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Abstract 

We tested  the  dihedral  probability grid Monte  Carlo  (DPG-MC)  methodology  to  determine  optimal  conforma- 
tions  of polypeptides by applying  it to predict the low energy  ensemble for  two peptides whose solution  NMR struc- 
tures  are  known:  integrin  receptor  peptide  (YGRGDSP,  Type I1 P-turn)  and S3 a-helical  peptide  (YMSEDEL 
KAAEAAFKRHGPT). 

DPG-MC involves importance  sampling, local random  stepping in the vicinity of a current local minima,  and 
Metropolis  sampling  criteria  for  acceptance or rejection  of new structures.  Internal  coordinate values are based 
on side-chain-specific dihedral angle probability  distributions (from analysis of high-resolution  protein  crystal  struc- 
tures).  Important  features of DPG-MC  are: (1) Each  DPG-MC  step selects the  torsion angles (6, $, x) from a 
discrete  grid  that  are  then  applied  directly  to  the  structure.  The  torsion  angle  increments  can be taken as S = 60, 
30, 15, 10, or 5” ,  depending  on  the  application. (2) DPG-MC utilizes a temperature-dependent  probability  func- 
tion ( P )  in conjunction with Metropolis  sampling  to  accept or reject new structures. 

For each  peptide, we found close agreement with the  known  structure  for  the low energy conformational en- 
semble  located with DPG-MC.  This suggests that  DPG-MC will be  useful  for  predicting  conformations  of  other 
polypeptides. 

Keywords: computational  chemistry;  importance  sampling;  Monte  Carlo;  peptide  conformation;  protein  confor- 
mation;  protein  folding 

A full understanding  of  protein  function  requires knowledge of 
the  three-dimensional  structure.  Unfortunately, experimentally 
determined  structures  for  most  proteins  are  unavailable.  Con- 
sequently, it is essential to develop approaches  for predicting sec- 
ondary  and  tertiary  structures  of  proteins. 

In the  past  decade, several approaches  to  protein  structure 
prediction  have  evolved,  including: (1) lattice  search  methods 
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(Covell & Jernigan, 1990; Skolnick & Kolinski, 1990, 1991;  Rey 
& Skolnick, 1991, 1993); (2) homology data search (Lupas et al., 
1991; Rooman et al., 1992; Srinivasan et al., 1993; Geourjon & 
Deleage, 1994); (3) genetic algorithms  (Judson et al., 1993; 
McGarrah & Judson, 1993); and (4) Monte  Carlo  methods 
(Paine & Scheraga, 1985; Lambert & Scheraga, 1989;  Nayeem 
et al., 1991). 

An exhaustive  search of  the  conformational space for  the  pro- 
tein is usually not  computationally practical, because the size of 
the space  grows  exponentially with the size of the molecule (Ngo 
& Marks, 1992). Hence,  many  simplifications  have evolved to 
the  computational requirements.  Examples  include: (1) reduced 
numbers  of  atoms by the use of the C, or virtual  bond  repre- 
sentation  of  the  protein  backbone  (Purisima & Scheraga, 1984; 
Cove11 & Jernigan, 1990; Rey & Skolnick, 1991; Skolnick & 
Kolinski, 1990, 1991; Mathiowetz, 1992); (2) pairwise functions 
for side-chain-side-chain interactions, allowing rapid  evaluation 
of structure energies (Miyazawa & Jernigan, 1985; Rey & Skol- 
nick, 1991, 1993; Sippl  et al., 1992; Kocher  et al., 1994); and (3) 
the use  of  existing structures  as  “templates”  for  generating  un- 
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known  protein  structures  (Rooman  et  al., 1992; Sippl  et al., 
1992; Madej & Mossing, 1993; Srinivasan et al., 1993). The use 
of existing protein  structural  data  to guide the selection of struc- 
tures is attractive  for  the  following  reasons.  First,  there exists 
a large data set of protein  crystal  structures (-800) encompass- 
ing a wide range  of  polypeptide  backbone  and  side-chain  ar- 
rangements.  Hence,  this  data set contains implicit information 
regarding  secondary  and  tertiary  structure, sterics, and  folding. 
Second,  the  data set provides a range of backbone  and side-chain 
dihedral angles for  each  amino  acid  type.  This  information  can 
be used to reduce  computational  effort by excluding regions  of 
the energy map  from  the  conformational  search,  thus  permit- 
ting a more  focused  search in  biologically  relevant conformer 
regions. 

As a means of integrating  protein  database  knowledge with 
conformational search  methodologies, we have  developed an in- 
ternal  coordinate  search  algorithm  that is guided by residue- 
specific dihedral  angle  probabilities  as  determined  from  known 
protein  crystal  structures  (from  the  Brookhaven  Protein  Data 
Bank).  This  dihedral  probability  grid  Monte  Carlo  method 
(Mathiowetz, 1992) involves the use of ( I )  importance sampling 
(Lambert & Scheraga, 1989), (2) local step  procedures  (i.e.,  ran- 
dom  steps  occur in the vicinity of a current  local  minima),  and 
(3) Metropolis  sampling for acceptance or rejection of new struc- 
tures  (Metropolis  et  al., 1953). 

Some  important  features of DPG-MC  are: (1) Each  step of 
the  simuIation involves the selection of  torsion angles (6, $, x) 
from  the  DPG, which are  then  applied directly to  the  structure. 
The  torsion  angle  resolution  can  be  taken  as S = 60,30, 15, 10, 
or 5 ” ,  depending  on  the  application. (2)  A temperature- 
dependent  probability  function, P ,  is used  in conjunction with 
Metropolis  sampling (to accept or reject new structures  whose 
energies  are less favorable  than  the  starting  structure).  This  en- 
sures a Boltzmann  distribution  of  conformations.  The  number 
of  accepted  structures increases  with the  Monte  Carlo  temper- 
ature.  This  creates a larger  number  of  “bad”  structures,  but it 
also  provides  alternative  “paths”  that  may  eventually lead to 
lower energy minima because lower acceptance  rates  require that 
the  simulation  take a more  “downhill”  path  through  conforma- 
tional  space  (Mathiowetz, 1992). (3) Cartesian  coordinate  min- 
imization  steps  can  follow  the  torsional  perturbation. (4) Any 
force field can  be utilized for energy evaluations. (5) The  DPG- 
MC  backbone  and  side-chain  grid  probabilities  represents a  di- 
verse, highly refined subset of PDB protein crystal structures (64 
structures, with resolution 52 .0  A and  R-factor <20%) whose 
sequence  overlap is less than  25%. 

Herein we test  the  DPG-MC  method  using  as  benchmarks 
Met5-enkephalin;  the  7-residue  integrin  receptor  peptide, 
YGRGDSP, which assumes a 0-turn  structure  (Johnson et al., 
1993); and  the  S3  peptide,  YMSEDELKAAEAAFKRHGPT, 
which  forms  an  a-helix  structure  (Lyu  et al., 1993). The  latter 
two peptides  have known  NMR  solution structures. We find  that 
DPG-MC gives excellent results for predicting structure  and  that 
the  protein  dihedral  probability  grids  are effective for selecting 
minima. 

Results 

Using  Met5-enkephalin  as  the  test  case or benchmark, we first 
consider  how efficiently DPG-MC  finds  conformational  min- 
ima. We consider: (1) the  “best”  structure  energy  as a function 

of the  Monte  Carlo  step size; (2) the  conformer energy fluctua- 
tions over the  course  of  the  search; (3) the  effect  of S and TMc 
on  conformer selection; (4) the effect  of  dihedral  probabilities on 
selection of  minima;  and ( 5 )  the  use of Cartesian  minimization 
following  dihedral  torque  but  prior  to  Metropolis  evaluation. 

