 294 
Maximum 2 9 36 144 576 1,296 5,184 

Glu 3 699 26  116 200 528 528 688 
Gln 3 409 24 83 312 331 33 1 404 
Met 3 241 20 54 120 I85 218 240 
Maximum 3 27  216 1,728 > 104 > 104 > 105 

LYS 4 858 67  288 580 775 834 858 

Arg 5 438 116 I95 322 421 429 436 
Maximum 5 243 7,776 > 105 > I O h  > 107 > 109 

Maximum 4 81 1,296 > 104 > los > 106 > 10’ 

a N ,  is the  number  of DPG dihedrals  for  each  amino  acid (Nx = 0 for  alanine  and  glycine).  “Sample” is the  number of oc- 
currences  of  each  amino  acid  in  the H64 set.  Numbers  in  italics  indicate  cases  where  the  number  of  occupied  grid  points is a t  
least 95% of  the  sample size. “Maximum” refers to  the  maximum possible number of grid points  for  a given Nx and grid spacing. 
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order.  The  other  three cases differ primarily because Ponder  and 
Richards  calculate  averages  rather  than  strictly  binning all con- 
formations. Differences in the methodologies  also lead to differ- 
ences  in the  computed  probabilities.  In  general,  the  probability 
of a particular  gridpoint is lower  than  for  the  equivalent  rota- 
mer  because  conformational  space  has been  divided into  much 
smaller  bins. 

DPG protein builder: Backbone phase (DPG-BACK) 

During  the  first  stage  of  the  Protein  Builder,  the  backbone- 
modeling stage  termed  DPG-BACK,  the  protein is built one res- 
idue  at a time  until  the  entire  protein  has been built.  As  each 
residue 1 is added,  its  geometry is initially  built  from  the  stan- 
dard  peptide  geometries  in  the  BIOGRAF  peptide  library  (Mo- 
lecular  Simulations,  Inc., 1992), then  the  backbone (4, $) and 
side-chain (x) dihedrals  are  rotated  to  their  most  probable  con- 
formations  according  to  the relevant probability grids.  A Monte 
Carlo  simulation  using (4, $) probability  grids is then used to  
search the  conformational space  of a “pulse”  of residues: the last 
p residues  of  the  current  chain  (residues ( 1  - p + 1) through 1 ) .  
The  residues  preceding  the  pulse  are held  fixed and  are  not  in- 
cluded  in  the  energy  calculations.  Simulations  in which these 
early  residues  are held fixed,  but  included  in  the  energy  calcu- 
lation,  are  considerably slower and give worse  results.  The  side 
chains  are  also ignored during  the chain-building  phase;  they are 
added in the  second  stage  after  the  backbone  conformation  has 

been built.  Long-range  interactions  are,  therefore,  not explic- 
itly included  in the  backbone-building  stage, despite  their great 
importance in protein folding and packing interactions.  Rather, 
they  are implicitly included  in  that  the C, coordinates  them- 
selves represent  the  global  fold.  The  backbone-building  phase 
attempts  to  generate a polypeptide  backbone  that  has  an  opti- 
mized  local geometry and fits a particular  global  arrangement 
of C, ’s. The  energy used during  the  Monte  Carlo  simulations 
is essentially the  DREIDING energy  of the  backbone  atoms of 
the pulse,  plus harmonic  terms  constraining  the pulse C, coor- 
dinates  to  the  true  coordinates.  The best conformation  sampled 
during  the  Monte  Carlo  simulation is saved and  then  optimized 
by conjugate  gradients  minimization.  This process  proceeds se- 
quentially,  with  each new residue being  involved in several op- 
timization cycles before finally  being  held  in its  final  position 
as  the pulse moves  beyond  it. 

