
Protein Science (1995), 4:1587-1595. Cambridge University Press. Printed in the USA.
Copyright 0 1995 The Protein Society

Finding flexible patterns in unaligned
protein sequences

INGE JONASSEN,' JOHN E COLLINS,2 AND DESMOND G. HIGGINS3
' Department of Informatics, University of Bergen, HIB, N5020 Bergen, Norway
* Biocomputing Research Unit, ICMB, Darwin Building, King's Buildings, Mayfield Road,

Edinburgh EH9 3JR, United Kingdom
European Bioinformatics Institute, Hinxton Hall, Hinxton, Cambridge CBlO IRQ, United Kingdom

(RECEIVED March 16, 1995; ACCEPTED May 23, 1995)

Abstract

We present a new method for the identification of conserved patterns in a set of unaligned related protein sequences.
It is able to discover patterns of a quite general form, allowing for both ambiguous positions and for variable
length wildcard regions. It allows the user to define a class of patterns (e.g., the degree of ambiguity allowed and
the length and number of gaps), and the method is then guaranteed to find the conserved patterns in this class
scoring highest according to a significance measure defined. Identified patterns may be refined using one of two
new algorithms. We present a new (nonstatistical) significance measure for flexible patterns. The method is shown
to recover known motifs for PROSITE families and is also applied to some recently described families from the
literature.

Keywords: algorithm; flexible gaps; patterns; protein families; PROSITE

A common problem in protein sequence analysis is to search for
common sequence patterns or motifs in groups of functionally
related proteins. Such patterns may be the result of common an-
cestry combined with conservative evolutionary pressure to
maintain important residues at active sites and other function-
ally important parts of the protein. It is not always possible to
identify conserved patterns in protein families. When they d o
occur, however, they can be very simple and useful tools in help-
ing to identify new members of the families and in trying to un-
derstand the relationship between sequence, structure, and
function.