Conformer minima selection as 
a  function  of grid spacing, S 
We evaluated the effect of  dihedral angle  grid  point size on min- 
ima selection at  room  temperature (300 K) (see Fig. 1). In the 
first third of each simulation (<60,000 steps),  it is apparent  that 
smaller  grid  spacings (S = 5 ,  10, 30”) lead to  lower  energy  min- 
ima, with the S = 5” grid providing the best approach  to  the min- 
imum  structure.  This  result is expected  because  small changes 
in the  torsion angles offer a larger number of pathways  on  the 
energy  map.  The  large, stepwise changes of the S = 60” simu- 
lation  may be useful  for large atom assemblies,  where an initial 
coarse  grid  search  can  locate  rapidly  the  minima to  be refined 
further by the use of  denser  grids.  As  the  simulation  proceeds 
(>100,000 steps), we observe energy convergence  for all grids 
except 60”. As shown  in Table I ,  the  acceptance  rate  for a given 
T,, is not  greatly  affected by the choice of S. We conclude  the 
following  regarding  grid  spacing: (1) Small S grid values (<30”) 
are  preferable  for  determining lowest energy structures, partic- 
ularly in short MC simulations. (2) Larger  gridpoint values (60”) 
may  be  useful  for  initial  coarse  searches  of  conformational 
space. 

Monte Carlo temperature and best energy 
Examination  of  the  “best”  conformer energies for a sampling 
of T,, at  the  optimum S value (5’  grids)  (Fig. 2A) reveals 
rapid  energy  convergence in the  first 10,000 steps of the  simu- 
lation (12-15 kcal/mol  for 0,  300 K; 8-10 kca lho l   fo r  1,000- 
10,000 K). As the  simulation  proceeds  out  to 200,000 steps, 
smaller  conformer energy changes  are  observed.  Low  temper- 
ature  simulations generally lead to lower energy conformations. 
The  conformer  structures  generated  at  each  step of the  simula- 
tions  (Fig.  2B)  vary  greatly in energy,  depending  on TMc. 

1 2 0 K  
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Fig. 1. Effect of grid spacing ( S )  on  the  final  energy of Mets- 
enkephalin.  Energy of the  “best”  structure is given  (every lo3 steps) as 
a  function of the  Monte  Carlo  step,  number  using TMc = 300 K .  The 
DREIDING force  field was used. 
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Table 1. Comparative analysis of Met’-enkephalin DPG-MC  simulationsa 

S TM C Minimization  Starting  Accepted‘ Best energyd 
(deg) (K) cycles structure (070) (kcal/mol) 

5 0 0 Ext 0.03 100.6 (88.7) 
300 0 Ext 13.5 101.9 (82.9) 

1,000 0 Ext 46.2 104.2 (89.5) 
5,000 0 Ext 76.3 107.9 (91.0) 

10,000 0 Ext 83.6 108.5 (75.3) 

10 0 0 Ext 0.02 103.2 (78.7) 
300 0 Ext 13.8 101.7 (93.8) 

1,000 0 Ext 46. I 105.8 (88.4) 
5,000 0 Ext 77.4 108.3 (90.1) 

10,000 0 Ext 83.5 108.3 (91.9) 

30 0 0 Ext 0.01 103.1 (70.6) 
3 00 0 Ext 15.2 101.9 (86.2) 

1,000 0 Ext 44.3 104.3 (79.2) 
5,000 0 Ext 76.7 107.9 (77.0) 

10,000 0 Ext 83.0 107.9 (91.0) 

60 0 0 Ext 0.01 107.7 (99.0) 
300 0 Ext 18.9 103.5 (87.5) 

1.000 0 Ext 44.5 103.6 (84.8) 
5.000 0 Ext 73.0 107.7 (89.9) 

10,000 0 Ext 79.4 107.9 (100.6) 

5 300 1 Ext 13.2 100.9 (78.8) 
300 I O  Ext 13.6 97.0  (82.8) 
500 0 P - 107.5 (84.7) 

- 108.1 (81.2) 

30‘ 0 0 Ext 0.01 110.9 (87.9) 
300 0 Ext 2.0 109.0 (94.7) 

1,000 0 Ext 20. I 109.0 (94.1) 
5,000 0 Ext 50.5 109.1 (94.2) 

10,000 0 Ext 607 109.1 (94.2) 

0 01 

””” ~ ”” ” ~ - .  .. . . ..~ -~ 

a All DPG-MC  simulations utilized 200,000 total  steps. Unless otherwise  noted, five runs were performed 
for  each  category. 

The  number of minimization  steps  prior  to  Monte  Carlo. 
“Accepted”  refers  to  the  percentage of 200,000 structures  leading to low energy  minima. Values rep- 

resent  the  average for five  parallel  runs. 
Energy  of  the  global  minima,  determined  as  the  “best”  structure  generated  from  five  parallel  runs  un- 

der  the given conditions. For reference,  the  extended  starting  structure of Met5-enkephalin  has  an  energy 
of 118.73 kcal/mol.  The  value in parentheses is the energy of the fully minimized best structure,  determined 
as  described in the text. 

e Simulations  utilized T,, = 0,  300, 1,000, and 5,000 K,  for S = 5”. Best energies  represent  the  average 
energy  of the best  structures  generated by each of the  four  runs. 

Higher  temperature  simulations lead to  greater  fluctuations in 
energy and a wide variety of conformations,  many of which rep- 
resent  “moves”  away from  the  minima.  The  random acceptance 
of  unfavorable  minima  during high temperature  DPG-MC sim- 
ulations  sometimes led to  lower energy  final  states (see Table 1 
and Fig. 2A). Thus,  at earlier  stages of  the  search (20,000 steps) 
the 10,000 K run  has  reached a lower energy  state  compared  to 
the 5,000 K run. 

Database probabilities lead to lower 
energy minima structures 

To determine  how well the  PDB  H64  database probabilities lead 
to selecting  lower  energy conformers, we ran parallel DPG-MC 
simulations  in which  all grid  points of a given spacing S (e.g., 

30”) were  assigned equal  probabilities (Fig. 3). This  situation 
corresponds  to a “standard”  Monte  Carlo  Metropolis  sampling 
algorithm, where torsion angles are given random, discrete val- 
ues. Compared to simulations using equal  probabilities,  the use 
of DPG clearly leads to selecting lower energy minima  structures 
(3-7 kcal/mol  difference).  The  acceptance  rate  for  equal  prob- 
ability  simulations is lower than  that  obtained  for  DPG  simu- 
lations  (Table 1). A comparison  of  structural  energy  changes 
during  the  course of each  simulation reveals the following: (1) 
Compared  to  the  DPG  probability  simulations, little if any  im- 
provement  in structural energy occurs after  the  start of the  equal 
probability  simulation (Fig. 3). (2) The  final minimized struc- 
tures  obtained  for  equal  probability  simulations  are  higher  in 
energy than  for  DPG, leading to  an ensemble whose energies are 
clustered  near a  single value  (Table 1) .  