The  DPG-BACK  simulations  are  aided by predetermination 
of  the  secondary  structure  where possible. There is a high  cor- 
relation between the (6, $) dihedrals  of a protein  and  its C, 
coordinates, so knowledge  of  the C, coordinates  can limit the 
possible (4, $) values. The  most  common  secondary  structural 
elements,  a-helices  and  0-sheets,  have very specific C, con- 
figurations,  as  described by the  virtual  angle { (defined by 
C,(i - I ) ,  C , ( i ) ,  and C, ( i  + 1)) and  virtual  dihedral y (de- 
fined  by C, ( i  - l )  through C, ( i  + 2)). Analysis  of  the ({, y) 
distributions  of  the  proteins in the  H64  data set showed  that 
a-helix  and &sheet  residues almost  always  have  {and y values 
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Fig. 8. The 30" x grids for several  different  amino  acids  with  two  significant  dihedrals.  The  vertical axis is P(x', xZ). 

within the ranges specified in Table 12. Residues with (J, y) dis- 
tributions in one of  these two regions are assumed to have (4, $) 
values common to  that secondary structure class; when their 
+ and $ conformations  are sampled during the chain-building 
process, the (4, $) grids  determined for a-helix or P-sheet resi- 
dues are used. Residues with ( 3 ;  y) values falling outside this 
region are sampled using the generic (4, $) probability  grids. 
Eighty-five percent of the residues in the H64 data set having 
$I and $ values within the high-probability /3-sheet region listed 
in Table 12 also have ({, y) values within the specified region. 
The  correlation is even higher for a-helices, where 88% of the 
residues with a-helix (4, $) values have (<, y) values within the 
corresponding range. If there were no variation in bond lengths 
and angles in the protein backbone, the (l, y) angles would pro- 
vide almost completely sufficient information  to determine the 
(6, $) angles, according to  the method developed by Purisima 
and Scheraga (1984). Unfortunately, the variability in real con- 
formations is too high for this exact method to work, and (+, $) 

angles must be derived from simulation methods such as the  one 
presented here. Nevertheless, the correlation between ({, y) and 
(6, $) angles is sufficient to determine which residues should 
be sampled using the  a-helix and @sheet (4, $) grids. The use 
of these grids for  the  appropriate residues improves our results 
significantly. 

Monte Carlo simulations  depend on  random numbers and 
produce  a  different  backbone conformation each time the cal- 
culation is run. However, an exhaustive search is much more 
computationally intensive, even if only a few conformations 
were allowed for each residue. A complete sampling of just the 
top 20 (4, $) conformations for each residue in a three-residue 
pulse  would require evaluation of  8,000 different conformations. 
In contrast, we are able to obtain excellent results from only 200 
Monte Carlo steps as each amino acid is added.  The  Metropo- 
lis criterion (Metropolis et al., 1953) rejects conformations pro- 
ducing very bad energies, allowing the  conformational sampling 
to focus on low-energy conformations. It is therefore possible 
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Table 11. Highest probability grid point 
for  each amino acid for  S = 30" a 

pmox (070) X ' 
CYS 49.1 -60 
Pro 38.2 0 
Ser 31.0 60 
Thr 42.4 -60 
Val 60.6 180 
Asn 9.5 - 60 
ASP 9.3 -60 
His 13.2 - 60 
Ile 31.5 - 60 
Leu 38.8 - 60 
Phe 12.6 - 60 
TrP 12.3 - 60 
Tyr 13.9 - 60 
Glu 3.8 - 60 
Gln 2.9 -60 
Met 5.8 -60 
LYS 4.7 - 60 
A% 2.1 -60 

X* x 3  x4 X 5  

-30 
-30 
- 90 
180 
180 
90 
90 

- 90 
180 
180 
- 60 
180 
180 

150 
-30 
- 60 
180  180 
180 -150 0 

a Pmox is the  probability of this  particular  conformation. 

to  quickly build backbone  conformations. A  typical simulation 
takes  approximately 15 s per residue on  one  processor  of a Sili- 
con  Graphics  4D/380  workstation, or less than 12 min  for  the 
46-residue  protein  crambin.  Speed is crucial  for  simulations 
where  different C, conformations  are being evaluated,  for in- 
stance, when numerous  conformations  are generated by a lattice- 
based  protein  structure  prediction  method (Cove11 & Jernigan, 
1990). In cases where a  single set of C, coordinates is being 
used, it may  not  be necessary to limit the  calculations  to a mat- 
ter  of  minutes.  In these cases, several simulations  can  be  run, 
using  different  random  numbers  for  the  Monte  Carlo  calcula- 
tion.  Each will produce a slightly different  backbone  conforma- 
tion.  From  these,  the lowest energy  conformations  are selected 
for  the  second  stage  of  the  calculation. 