One situation where the identification of shared patterns is
of great practical importance is where one has a set of function-
ally related sequences and one wishes to know if the common
function is reflected in the sequences. This can be tested by at-
tempting to align the sequences and looking for any conserved
blocks of alignment, e.g., bacterial and bacteriophage DNA
binding proteins of the lambda repressor family will show a con-
served block of 22 amino acids corresponding to the helix-turn-
helix DNA binding domain (Dodd & Egan, 1990). This works
well when the sequences are easy to align. In some cases, how-
ever, the alignment is very difficult to obtain or evaluate. The
conserved regions may be very short or repeated within the pro-
teins. An alternative is to take the unaligned sequences and use
a pattern searching program to look for conserved patterns.
~~~ 

Reprint  requests to: Inge Jonassen, Department of Informatics, Uni- 
versity of Bergen, HIB, N5020 Bergen, Norway; e-mail: inge.jonassen@ 
ii.uib.no. 

Such  patterns  show  up  as exactly or highly conserved  positions 
separated by fixed or variable  spacing. 

A second  practical use of  patterns is to  find  diagnostic signa- 
tures  for families. This is well illustrated by the  PROSITE  data- 
base  of  protein patterns (Bairoch & Bucher, 1994). Here,  groups 
of  functionally  and  evolutionarily  related  proteins  are listed 
along with patterns  that  can be used to  distinguish  each  family 
from all (or most)  other sequences  in the  SWISS-PROT  protein 
sequence  database  (Bairoch & Boeckmann, 1992). These  pat- 
terns  are  extremely  fast  and  simple  to  use in order  to  identify 
new members  of the families. The diagnostic  power  of  each pat- 
tern  can  be assessed readily by the  numbers  of false-positive and 
false-negative  examples found by the  pattern  (the  number of se- 
quences  that  contain  the  pattern  that  are  not  members of the 
family and  the  number of sequences that  do  not  contain  the  pat- 
tern  but which are  members  of  the  family, respectively). These 
numbers  and  the  corresponding  SWISS-PROT  sequence  iden- 
tifiers are listed for  each  pattern in PROSITE.  Currently, these 
patterns  are  extracted  semimanually. 

There  are several computer  programs  available  for  identify- 
ing conserved  patterns  in sets  of unaligned  sequences. All have 
disadvantages.  In  this  paper, we describe  some  improvements 
on  the  available  methods  that allow more biologically  realistic 
patterns  to  be  identified.  Ideally,  one  would like to  use a mea- 
sure  of  pattern significance (nonrandomness)  and  to select the 
most  significant  patterns  from  the  sequences,  allowing  for  am- 
biguity at  each  position  and  variable  spacing between all of  the 
elements.  Computationally,  this is a very difficult  problem  as 
the  number  of possible patterns  to  search  for  (and  examine  for 

1587 



1588 

significance) is enormous.  Further,  the estimation  of significance 
for very general  patterns in protein  sequences is still an  open 
problem. 

All of  the existing methods  impose  some  constraint  on  the 
type  of  patterns  that  can be found.  The  simplest  constraint is 
to  look  for  short  conserved  words  or  k-tuples,  for  example 
(Ogiwara et al., 1992; Saqi & Sternberg, 1994;  Wang et al., 
1994). A conserved  word is a consecutive series of,  say,  three 
to five conserved residues. This is algorithmically simple because 
one  can  generate a table of all occurring  words in advance.  It 
is then a relatively simple  matter  to  search  this  table  for  words 
occurring in all  of  the  sequences.  Conserved  words  can  then  be 
joined by flexible regions  (variable spacing) to  make larger and 
more  interesting  patterns  (Ogiwara  et  al., 1992; Wang et al., 
1994). Ambiguity  can  be  introduced by searching  for  all  words 
that  are within some preset number  of  differences  (either  sub- 
stitutions or insertions  and  deletions)  from  each  other  (Wang 
et  al., 1994). This  can  be  fast  and simple to  do  but  only  works 
when there  are  some  conserved (or largely conserved)  words to  
begin with.  Patterns  composed of isolated conserved  residues 
separated by totally  ambiguous  positions  are  hard  to  find. 

A second  approach is to  look  for  small  numbers (e.g., 3) of  
exactly or highly conserved  positions,  separated by short fixed 
spacing.  This was first  done by Smith et al. (1990) and was  used 
to provide the initial  conserved  segments for  the BLOCKS data- 
base  of  conserved  sequence  blocks (Henikoff & Henikoff, 1991). 
Here,  one  make a table of al l  triplets of  conserved  residues with 
all  spacings between the  residues  up  to a preset  maximum.  The 