1206 J. S.  Evans et al. 

P "I7 
a, 
8 
w 

0 40000 8oooo12oooo160000200000 

Step Number 

170-1 I I I I I 

0 40000 8oooO 12oooOl6oooO200000 
Step  Number 

Fig. 2. Energy  profile  for  DPG-MC  Met5-enkephalin  simulations  as  a 
function of the TMc for S = 5". A: "Best" structure  energylevery  lo3 
steps  as  a  function of the  Monte  Carlo  step  number. B: Energy of each 
conformer  generated  (every  lo3  steps)  of  the  Monte  Carlo.  The 
DREIDING  force field  was  used. 

These  findings  indicate  that  equal  probability  grid  Monte 
Carlo  simulations  are  more  prone  to  minima  "trapping" in  lo- 
cal  minima  regions  of  the  potential energy map  and  are less ef- 
fective  in exploring  conformational  space. 

To  ascertain if the  DPG-MC  program  exhibits  any  bias  to- 
ward  starting  structure  conformation, we ran  parallel  simula- 

Equal 1000 K 
.,.. ,(rJii; j. i,.: j, 
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Fig. 3. Energy  profile  for  DPG-MC  Met5-enkephalin  simulations  uti- 
lizing biased or equal  probability grid values. DPG-MC  simulations were 
run utilizing TMc values  of 0, 300, 1,000, and  5,000 K. S = 30" for  all 
runs.  The  plot  represents  the "best" structures  obtained every lo3 steps. 
The  term  "Equal"  denotes  the  equal  probability  runs.  The  DREIDING 
force  field  was  used. 

tions in which the  starting  structure of  Met5-enkephalin was set 
to  either all a-helix or all  @-strand  conformations.  As  shown 
in Table 1 ,  the best structures  obtained  for  the  all-extended, 
a-helix, or P-strand  starting  structures  show negligible  energy 
differences,  indicating  that  the  starting  conformation  has little 
effect  on  the  outcome  of  the  conformational  search. 

DPG-MC with Cartesian minimization 

To determine  the effectiveness of  the  Monte  Carlo  with  mini- 
mization approach, we performed  Cartesian minimization (1 or 
10 steps  of  conjugate-gradient  minimization)  for  each "new" 
structure  prior to Metropolis  sampling.  At a given TMc and S 
value, it is evident from  Figure 4 that a minimization  step in the 
DPG-MC  simulation  improves  minima selection. This was also 
noted in  earlier Monte  Carlo polypeptide  studies  (Nayeem  et al., 
1991). The use of a single minimization  step leads to a 0.45- 
kcal/mol  difference in  "best" structure  energy,  whereas  the 
10-step minimization resulted  in a 4-kcal/mol  difference. 

We did  not  pursue  DPG-MC  runs using a larger  number  of 
minimization  steps because we found  that  the increased com- 
putational  cost for DPG-MC  with  minimization was not  justi- 
fied. For a typical Mets-enkephalin 200,000-step DPG-MC  run 
(with no  cutoff), a single step of minimization increases the  run 
time by a  factor of 0.9, whereas a 10-step minimization increases 
it by a factor  of 8.8.  Table 1 compares  the results of  DPG-MC 
runs  featuring 0, 1, and 10 steps  of  minimization in terms of ac- 
ceptance  rate,  the  number of best structures,  and,  most  impor- 
tantly,  the  structural  energy  obtained  after  the best conformer 
of  each  run was minimized to  convergence in Cartesian  space. 
We observed  no  significant  difference in terms of acceptance 
rate.  However,  comparing  the  final minimized structures  ob- 
tained  from all DPG-MC  runs, we found  that  the lowest energy 
conformers were generated by DPG-MC  runs  that  featured 0 
steps of minimization  (Table 1: 5 ,  30" simulations).  Inclusion 
of 1 or 10 minimization  steps within the  DPG-MC  program  does 
lead to   an overall lower energy  state  for  the  simulation.  How- 
ever,  such  minimizations do not improve the probability of find- 
ing the  global  minima  and require 2-10 times the  computational 
effort. 

Fig. 4. Effect of Cartesian  minimization  (conjugate  gradients)  on  the 
energy  profile  for  the  DPG-MC  Met5-enkephalin  simulations. DPG- 
MC  simulations  were  conducted  using S = S o ,  at T =  500 K .  Shown  are 
the "best" structures  obtained  every  lo3  steps.  The  DREIDING  force 
field  was  used. 



Polypeptide con formation predictions 1207 

Minimum energy structures 

The  most  important test of  DPG-MC  simulations is the  ability 
to  accurately  predict  three-dimensional  structure  of  polypep- 
tides.  Met5-enkephalin is a suitable  polypeptide  for energy de- 
terminations,  but  we  found  that  it  was  unacceptable  as a 
structural  benchmark  for  the  following  reasons: (1) Although 
Mets-enkephalin  has  become a popular  benchmark for Monte 
Carlo studies (Paine & Scheraga, 1985; Nayeem et  al., 1991; Shin 
& Jhon, 1991). the  use  of  different  force  fields  in these studies 
makes  inappropriate  the  comparison  of efficacy on  the basis of 
energetics. (2) It is now  known  that  small  peptides,  such  as 
Mets-enkephalin,  can  populate a wide range  of  conformational 
states in solution  (Dyson  et al., 1988; Wright et  al., 1990; 
Merutka et al., 1993). This  distribution of low-lying conforma- 
tional  states  make  determination  of  the gIobal minima  difficult 
and  perhaps meaningless. 

For these reasons, we focused our attention  on  two  peptides 
exhibiting strong  conformational preferences. IRP or YGRGDSP 
has seven residues and exhibits a preference for a Type I1 0-turn 
structure in solution  (Johnson et al., 1993). Peptide S3 or YM 
SEDELKAAEAAFKRHGPT is a 20-residue polypeptide  whose 
solution  structure is primarily  a-helix in the  first 15 residues of 
the  sequence (50% helicity as  determined by CD  spectrometry 
and  NMR)  (Lyu  et  al., 1993). 

The use of two  different  secondary  structure  "benchmarks" 
(helix and  turn)  provides a more  rigorous test of global minima 
determination  based  both on energy  and  on  the  distribution of 
backbone  and  side-chain  dihedrals.  In  each  case, we know  the 
preferred  conformer  state in solution  and  can  unambiguously 
compare theoretical  results with known  experimental  structures. 
In  addition, we can  also  examine  the  range  of  conformational 
preferences or isoenergetic states  for each  peptide as determined 
by DPG-MC. 

Integrin receptor peptide 

For  IRP,  the  dihedral  distributions  and  structures  for  the  four 
best minima  structures  (out  of  2.4 million total  structures)  are 
presented  in  Figures 5 and 6. For  the four minima  structures, 
we obtained a mean  total  DREIDING energy of 65.5 f 1.2 
kcal/mol.  As  shown  in  Figure 6, the lowest energy IRP  conform- 

ers  form a turn  structure  exhibiting excellent overlap,  with  an 
overall  RMS  deviation  (RMSD)  among  conformers  of 1.36 A 
for  backbone  and side-chain atoms  (omitting H atoms).  The 
greatest  structural divergence  is found  at  the  termini (Fig. 6), 
where  structural  stability  tends  to  be  weakest  (Wright  et al., 
1990). We did  not  observe  0-turn-specific G2 carbonyl-D5  am- 
ide  hydrogen  bonding in any  of  the  conformers,  as was reported 
for  YGRGDSP in  solution (Johnson et al., 1993). Figure 5 shows 
that  the  dihedral  preferences  for  IRP  are  primarily  centered in 
three regions of  the  Ramachandran  map: (1) near $ = -70°, 4 = 
-65"; (2) near $ = 90°, 4 = 5 " ;  and (3) in a region bounded 
from 4 = 80 to 180" and $ = -50 to -120". 