DPG Protein Builder: Side-chain phase  (DPG-SIDE) 

The best-energy conformations  generated in the  DPG-BACK 
phase were evaluated without regard  to side-chain positions. 
During  the chain-building  process, energies were determined  for 
only a small pulse of residues; all  previous residues were ignored. 
However,  after  the  chain is built,  the energy of  the  entire  back- 
bone is evaluated  and  this  value is used to  determine which 
backbone  conformations  are used  in stage  2,  DPG-SIDE.  The 
side-chain  conformations  are  optimized by a DPG-MC  simu- 
lation  using x probability  grids.  In  this  DPG-SIDE  stage,  the 
backbone  atoms  are held  fixed but  are  included in the  energy 
calculation. Because the  backbone is held fixed,  constraints  to 
the C, coordinates  are  removed.  In these calculations, a t  every 
Monte  Carlo  step,  one  side  chain is selected at  random  and a 
new side-chain  conformation is chosen  for it according  to  the 
residue-specific x probability  grid.  The  energy  of  the new con- 
formation is calculated,  and  the  Metropolis  criterion is  used to  
accept or reject this structure. Because the Metropolis  acceptance 
probability  (Metropolis  et  al., 1953) is dependent  upon A E ,  the 

Table 12. Secondary structure correlationsa 

YI 1; 

a-Helix 25" < yi < 75" 80" < r; < 110" 
P-Sheet 160" < 7, < -75" 1 0 0 "  < 5; < 145' 

4; * i  

a-Helix -90" < 4 < -30" -60" < 4 < 0" 
P-Sheet -165" < 4 < -45" 100" < * < 180" 

a The C ,  angles, ({, y). corresponding  to cy-helix or &sheet  confor- 
mation.  Greater  than 85% fall  within  the  corresponding (4, 4) region 
listed  in  the lower table. 1; and y i  are  defined  in  the  text. 

change in energy,  only  the  energy  of  the side chain being modi- 
fied needs to  be  evaluated; all other  interactions  can be ignored. 
This results  in a huge  speed  increase  over  calculations  that re- 
evaluate  the entire  energy  of the  protein  at every step. Using this 
method,  the second stage  can  be  quite  rapid.  For  the small pro- 
tein  crambin,  which  has  46  residues  and 396 atoms  in  the 
DREIDING calculations,  1 ,O00 Monte  Carlo steps  require 7 min 
of cpu  time, whereas plastocyanin, with  98  residues and 857 at- 
oms, requires 22 min for 1 ,O00 steps.  Like the backbone-building 
process,  the side-chain-modeling  process is a stochastic  simula- 
tion,  dependent  upon  random  numbers.  Therefore,  it is useful 
to  run  the simulation several times, using different random  num- 
ber seeds,  and  to  use  the lowest-energy structures  for  further 
studies. 

Variables 

There is a considerable  number  of  variables  that  affect  the  ef- 
ficiency of  the  DPG  Protein  Builder.  The  most  important of 
these  are: 

1. Spacing ( S ) .  The  DPG-MC  grid  spacing,  as  described 
above. 

2. Temperature. The  constant controlling the  Monte  Carlo ac- 
ceptance  rate. 

3. Steps. The  number of conformations  sampled by the  DPG- 
MC  calculation.  In  the  DPG-BACK  phase,  this  refers  to  the 
number  of  backbone  conformations  sampled  each  time a resi- 
due is added  to  the  growing  chain.  In  the  DPG-SIDE  phase, it 
refers  to  the  total  number  of  conformations  sampled. 

There  are  two  additional  variables  affecting  the  DPG-BACK 
phase: 

1. Pulse. The  number of  residues  used  in the  conformational 
sampling  as  each new residue is added. 

2. Harmonic constraint (Kc) .  Force  constant of the  harmonic 
constraint between the C, of  the  protein  being  built  and  the 
target C, coordinate. 