algorithm  of  Neuwald  and  Green (1994) allows for  any  number 
of fixed positions and fixed spacings between them up to  a max- 
imum  total  pattern length that is set by the user. This  algorithm 
combines a significance  measure  for  patterns  and a depth  first 
search strategy  with a data  structure  (the  “block”  data  structure) 
that  allows  one  to  quickly  check  the  occurrences of any  poten- 
tial  pattern.  This  method is fast  and usually guaranteed  to  find 
any  patterns over a significance  threshold.  The  algorithm  does 
allow for very limited ambiguity at  some of the  pattern positions 
(e.g., the  most  common  conserved  substitutions)  but  does  not 
allow  for  variable length spacing between the  main  pattern 
elements. 

In this  paper, we describe some  improvements  to  the  method 
of  Neuwald  and  Green  that  allow  for  greater  ambiguity  at  par- 
tially conserved pattern positions and  that allow for limited vari- 
able  spacing between pattern  elements. Biologically, variable 
spacing is important,  because even in well-conserved regions, 
variable loop sizes can  occur.  This allows one  to quickly and  au- 
tomatically  generate  patterns  from  unaligned  sets of protein se- 
quences  that  are very similar to those used  in the  PROSITE 
database.  It is still not possible to  search  for  totally  general  pat- 
terns in reasonable  time,  but  the  improvements  described  here 
are  significant  improvements  over existing methods. We dem- 
onstrate  the usefulness of the  software with some examples from 
PROSITE  and with some recently published examples from  the 
literature. 

Results 

The Pratt  program 

We have  developed a program called Pratt  that, given a set of  
unaligned  protein  sequences,  finds  patterns  matching a mini- 

I. Jonassen et al. 

mum  number of these  sequences.  The user  specifies the  min- 
imum  number  of  sequences  to be matched  and  the class of 
pattern  to  be  searched  for. We describe  the  Pratt  program  and 
then give results of  running  the  program on  some test  cases. We 
adopt  PROSITE (Bairoch & Bucher, 1994) notation  for describ- 
ing patterns.  For  example  D-x(2,3)-[DE] is a pattern  matching 
four-  and five-segments starting  with D and  ending with D or 
E.  The  middle  part  of  the  pattern  matches  any  two or three 
amino  acids  and is called a wildcard  region. We say that a pat- 
tern  matches a sequence if it matches a segment  from  the se- 
quence.  PROSITE is a collection of  such  patterns,  containing 
approximately 1 ,OOO entries  most  of which contain a pattern  (not 
always perfectly) diagnostic  for a family  of  protein  sequences. 

The  program  accepts  sequences  in FASTA (Pearson & Lip- 
man, 1988), SWISS-PROT  (Bairoch & Boeckmann, 1992), and 
GCG  (Devereux  et  al., 1984) formats.  The  opening  menu is 
shown in  Figure 1. The  parameters  and their meaning will be de- 
scribed  below,  and  the  algorithmic  details  of  how  the  param- 
eters  affect the working of Pratt  are  described in the  Methods 
section. 

Pratt  first  searches  the  space of patterns,  as  constrained by 
the  user,  and  compiles a list of the  most  significant  patterns 
(according to our  nonstatistical  significance  measure)  found  to 
be  matching  at least the  user-defined  minimum  number of se- 
quences. If the user has  not switched off  the  refinement  (option 
R on  the  menu),  these  patterns will be  input  to  one of the  pat- 
tern  refinement  algorithms.  The  most significant patterns re- 
sulting  from  this  are  then  output  to a file. An overview of  the 
algorithm is given in  Figure 2. 

Menu : 
””. 

241 sequences 

M:  Min.  number of sequences 241 

B: nr of symbols in  Block  structure 20 
S: nr  of symbols in  first  Search 20 

R: Refinement 
u :  full refinement off 

on 

I: minimum  Info  contents 10.0 

N: max  Number of flexibilities 2 
F: max  Flexibility 2 
P: max  flex Product 10 
Y: restricted  flexibility on 

W:  max  Wildcard length 
L: max  Length 
c: max  num of Components 

H: max length Hit llst 
A:  max number Alignments 

15  
5 0  
10 

5 0 0  
50  

0 :  filename Output  Patterns zc2h2.241.pat 

X: execute  Program 
Q: Quit 

Command : 

Fig. 1. Pratt’s menu, when  run on a file containing 241 sequences in  the 
ZINC FINGER C2H2 PROSITE family, showing default parameters. 
The minimum number of sequences is, by default, the number of se- 
quences in the set given, and the file name for the output is, by default, 
the input file  name appended with the minimum number of sequences 
and the extension  pat. Other parameters are described in the Results 
section. 



Finding flexible  patterns in unaligned protein sequences 1589 

Unaligned sequences 

I Block data structure I 

Search of pattern 