For  @urn  structures  (I-VIII),  typical (b and $ values range 
from +90° t o  -120" and +30° to  -120", respectively (Wilmot 
& Thornton, 1990). The  majority  of  the  IRP  dihedrals (6OV0, 
$ = -70", (b = -65") exhibit  good  agreement  with  the (b,$ dis- 
tribution for the  Type I 0-turn  and  Type I &turn  distortions 
(Wilmot & Thornton, 1990). A  smaller percentage (30%) of the 
IRP  dihedrals (4 = 80 to 180" and $ = -50 to  -120"; $ = 90", 
4 = 5 " )  fall into  the  Type I1 0-turn  category.  Hence,  DPG-MC 
predicts  the lowest energy  ensemble for  IRP  to  be a &turn with 
both  Type I (predominant)  and  Type I1 P-turn  conformers.  This 
is in qualitative  agreement with the results from NMR spectros- 
copy (see above). 

53 pepride 

For S3, the  four lowest energy  conformational  states (of 8 mil- 
lion  total  structures) (Figs. 5 ,  7) show  two  major  secondary 
structure  groupings:  a-helix  (representing 55-60% of the  total 
number of dihedrals)  and  0-strand  (representing 40-50%). For 
the  four  minimum  energy  structures, we obtained a mean  total 
energy of 158.4 7.3 kcal/mol  (DREIDING),  indicating a 
greater variation  in conformer energy for this  ensemble than  ob- 
tained  for  IRP.  This is further  confirmed in  Figure 7, where the 
four  minima  structures exhibit good  overlap,  with  an  average 
RMSD of 4.38 A (backbone  atoms  only)  and 5.91 A (backbone 
and side-chain atoms). We attribute this wider range  of conform- 
ers to  the following: (1) The presence of several long side chains 
(Lys,  Glu, Arg) in S3 allows  for  adopting  of a variety of x tor- 
sions, leading to a  larger number  of distinct low energy confor- 
mations. (2) These  same side chains  are  charged, leading to  
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3 0 -  

: 4 
e"=; 

- 3 0 -  polypeptides.  Scatter  plots  represent  the 

0 8  0 .  

0 -90 - - - -90 - 
1 0 

-180 I- I I I I I -1  80 
-180 -90 0 90 180  -180 -90 0 90 180 

4) 4) 



1208 J.  S .  Evans  et  al. 
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Fig. 6. All-atom representation of the ITP optimum 
structure.  Views of the  four  superimposed  lowest  energy 
conformer  states  shown inFigure 5. All-atom  backbone- 
only structures  are  shown on the left, with  the global 
minimum  structure  (blue)  represented  in its entirety on 
the  right.  Hydrogen  atoms  are  removed  for  clarity. Note 
the  turn-like  structure. 

attractive-repulsive interactions that may lead to several distinct 
low energy conformations. 

The minimum energy structures  adopt a right-handed helical 
conformation over 55-60070 of the overall length, beginning at 
the N-terminus and progressing to  the midpoint of the peptide 
sequence. The lowest energy conformation (denoted in red in 
Fig. 7) features  a-helical secondary structure from residues 1 
through 14. The remaining structure (residues 15-20) is predom- 
inantly  0-strand, with only 1-2 residues exhibiting any helical 
dihedral preferences. Experimentally, NMR NOESY studies 
have revealed that  the S3 peptide has a-helical structure  from 
residues 2-13 and 15-17, with the remaining portion of the pep- 
tide being undefined (Lyu et al., 1993). Our theoretical struc- 
ture quantitatively mimics these features. Globally, the peptide 
conformation appears to adopt a “bent” or hairpin fold (Fig. 7). 

Discussion 

The results of this study suggest that  the DPG-MC de novo pro- 
tein conformational search algorithm provides improved capa- 
bilities for determining the low energy conformational states of 
polypeptides. In DPG-MC the trial  conformations are selected 
on  the basis of most probable  internal  coordinate values. This 
directs  the local step moves toward energy minima, which are 
more biologically relevant (i.e., sterics, side-chain folding), in- 
creasing the efficiency of the search (e.g.,  see Fig. 4). With an 
appropriate selection of TMC’S (high in the beginning and de- 
creasing with time), the Metropolis sampling provides alterna- 
tive paths  that  are  not restricted to “downhill” searches, but 
periodically can “accept” unfavorable  structures serving as al- 
ternative  starting points. This avoids getting trapped into “lo- 
cal” minima (Fig. 4; Table 1). 

With DPG-MC we are not limited to any particular force field 
for energy evaluation. Thus, depending on the situation, differ- 
ent energy potentials can be  used to evaluate conformer “accep- 
tance,” e.g., AMBER or C H A R ”  for all-atom simulations 
of proteins, DREIDING (Mayo et al., 1990) for organics or 
modified proteins, and  the universal force field, UFF  (Rappt 
et al., 1992), for simulations involving tethered metal atoms. 

In addition, one can include various  approximations for in- 
cluding solvent electrostatics, e.g., POLARIS (Lee et al., 1993) 
for structure evaluation based on solvent electrostatics. Collec- 
tively, these features  should allow DPG-MC to be a useful tool 
for  de novo protein structure prediction. 

Optimal DPG-MC parameters 

The choice of S and TMc can influence the  outcome of the con- 
formational search. 

Grid  coarseness, S 
We considered several choices for S, the grid spacing for $, 

4, and X. From  the Met’-enkephalin simulations, it is clear that 
smaller S values (530”) lead to improved convergence. The 60” 
grid spacing is useful for larger structures, allowing a better con- 
formation sampling at this “coarse” level that can then be re- 
fined using the smaller S grid spacings. 

Monte  Carlo  temperature 
A second consideration is the sequence of TMc’s. The initial 

stages  required high TMC to better  sample conformational 
space. This generates a larger percentage of “bad” structures 
(Fig. 2B; Table 1) but also causes the search to  “jump”  to new 

c 

Fig. 7. C, and all-atom representation of optimum 
S3 peptide.  Views of the four superimposed  lowest 
energy  conformer  states (C, traces)  shown  in  Fig- 
ure 5. The  global  minimum  structure  is  shown  in red 
and represented in its  entirety on the  right. Note the 
helical  backbone  structure in the  N-terminus of half 
of the polypeptide molecule. The C-terminal  half of 
the  polypeptide  adopts  a  0-strand-like  structure. Hy- 
drogen atoms have  been  removed for clarity. 
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energy valleys (Fig. 2A, 5,000 K simulation;  Table I ,  note lower 
energy  states  obtained  at T >  300 K). This is followed by incre- 
mental decreases in the TMc as  the  conformations  settle succes- 
sively into  better  energy valleys. This  “annealing”  approach 
(Kawai  et al., 1989; Nayeem et  al., 1991; Shin & Jhon, 1991) ini- 
tially generates  a  larger  variety of  structures. As TMc drops,  the 
best S should  also  drop  to  keep  the  acceptance  rate  high.  This 
focuses the  conformational  search  to  the  better energy  regions. 