In  order  to  determine which combination of parameters is 
most  effective, we ran  numerous  simulations  using  crambin 
(Hendrickson & Teeter, 1981) as a  model. This  protein was cho- 
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sen because of its  small size  (allowing rapid  calculations)  and 
because it contained cy-helix, 0-sheet,  and  0-turn regions.  Back- 
bone phase parameters were evaluated by running 20 simulations 
for each set of  parameters, building the complete crambin back- 
bone  from its C, coordinates.  The  efficacy of the  parameters 
was determined by averaging,  over the 20 runs,  the RMSDs from 
the crystal structure  for  the  backbone  atoms of the models pro- 
duced.  This  average  correlated very well with a second measure 
of the accuracy  of the  backbone model: the RMSDs in the (4,$) 
dihedrals.  Not every variable  had a large  impact  on  the  results. 
In  particular,  the  simulation  temperature  and  the  grid  spacing 
had  smaller  effects  than  did  the pulse  size, the  harmonic  con- 
straint, or the  number  of  Monte  Carlo  steps. 

The average RMSDs  from 20 backbone phase  simulations are 
shown  in  Figure 9 for several temperatures  and pulse sizes. These 
simulations were run using 200 Monte  Carlo steps for each  pulse, 
a grid spacing  of  lo",  and a C, constraint of 1,000 (kcal/mol)/ 
A'. There  are  no consistent trends with respect to  temperature. 
For pulse lengths of three or four,  the best results  are  obtained 
at a temperature of 1 ,OOO K .  However,  for longer  pulses,  higher 
temperatures  are  more  favorable.  The pulse length itself has a 
much bigger impact  on  the  results.  There is a consistent  trend 
favoring  shorter pulse lengths at all temperatures except 5,000 K ,  
where a  pulse  of six is better  than a pulse  of five. It was clear 
from  numerous  other  simulations  that a  pulse length of three 
gave  the best results, with four residues  being  slightly  worse 
and  larger  numbers  significantly worse. The  number  of possi- 
ble (4, $) conformations  grows  exponentially with the  number 
of  residues  in  the  pulse, so smaller pulse lengths  are clearly fa- 
vored in that a larger  percentage  of  their  conformational  space 
can  be searched during  the  Monte  Carlo calculation. This makes 
up  for  the  fact  that  important  hydrogen  bonding  interactions 
occur between residues i and i + 4 in a-helices,  a fact  that would 
favor a  pulse length of at least four.  In  addition,  the  time of 
the  simulation is roughly  proportional  to p ,  so a  pulse length 
of three is preferable  from  the  standpoint  of  speed,  as well. 

Another  important  variable in these  simulations is the  force 
constant  of  the  harmonic  constraint between the C,'s of  the 

0 1000 2000 30W 4000 5000 

Monte  Carlo  Temperature (K) 

Fig. 9. Average  RMSDs  for  the  crambin  backbone  built  using DPG- 
BACK. Each  calculation  started with the C, coordinates  from  the crys- 
tal  structure  and  determined 20 independent  structures  (based  on 200 
MC  steps)  using  particular  temperatures  and  pulse sizes. The 10" (4, 6) 
grid  was  used  with KcOnSlrainl = 1,000 kca lho l .   The  pulse size is 3,  4, 
5 ,  or 6 as  indicated  at  the  upper  right. 
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Fig. 10. Dependence of the  RMS  error  in  the  backbone  atoms  (RMSB) 
and in the C, coordinates  (RMSC)  built  using  different C, constraint 
force  constants. Based on 20 independent  structures  using T =  1,000 K 
and a  pulse size of 3 .  

protein  chain being built and  the  input C, coordinates.  The en- 
ergy  of each  constraint is given by the  expression 