Energy evaluation and search efficiency 

As discussed  previously, 1-10 cycles of  Cartesian  minimization 
prior  to  applying  the  Metropolis  criterion lead to lower energy 
minima (Fig. 3). To reduce  the  computational expense,  this can 
be  done with short  nonbond  cutoffs  during  the initial stages 
(high TMc, large S) with increased cutoffs  for  latter  parts of the 
search.  The  accuracy  can  be  increased by applying a smooth- 
ing procedure  such  as  the  optimum  spline switch (Ding et al., 
1992). This  approach  considerably  reduces  the  runtime (J.S. 
Evans, S.I. Chan, & W.A. Goddard I l l ,  manuscript in prep.). 
In the  latter  stages,  larger  nonbond  cutoffs lead to increased 
structural  accuracy  (Schreiber & Steinhauser, 1992). 

PDB database: Limitations and expectations 

Limitations  inherent within any  database method  are: (1) the size 
and comprehensiveness of the  database; (2) the  population  and 
variety of the  secondary  structures;  and (3) biases in the  protein 
folding  patterns within this  sampling. 

We have  opted  for a small, highly refined, minimally over- 
lapping  protein  crystal  structure  subset  as  the basis for  the  di- 
hedral  probability  grids. As shown in the  dihedral  distributions 

I209 

(Fig. 8; Table 2), the (4, 4 )  distribution  from  the r18 data set 
exhibits the following biases: (1) globular  protein  structures pre- 
dominate; (2) certain  polypeptide secondary  structures  (a-helix, 
@-strand)  are highly probable;  and (3) smaller S values ( S O ,  IOo) 
have  non-zero  gridpchts  covering a smaller  percentage of the 
possible conformations. 

With  regard  to  secondary  structure,  the r18 data set is poorly 
represented  in quadrants 111 and IV of  the  Ramachandran  map. 
Therefore,  the  database  may  accurately  generate helical and 
@-strand  segments  de  novo  but  may  fail  to  generate with the 
same accuracy all @-turn structures  (Wilmot & Thornton, 1990), 
as well as  other  “nonstandard”  secondary  structures  (Mat- 
sushima  et  al., 1990; Gerstein & Chothia, 1991). This  bias will 
be  reduced  as  additional highly  refined structures  are  added  to 
the  database. 

These studies of low energy conformational ensembles for  the 
IRP  and S3 peptides (Figs. 5,6,7) reveal that  DPG-MC  can ac- 
curately  predict  the  predominant  secondary  structural  prefer- 
ence (i.e., global  minima) for polypeptides. Thus, this  algorithm 
accounts  for  the residue-specific helical and nonhelical portions 
of  the S3 peptide,  as  determined  from  NMR  data  (Lyu et al., 
1993). More  importantly,  DPG-MC provides  a  means of deter- 
mining  the  conformational  ensemble of low energy structures 
having  internal energies  close to the  global  minima.  Solution- 
state  NMR  spectroscopy  has  shown  that  some peptides are  con- 
formationally flexible  in solution, with significant populations 
of a number of different  conformer  states  (Dyson et al., 1988; 
Wright et  al., 1990; Merutka et al., 1993). The existence of  the 
conformational  ensemble is significant,  particularly in terms of 
antibody-peptide  antigen  structure-function relationships  (Dy- 
son et al., 1988) and  protein  folding processes (Wright et al., 
1990; Merutka et  al., 1993). One  of  the  most  important  factors 
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Table 2. Statistical analysis of (4, $) grid points for the H64 database 

Grid Number of 
spacing,  grid  points, 

". ." " 
" .___ 

S (deg) NS Measurea G ~ Y  Pro r18 

60 
- -~ 

36 Non-zero 30 (83.3%) 10 (27.8%) 33 (91.7%) 
~~~~ . 

p > pa"g 12 (33.3%)  4 ~ 1 1 . 1 ~ 0 )  7  (19.4%) 

p ' pa"8 33  (22.2%) I I (7.6%) 23 (16.0%) 

1s 576 Non-zero 198 (34.4%) 48 (8.3%) 253 (43.9%) 
p > pa"g 127 (22.0%) 48 (8.3%) 78 (13.5%) 

10 1,296 Non-zero 312 (24.1%) 76 (5.9%) 429 (33.1 %) 
p ' pa"g 312 (24.1%) 76 (5.9%) 172 (13.3%) 

5 5,184 Non-zero 593 (1 1.4%) 164 (3.2%) I 1  14 (21.5%) 
p > Pavg 593 (1 1.4%) 164 (3.2%) 630 (12.2%) 

30 144 Non-zero 83 (57.6%) 24 (27.8%) 110 (76.4%) 

" ~~ 

Boundaries 

Quadrant' 4 $ G b  Pro r18 

I Negative  Positive 14.8%  54.4%  47.8% 
I1 Negative  Negative 29.9%  45.6%  49.4% 
I11 Postive  Postive 29.1 To 0.0% 2.4% 
IV Positive  Negative 26.IQl0 0.0%  0.4% 

~ ~- . .. -~ - 

" 
~- ~~ ~ 

~~ ~~ ". .~ . ..___ ~- - -~ 

a Non-zero,  number of non-zero  grid  points (070 of total  number of grid  points); P > Pav8, number of 
grid  points in high-probability  regions  (i.e., P > ( P ) )  (070 of total  grid  points). ' Quadrant of Ramachandran  map. 

in determining  the ensemble is the inclusion of solvation  effects 
(implicit or explicit)  within the  prediction  algorithm.  However, 
we opted  for a  simple screened,  distance-dependent  Coulombic 
potential (4) with = 80, to  approximate  the dielectric prop- 
erties of water.  This  simple  approximation leads to low energy 
peptide  structures for S3  and  IRP  that  agree  with  experimental 
observations  (Johnson et al., 1993; Lyu et al., 1993). However, 
there  are  alternatives  for implicit modeling of solvation  effects 
in DPG-MC.  One  method  includes  the use of  explicit counter- 
ions  (e.g., Na',  C1-) localized near charged  side-chain moieties 
(e.g.,  Glu,  Asp,  His, Lys, Arg). Using the branching algorithm, 
each  counterion  can be considered  the  endpoint of each  branch 
and  therefore will travel  with  its  assigned  side chain  during a  di- 
hedral  displacement step. In fact, this approach has been applied 
to  the  study of lowest energy conformational states for polyelec- 
trolyte  peptides  (i.e.,  Poly-~-(Asp),,,  Poly-~-(PSer),,)  and will 
be presented elsewhere (Evans, 1992; J.S. Evans,  S.I.  Chan, & 
W.A. Goddard 111, manuscript in prep.). 

Although  DPG-MC  exhibits  an  ability  to  locate  global  min- 
ima  structures  for  small  peptides (Figs. 1,  2,  3,4), we have  not 
established  that  DPG-MC will avoid  trapping  into  secondary 
minima  for  larger  structures  such  as  proteins.  However, for 
larger  systems,  DPG-MC  can  be used as  part  of  an  overall hi- 
erarchical  protein  structure  refinement  scheme  (Mathiowetz, 
1992): (1) initially virtual  bond C, structures  are  generated by 
a lattice  search  algorithm; (2) the  all-atom  structure is recon- 
structed  from  the  virtual  bond  representation,  and  the  confor- 
mation is refined by the  DPG-MC  program; (3) finally,  the 
all-atom structure is subjected to molecular  dynamics  refinement 
and/or minimization (Mathiowetz, 1992). This  approach is cur- 
rently being  used for a number  of  systems. 

Biased probability Monte Carlo (BP-MC) 

While  preparing  this  manuscript,  the  biased  probability  Monte 
Carlo  (BP-MC)  method  appeared in the  literature  (Abagyan & 
Totrov, 1994). This  method is similar to  DPG-MC. It utilizes 
a dihedral  Brookhaven  protein  database,  nonlocal  step  proce- 
dures,  and  an  optimal probability  distribution function (Abagyan 
& Totrov, 1994). The  BP-MC  method  randomly selects the sub- 
space  first,  then  makes a step  to a new random  position  inde- 
pendent  of the previous  position but according to  the predefined 
continuous probability distribution.  (Compared with DPG-MC, 
the  BP-MC utilizes a  larger and  somewhat lower resolution data 
set for  determining  the (4, IC.) distribution.) It uses 191 total 
structures  (rather  than  64),  allows a resolution  up  to  2.4 A 
(rather  than 2.0 A), and includes 35%  sequence  overlap  (rather 
than  25%). For side-chain  angles,  it  includes 161 total  structures 
with resolution 5 2  A and 50% sequence  overlap. 

The  BP-MC  method was applied to the  de  novo  prediction 
of all-helical and  nonhelical  peptides,  but  was  not tested for its 
ability  to  accurately  predict  0-strand or 0-turn  structures,  nor 
for  sequences  that  feature a mixture  of  secondary  structures. 

Computational details 

Selection of the protein database and creation 
of the dihedral probability grids 
In  order  to generate  a set of  dihedral  probabilities representing 

a diverse  sampling  of  accurately  known  protein  structures, we 
considered  the 503 proteins in the  PDB with resolution 5 1.5 A ,  
or with resolution s2 .0  A and  R-factors <20%. 
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Using  the  “align”  program  (Pearson, 1990), we conducted 
pairwise  sequence comparisons  and eliminated any  protein hav- 
ing  greater  than  25%  sequence  homology with another  protein 
of higher  resolution.  This  resulted  in a data set consisting  of  64 
proteins  (termed  H64)  (Table 3). 

We next analyzed  the 4, $, and x dihedral angles for  each  of 
the 20 amino  acids in each  protein  structure  of  the  H64  data set. 
For  each  amino  acid, a  grid is constructed  as  an  N-dimensional 
matrix, where N is the  number of dihedrals  involved.  For ex- 
ample,  backbone sampling involves two-dimensional grids,  and 
each  point  on  the  grid  represents  the  probability  of  choosing a 
particular (4, $) pair.  The grids  were constructed with spacings 
of S = 5 ,  10, 15,  30, or 60”. The  probabilities  for  each  point  on 
the  grid were  derived by partitioning every (4, $) pair  and x 
from  the  H64 set into  S-degree bins. The  probabilities, P ,  were 
normalized  such  that: 

where 4i = is and $, = jS .  We constructed  separate  backbone 
(4, $) probability  grids for each amino acid.  However, we found 
that it is sufficient to  use individual  grids  for  the  three  major 
residue types: ( I )  glycine (G),  no  side  chain; (2) proline  (P), 
whose  side  chain  forms a closed loop  with  the  backbone;  and 
(3) r18, or the  remaining 18 “standard”  amino  acids. 

As an  example,  the (6, $) probability  distributions  for  the 
three  amino  acid  types,  are given  in Figure 8 for S = 30’. The 
boundary  regions  of  this  grid  are less smooth  than  for  the  finer 
S = 5” and IO” grid  spacings  (Mathiowetz, 1992); however, we 
found  that S = 30”  leads to  broader  spanning of conformational 
space  than  the  finer  grids.  The (6, $) grids  are  substantially 
different  for  Pro,  Gly,  and r18 (Fig. 8; Table 2 ) .  Gly has 
high-probability  conformations in all four  quadrants of the 
Ramachandran plot  because there is no R group  to sterically re- 
strict  conformations  (Table 2 ) .  Pro, in contrast,  has few high- 
probability (4, $) grid  points  and is centered in two  quadrants 
of the  Ramachandran  map  due  to  the  geometrical  constraints 
of  the  imine ring (Table 2; Fig. 8); note  the 4 angle  restriction 
near -60” in Figure 8. The r18 data  points lead to  a very nar- 
row  distribution in the  high-probability  a-helical region and a 
broad, low-probability  distribution in the &sheet region (Fig. 8). 
However,  the &sheet quadrant, I, has nearly the  same overaN 
probability  as  the  a-helix  quadrant, 11 (Table 2 ) .  