E,. = ;K,.(r,)',  (2) 

where Kc is the  force  constant  and r, is the  distance between the 
C, coordinate  of  residue i in the  model  and  in  the  template. 
There is a constraint of this  type  for  each  residue in the pulse. 
There is an  additional  constraint, with  a  weak force  constant of 
KJ10 and  an  offset of 2.0 A ,  between the  carbonyl  carbon of 
the  most recently added  residue, I ,  and  the  template C, of res- 
idue I + 1. This helps to  orient  the  final  residue  of  the  growing 
chain.  Figure 10 shows  the  effect of the  constraint  on  the  aver- 
age  RMS  errors in the  backbone  atoms (RMSB) and  the C, co- 
ordinates (RMSC). These  simulations were run  at a temperature 
of 1,000 K, using a grid  spacing  of 10" and a pulse length of 
three. As should be expected,  deviations for  the C, coordinates 
decrease  exponentially as the force  constant increases. However, 
the fit of  the  entire  backbone  has a minimum  of 0.520 A when 
Kc = 100 (kcal/mol)/A'.  This is substantially less than a typi- 
cal  DREIDING  force  constant  of 700 (kcal/mol)/A* or more 
for  bond  stretches.  Therefore,  the C, constraints  do  not  cause 
distortions  in the geometries during  the  conjugate gradients  min- 
imization  stage  that  follows  the  Monte  Carlo. 

As each new residue is added,  the pulse of residues is opti- 
mized first by the  Monte  Carlo  conformational  search,  then by 
100 steps  of  conjugate  gradients  minimization.  Both  stages  are 
important.  The  minimization  process is necessary to  provide 
flexibility  in the  bond  lengths  and  angles of the  protein  model, 
in order  to  match closely the specific C, geometry  of  the  pro- 
tein being built. Although  the minimization  process  makes  only 
small  adjustments  in  the  conformation of the  pulse  residues, it 
makes a substantial  difference in the  results.  With  no  minimi- 
zation,  the  errors in the  backbone  model  built  up very quickly. 
Using the  same  parameters  that  produced  an  average  backbone 
deviation  of 0.52 A when minimization was included,  the  DPG 
Protein Builder produces  crambin  backbone models with an av- 
erage  RMSD  of 1.32 A when no  minimization is involved. Our 
parameters were optimized  for  simulations  including minimiza- 



Protein modeling using dihedral probability grids 123 1 

0 100 200 300 400 500 

Monte Carlo Steps 

Fig. 11. Dependence  in  the  backbone  RMS error on  the  number of 
Monte  Carlo  steps. Based on 20 independent  structures  using T =  300 K 
and a  pulse  size of 3.  The  conclusion is that 50 steps is sufficient. We 
used 200 for  additional  calculations. 

tion  and  probably  are  not  optimal  for  simulations  without  min- 
imization.  Nevertheless, it is clearly preferable  to  include  the 
minimization process. It is also  important  to  include  the  Monte 
Carlo  conformational  search.  The results using  different  num- 
bers  of  Monte  Carlo  steps  are  shown in Figure 11. Simulations 
with  one  step  correspond  to simply  using the highest probabil- 
ity conformation  from  the (4, +) grids for each residue; no  other 
conformations  are  sampled.  Although  the results for  this  case 
are  good (0.60 A RMS),  the results are clearly improved by the 
use  of even  a small  number  of  Monte  Carlo  steps,  and  get  bet- 
ter as the  number of steps  increases. The  standard  error in these 
averages is typically 0.01 A, so there is little statistical signifi- 
cance  to  the  improvements  above 50 steps.  Nevertheless,  in or- 
der  to  increase  the  number  of  conformations  sampled while 
keeping the  simulation  time  to 10 min  per  crambin  backbone 
conformation, we chose to use  a value of 200 Monte  Carlo steps 
for  most  simulations. 

The  choice  of  grid  spacing was based  upon  simulations  of 
the  pentapeptide  Met5-enkephalin  (Mathiowetz, 1992), which 
showed  that  the best results  are  obtained using  a grid  spacing 
of 10”. The 10” dihedral  spacing  appears  to  provide  the best bal- 
ance between conflicting trends  that  arise as the grid  spacing be- 
comes  smaller:  there  are  far  more possible conformations, so 
the  protein  can  assume  more low-energy conformations,  but  the 
fraction  of  the  total  conformational  space  that  can  be  sampled 
with a given number  of  Monte  Carlo  steps  decreases. 