Side-chain  probability  grids, x, were constructed  for  each 
amino  acid side chain. We did  not  consider  dihedral angles that 
affect  only hydrogen  positions or those involved  in  rings (except 
Pro).  The  number  of x dihedrals (N,) under  consideration is 
small: N, = 0 for  Ala  and  Gly; N, = 2 for  His,  Tyr,  Trp,  and 
Phe  (Table 4). Although  Pro is a ring structure, we allow xI  to  
vary while holding  the  C6  atom fixed. This  enables  reasonable 
conformations of x,-x4 to  be  sampled by modifying  only  the 
single  dihedral, x l .  We determined  the  occurrence  of  each 
amino  acid  and  the  total  number  of  grid  points  at  each S level, 
along with the x distribution  and  the  number  of  populated grid 
points  for  amino  acids  that possess significant x I  and xZ dihe- 
drals  (Table  4; Fig. 9,  for S = 30”).  It is difficult  to  display  the 
higher  dimensional  grids  for  Arg,  Met,  Gln,  Glu,  and Lys  in 
their  entirety. It is evident that  conformational variability  (i.e., 
the  number  of possible conformations)  increases  as a function 

of N, (Table  4;  note  populated  grid  points  for  Lys, Arg, Glu, 
and  Gln).  The x distributions,  particularly  for x1 and xz, ex- 
hibit  significant  variations  from  amino  acid to  amino acid 
(Fig.  9),  and  many (xl ,   x2)  conformations  for a  given side 
chain  have  similar  probabilities. 

The Monte Cad0 method 
A diagrammatic  representation  of  the  DPG-MC  algorithm is 

given  in Figure  10.  Briefly,  the  conformations  of a polypeptide 
are  generated by (1) randomly selecting  a  residue, (2) randomly 
choosing which dihedral  to  alter ((4, $) pair, or x), and  then 
(3) obtaining  the  corresponding  dihedral  value  from  the  amino 
acid-specific  probability  grid. 

In DPG-MC we do  not  currently  alter  the value of w (this 
could be included). Because Pro forms a closed loop with the 
backbone,  the  imine #I remains fixed during  the  DPG-MC sim- 
ulation.  Next, (4) the energy of  the new structure is evaluated 
and  compared  to the  previous structure. If the energy of the new 
structure is lower, it  is saved  and used as the  starting  point  for 
the next torsional  motion. If the new structure is not lower in 
energy,  then it is accepted with  a probability of 

where kB is the  Boltzmann  constant  and TMc is the  simulation 
temperature  (Metropolis et al., 1953). A  high TMc creates a 
large  number  of  “bad”  structures but also  provides  alternative 
“paths”  that  may  eventually lead to lower  energy minima. ( 5 )  
Minimization in Cartesian  coordinate  space  (e.g., steepest de- 
scents, conjugate-gradient, Fletcher-Powell) may be performed 
following  the  conformational selection but  prior  to  Metropolis 
sampling. We used the  DREIDING  force field (Mayo et al., 
1990), which yields excellent results for  structural minimization; 
however,  other  force fields, i.e.,  AMBER (Weiner et al., 1986), 
CHARMM  (Brooks et al., 1983), MM3 (Lii & Allinger, 1991), 
and  UFF  (Rappe et al., 1992), can be utilized as well. 

The  DPG-MC  program relies on a “branching”  algorithm 
(Abe et al., 1984) to  define  torsion angles of side  chains  in terms 
of a set of connected atoms  that  “branches” off of the backbone. 
All torques occur at  branch  points.  An  additional benefit  of the 
branch  algorithm is the ability to  model  counterions or other  at- 
oms/molecules  at  side-chain  sites,  where  the  algorithm  counts 
these counterions as part of the side-chain “branch.” Hence, the 
counterions  move  with  the  side  chain  as  the  dihedrals  are 
changed (it will not  be  “orphaned”). 

Procedure for  the determination of polypeptide 
conformational minima 
All calculations  presented here were performed using  a mod- 

ified  version  of BIOGRAF  (Molecular  Simulations,  Inc., 1992) 
running  on Silicon Graphics  workstations  (models 4D/380, 
4D/35,  4D/25,  and  Indigo XZ were  used). Most  simulations 
used the  DREIDING  force field (Mayo  et  al., 1990), but  the 
AMBER  force field  (Weiner  et a]., 1986) was  used for  some 
comparisons. 

To determine the  performance  parameters of the Monte  Carlo 
program, we utilized the five-residue peptide Met’-enkephalin, 
which has been  used as a benchmark  molecule  for  theoretical 
simulations of  polypeptide conformation  (Lambert & Scheraga, 
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Table 3. H64 set of Brookhaven protein crystal structuresa 
" 

PDB 

lAMT 
1BP2 
1 CRN 
lCSC 
lCSE 
1 CTF 
lECA 
1  FB4 
l G D l  
lGMA 
l G P l  
l H O E  
l l l B  
1L19 
l L Z l  
1 MBA 
lMBD 
lNXB 
1 PAZ 
1 PCY 
1 PPT 
l T H B  
1 UBQ 
1 UTG 
IXY 1 
256B 
2AZA 
2CA2 
2CCY 
2CDV 
2CCP 
2CY  P 
2ER7 
2GBP 
2LTN 
2MHR 
2MLT 
2 0 v o  
2RSP 
2SGA 
2SNS 
2WRP 
3B5C 
3BCL 
3BLM 
3CLA 
3DFR 
3GRS 
3RNT 
451C 
4CPV 
4FD 1 
4FXN 
4INS 
4PTP 
5CPA 
5CYT 
5PTI 
5RXN 
5TNC 
6TMN 
7RSA 
9PAP 
9WGA 

Protein 
" 

Alamethicin (Trichoderma) 
Phospholipase  A2  (bovine) 
Crambin  (Abyssinian  cabbage) 
Citrate  synthetase  (chicken) 
Subtilisin (Bacillus  subtilis) 
L 12 50s ribosomal (Escherichia coli) 
Hb  erythocruori (Chironomus) 
IgG  FAB  (human) 
D-Glyceraldehyde  dehydrogenase 
Gramicidin  A 
Glutathione  peroxidase  (bovine) 
a-Amylase  inhibitor (Streptomyces) 
Interleukin-lb  (human) 
Lysozyme  (bacteriophage  T) 
Lysozyme  (human) 
Metmyoglobin  (sea  hare) 
Deoxymyoglobin  (sperm  whale) 
Neurotoxin  (sea  snake) 
Pseudoazurinox (Alcaligenes) 
Plastocyanin  Cu(I1) (P. populus) 
Avian  pancreatic  polypeptide 
Hb, T-state  (human) 
Ubiquitin  (human) 
Uteroglobin,, (rabbit) 
(3-Mercaptoproprionate 
Cyt,, b562 (E. coli) 
Azurin,, (Alcaligenes) 
Carbonic  anhydrase  (human) 
Cyt c' (Rhodospirillum) 
Cyt cj (Desulfovibrio) 
Cyt P,so (Pseudomonas) 
Cyt c peroxidase  (yeast) 
E  aspartic  protein  (chestnut  blight) 
D-Gal/D-Gh  binding (E. coli) 
Pea  lectin  (garden  pea) 
Myohemerythrin  (sipunculan  worm) 
Mellitin  (honey bee) 
Ovomucoid  3rd  domain  (pheasant) 
Rous  sarcoma  virus  protease 
Proteinase  A  component (Streptomyces) 
Staphylococcal  nuclease (Staphylococcus) 
Trp repressor (E. coli) 
Cyt,, bS (bovine) 
Bacteriochlorophyll  A  protein 
0-Lactamase (Staphylococcus) 
Type I11 chloramphenicol  binding  protein (E.  coli) 
Dihydrofolate  reductase (Lactobacillus) 
Glutathione  reductase  (human) 
Lys 25  ribonuclease  T1 (Aspergillus) 
CYtred CSs1 (Pseudomonas) 
Parvalbumin  (Ca2+)  (carp) 
Ferredoxin (Azotobacter) 
Flavodoxin (Clostridium) 
Insulin  (porcine) 
&Trypsin  (diisopropyl-)  (bovine) 
Carboxypeptidase-a  (bovine) 

Trypsin  inhibitor  (bovine) 
Rubredoxin,,  (Clostridium) 
Troponin C (avian) 
Thermolysin (Bacillus thermophilus) 
Ribonuclease  A  (bovine) 
Papain  (papaya) 
Agglutinin  (wheat  germ) 

Cyt cred (tuna) 

Resolution 
(A) 

1.5 
1.7 
1.5 
1.7 
1.7 
1.2 
1.4 
1.9 
1.8 
0.86 
2.0 
2.0 
2.0 
1.7 
I .5 
I .6 
1.4 
1.38 
1.55 
1.6 
1.37 
1.5 
1.8 
1.34 
1.04 
1.4 
1.8 
1.9 
1.67 
1.8 
1.63 
1.7 
1.6 
1.9 
1.7 
1.7 
2.0 
1.5 
2.0 
1.5 
1.5 
1.65 
1.5 
1.9 
2.0 
1.75 
1.7 
1.9 
1.8 
1.6 
1.5 
1.9 
1.8 
1.5 
1.34 
1.54 
1.5 
1 .o 
1.20 
2.0 
1.6 
1.26 
1.65 
1.8 
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" .. ~. - ~ 

R 

0.155 
0.171 
N/A 
0.188 
0.188 
0.178 
0.136 
0.189 
0.177 
0.071 
0.171 
0.199 
0.189 
0.153 
0.177 
0.193 
N/A 
N/A 
0.180 
0.170 
N/A 

0.196 
0.176 
0.230 
0.088 
0.164 
0.157 
0.176 
0.188 
0.176 
0.190 
0.202 