After  DPG-BACK  has  determined  the  backbone models, the 
DPG-SIDE  phase  optimizes  the  side-chain x’s. In these calcu- 
lations, the  backbone is held fixed while the side  chains are  mod- 
ified by randomly choosing new conformations  according  to  the 
x probability grids. The  most  important variables for these  sim- 
ulations  are  the  grid  spacing,  the  temperature,  and  the  number 
of Monte  Carlo  steps. A grid  spacing  of 10” was selected for 
these  calculations in order  to  be  consistent  with  the  grid  spac- 
ing chosen  for  the  DPG-BACK  phase.  Results  improved  con- 
sistently as  the  number of Monte  Carlo steps was increased,  but 
improvement slowed after  about 500 steps;  therefore, a value 
of 1,000 was used for  the  calculations  reported.  As  discussed, 
this number  may be insufficient for large  proteins, but  for  cram- 
bin it represents more  than 25 conformations per  residue for  the 
37 non-alanine, non-glycine optimized  during these simulations. 

Table 13. Values used for production runs 
of the DPG Protein Builder 

Variable  Phase 1 Phase 2 

Spacing 10” 10” 
Temperature 1,000 K 300 K 
Steps 200 1,000 
Constraint 100 (kcal/mol)/A2 - 
Pulse 3 - 

In  order  to  determine  the best simulation  temperature  for  the 
DPG-SIDE  phase, 10 DPG-SIDE  calculations were run  at 0 K, 
300 K, 1 ,000 K, and 5,000 K .  The  starting  structure  for these cal- 
culations  was  the  crambin  crystal  structure, with its  side  chains 
rotated  to  their  most  probable  conformations  according  to  the 
10” x probability  grids.  This  structure  had  an  RMSD  from  the 
crystal  structure of 1.52 A ;  the  deviation  for  side-chain  atoms 
alone was  2.34 A. For each  simulation, 1,000 Monte  Carlo cal- 
culations were run,  after which the lowest energy conformation 
was saved  and  its  overall RMSD from  the  crystal  structure  was 
recorded.  The  averages  for  the 10 simulations  at  each  tempera- 
ture were 1.06 A (0 K),  0.99 A (300 K), 1.12 A (1,000 K), and 
1.08 A (5 ,000 K). As was found  for  the  DPG-BACK simulations 
(see Fig.  9),  there is not a large  variation  with respect to  tem- 
perature.  This is the case despite the fact that  the acceptance rate 
for new structures rises from 7.7% at 0 K to 46.8% at 5,000 K. 
Apparently,  the  much  greater  acceptance  rate  of new structures 
does  translate directly into  the  creation of more low-energy con- 
formations.  Simulations  at 300 K were more  consistently  accu- 
rate, so this  temperature was  used  in the  simulations  reported 
below. Table 13 lists the values used for  DPG-BACK  and  DPG- 
SIDE  simulations  reported in the  Results. 

Computations 

DPG-MC  and  the  DPG  Protein Builder were developed as  an 
extension  of  the  BIOGRAF  program  from  Molecular  Simula- 
tions,  Inc. (1992). All  calculations  reported  here were run  on Sil- 
icon  Graphics  Power Series and  Indigo  workstations; all timing 
numbers were obtained  from  simulations  run  on a single pro- 
cessor  of an SGI 4D/380. 

Supplementary  material in the  Electronic Appendix 

Dihedral  probability tables have been included in the Electronic 
Appendix  (subdirectory  Mathiwtz.SUP of the  SUPLEMNT 
directory).  The (4, 4) probabilities  are  in files named  phipsi. 
s.res.cluss, where “s” is the grid spacing, “res” is the residue type 
(standard, glycine, or proline), and “class” is the  structural class 
(all,  coil, helix, sheet).  The (x) probabilities  are  found in  files 
named  chi.s.res,  where “s” is the  grid  spacing  and  “res” is the 
amino acid  type  (aspartic acid,  asparagine, etc.). Values are listed 
from  the  most  probable  conformation  to  the least probable. 
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