0. I42 
0. I46 
0.177 
0.158 
0.198 
0.199 
0.144 
0.126 
N/A 
0.180 
0.160 
0.189 
0.164 
0.157 
0.152 
0.186 
0.137 
0.187 
0.215 
0.192 
0.200 
0.153 
0.171 
N/A 
0.171 
0.200 
0.115 
0.155 
0.171 
0.15 
0.161 
0.175 

~ ~ ~~~ 

"~ 
" 

a Standard  PDB  abbreviations  are  used. R ,  R-factor,  expressed  as  decimal;  N/A,  not  available;  ox,  oxidized  form;  red,  reduced  form. 
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Fig. 9. A: xI Probability histogram for the H64 DPB data set using S = 30". 
R: (xl, x*) probability contour plot for the H64  PDB data  set using S = 30". Higher 
probability regions are denoted by increasing gray scale values; regions that are  un- 
populated are indicated in white (see legend). 
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1989; Nayeem et al., 1991; Dorofeyev & Mazur, 1993). The Single-temperature Monte  Carlo simulations were conducted at 
small size of  Met5-enkephalin (22 dihedral  angles, 75 total  at- 0, 300, 1,000. 3,000, 5,000, and 10.000 K ,  using 2 X lo5 
oms) permits rapid energy evaluation,  and  thus we can  track  the stepshun.  Grid  spacings  of 5 ,  10,  30, and 60" were utilized in 
DPG-MC simulation  over a large number of  steps and  numerous parallel  runs; we found little  difference between the 10' and 15' 
runs  without  requiring excessive time  to  complete  each  run. grid  simulations. In order  to  determine  the effect of Monte  Carlo 
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Table 4.  Populated grid points  for side-chain dihedrals, X 

Residue"  Occurrenceb N4' 120"  60" 30" 15" 10" 5" 

Arg 43 8 5 116 195 322 421 429 436 
Asn 634 2 9 28 82 198 282 465 
ASP 728 2 9 31 84 200 296 485 
CYS 283 1 3 4 10 15  21  34 
Gln 409 3 24 83 312 331 331 404 
Glu 699 3 26 116 200 528 528 688 
His 317 2 9 27 66 125 170 253 
Ile 603 2 8 23 56 89 134 238 
Leu 1,025 2 9 27 67 135 191 343 
LYS 858 4 67 288 580 775 834 858 
Met 24 1 3 20 54 120 185 218 240 
Phe 49 1 2 8 23 51 119 175 318 
Pro 568 1 2 3 5 9 1 3 2 2  
Ser 925 1 3 6 12 24 35 70 
Thr 791 1 3 6 12 23 32 54 
TrP 179 2 8 19 39 73 98 141 
Tyr 453 2 9 22 52 107 172 294 
Val 99 1 1 3 6 12 23 30 51 

.~ 
" . .  . ~ 

a N4 = 0 for Gly and  Ala. 
Number of occurrences of each  residue  in  the H64 data  set. For 

each S value,  the  number  of grid points with a  population  non-zero  grid 
points is given. 

Number  of $ dihedrals. 

Parent  Structure 

with  minimization,  some  runs  featured N steps of conjugate- 
gradient  minimization (where N = 1 or 10) after  each  dihedral 
torque  but  prior  to  Metropolis  sampling.  The  Met5-enkephalin 
polypeptide  was  constructed  in  the  CX-NH:/WCOO~  form 
using the  peptide  builder  function within BIOGRAF.  The ini- 
tial  starting  structure  was set in the  all-extended  conformation 
((6, 3.) = -180"; x = 60"). The net charge of the  peptide (Qne,) 
was set to 0.000 and  charge  equilibration was performed using 
Charge  Equilibration  (QEq)  (Rappe & Goddard, 1991). The 
structures were then minimized to  convergence using 10 steps 
of steepest descents followed by conjugate-gradient  minimization 
(RMS  force < 0.1, at  300 K) (Kini & Evans, 1991). These  mini- 
mized structures were then  input  into  the  DPG-MC  simulations. 
At  the  end  of each DPG-MC  simulation,  the lowest energy  min- 
ima  structure was subjected  to  minimization in Cartesian  coor- 
dinate  space using 10 steps  of  steepest-descents  minimization, 
followed by conjugate-gradient  minimization  to  convergence 
(RMS force < 0.1, 300 K). For both  DPG-MC  and  minimiza- 
tion  runs, a  dielectric (eo) of 1 was utilized. 

For the  IRP  and S3 peptides,  the  procedure was identical  to 
that  described  for  Met5-enkephalin, except that a larger  num- 
ber of Monte  Carlo  steps was utilized  per simulation  run (3 x 
lo5 stepshun,  eight  total  runs  for  YGRGDSP; 1 X lo6 
steps/run, eight total  runs  for S3), a  grid  spacing of 5" was used 
exclusively, and  one  step  of  conjugate-gradient  minimization 
was performed  at  each  step  of  the  DPG-MC  run.  Asp  and  Glu 

Residue selection 

Y 

Obtain dihedral value from grid 

Grid 

If Enw > E,loa and P < 
random number,  then 
discard and return  to 
previous  structure Evaluate Energy (Enew) a If Enw < or if Enw > 

Esloa and P > random 
number,  then  save and 
use  as new  starting 
structure 

New Structure 

Fig. 10. Schematic  representation of the  DPG-MC  algorithm. A local move in conformational  space begins (upper  left)  by  start- 
ing  from  a  random  point on the  polypeptide,  where  an  internal  coordinate ((+, $) pair, or x,) is identified.  The  amino  acid 
at  this  position is identified  and  a  dihedral  value is obtained  from  the  corresponding H64 data set grid  (upper  right).  The new 
dihedral  value is applied  to  the  structure,  and  the  internal  energy is computed  (center).  This  energy is compared  to  the  starting 
conformer  energy  (bottom).  Metropolis  sampling is utilized to save or reject  the  structure.  This  continues  to  the  upper  left. 
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residues were represented  as  deprotonated, negatively charged 
species; Lys and  Arg  as  protonated, positively charged species; 
and  His  as a neutral species (assuming pH > 7.0). Both  termini 
were represented  as  charged species as  per  Met5-enkephalin. 
Qnet for  IRP  and  S3 were equilibrated  to 0.000 and - 1 .OOO, re- 
spectively.  Because the  structures  of  IRP  and  S3 were deter- 
mined in solution  using  NMR  spectroscopy  (Johnson  et  al., 
1993;  Lyu  et al., 1993), we included  the  electrostatic screening 
effects in the  Monte  Carlo  simulation.  The use of explicit sol- 
vent molecules leads to  more  accurate simulations  of  protein and 
peptide structures (Steinbach et al., 1991; Smith & Pettitt, 1992; 
Collura et al., 1994). However,  the  computational  cost  for  such 
simulations is prohibitive.  Implicit approaches  to modeling the 
electrostatic  effects of solvent  on  charged  polypeptides  use 
distance-dependent  Coulombic  potentials  in  conjunction with 
an  optimal  value  for  the dielectric constant, t (Fersht & Stern- 
berg, 1989; Naylor & Goddard, 1989; Mehler & Solmajer, 1991; 
Moult, 1992; Arnold & Ornstein, 1994; Collura et al., 1994). 

To implicitly simulate  the  electrostatic  effects  of solvent en- 
vironment  on  peptide  conformation, we utilized the screened 
distance-dependent  Coulombic  potential, E ,  (Mayo et al.,  
1990): 

where 

= COR,,, (4) 

Qi and Q, are  the  charges (in electron  units)  for  atoms i and j ,  
R,, is the  distance in angstroms, is the dielectric constant,  and 
the  constant 332.0637 converts  units so that  the energy is in 
k c a l h o l .  This  should yield a good  first  approximation  for 
short-range side-chain-side-chain  electrostatic interactions (i.e., 
9.0 A or less) (Fersht & Sternberg, 1989; Mehler & Solmajer, 
1991) while permitting  long-range  electrostatic  interactions. To 
mimic  solvation  effects  on  the  optimum  geometry  of IRP  and 
S3, we utilized c 0  = 80, which approximates  the dielectric of 
water  (Arnold & Ornstein, 1994; Collura et al., 1994). Electro- 
static (E,) and  van  der Waals (vdW)  nonbonding  potentials 
were evaluated  (without  cutoffs)  at  each  step of the  DPG-MC 
simulation  and  during  the  Cartesian  minimizations. 
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