space 

List of significant 
patterns 

Guaranteed Fast, greedy 
refinement refinement 

List of significant 

Fig. 2. Outline of program structure. Pratt reads sequences into mem- 
ory and then allows the  user to set  parameters controlling Pratt’s behav- 
ior using  the menu in  Figure 1 .  Pratt constructs the  internal data structure 
to be used during the search and then searches the space of patterns (as 
restricted  by the user). The most significant patterns found to be match- 
ing  the minimum number of sequences (as specified by  the user) are  input 
to a refinement algorithm.  The user has the choice between two  differ- 
ent refinement methods. 

Terminology 

Using  PROSITE  notation  to  describe  patterns, a pattern P in 
the class considered  can be written  as 

P = A l - ~ ( i l , j l ) - ~ ~ - x ( i 2 , j 2 ) -  . . .-  x(i,-,,j~-,)-~, (1) 

where A I ,  , . . , A,  are  nonempty sets of  amino  acids,  and i ,  I; ,  , 
i2 I j 2 ,  . . . , ip - l  I j P - ,  are  integers. We call A A2, . . . , A, 
the  components  of P, s o p  is the  number  of  components in P .  
A, is called an identity  component if it  represents  one  amino 
acid  and  an  ambiguous  component if it represents  more  than 

one.  For  example, if P is D-x(2)-E, A I  is the set consisting of 
amino  acid D, i ,  = j ,  = 2,  and A2 is the set consisting of  amino 
acid E, and  the  number  of  components is p = 2. A wildcard 
region x ( i k , j k )  is  fixed if i, = j ,  and  hence  matches exactly ik 
amino  acids  in a sequence. A fixed wildcard region matching 
any ik amino  acids  can  also  be  written x (  i k ) .  If j ,  > i k ,  we call 
x ( i k ,  j , )  a variable  or flexible wildcard  region,  matching be- 
tween ik and j k  amino  acids  in a sequence. w e  call j ,  - ik the 
flexibility of  the  region.  For  example  x(2,3)  and x(8,9) have a 
flexibility of 1,  and x(2,4) has a flexibility of 2. A fixed pattern 
is a pattern containing only fixed wildcard regions; a flexible pat- 
tern  may  contain  one  or several  flexible wildcard  regions.  The 
length L(  P) of a pattern P i s  the  maximum length  of  a  sequence 
segment matching P. The length of D-x(2)-E is 4 and the  length 
of P i n  (Equation 1) is L ( P )  = p  + j ,  + j 2  + . . . + j , - , .  The 
product  of flexibilities for  the  pattern P above is defined  as 
( j ,  - i l  + I)(;, - i2 + 1) . . . ( j P - ,  - iP-, + 1). For  example,  the 
product of flexibilities for D-x(2,3)-E-x(2,4)-F is (3 - 2 + 1) x 
(4 - 2 + 1) = 6 .  This  quantity is used for restricting the  mem- 
ory  and  time used by the  algorithm (see Methods section). 

SpecifVing the class of patterns to be searched 

Pratt  has  parameters defining maximum values for many  of the 
quantities  described  above.  The  menu,  shown in Figure 1 with 
default  values,  allows  the user to  change  these.  This  allows  the 
user to restrict the class  of patterns  to  be  searched  for.  The less 
restrictive the limits are,  the  more  subtle  the  patterns  that  can 
be  found.  However,  more  memory  and  time will be needed (see 
Methods  section  for  more  details). 

The user can  change  the  maximum  length of patterns  to  be 
searched  for  (option L), the  maximum  number of components 
in a pattern  (option C ) ,  and  the  maximum  length of  a wildcard 
region (option W).  The user can  also change the maximum num- 
ber of flexible  wildcard  regions (option N), the  maximum flex- 
ibility of a wildcard  region  (option F), and  the  maximum 
product of the flexibilities (option  P).  The  option Y allows  the 
user to  avoid searching for  patterns having two consecutive flex- 
ible wildcard regions.  Setting  the  maximum  number of flexible 
wildcard  regions to  0, the user instructs  Pratt  only  to look for 
fixed patterns. We examined the  patterns in PROSITE  to get an 
idea of what  kind  of flexibility we should  allow. We identified 
all variable length  wildcard  regions in patterns  in  PROSITE,  of 
the  form x ( i , j ) ,  having  flexibilityj - i. Figure 3 shows  the  dis- 
tribution of flexibilities found in PROSITE Release 12.0 (Oc- 
tober 1994). This  shows  that most (85%) of  the flexibilities were 
1 or 2. Pratt easily deals with this kind  of flexibility.  Using op- 
tion M the user can  also  change  the  minimum  number  of se- 
quences  that  patterns  should  match 

The  search  for  patterns is done in two  phases.  The first phase 
exhaustively  searches  the  space  of  patterns (as  restricted by the 
user),  and  then  the  most  significant  patterns  found in the  first 
phase  are  refined.  The set of possible  values for  pattern  com- 
ponents,  both  during  the  initial  search  and  for  the  refinement 
step, is read  from a user-modifiable text  file Prattsets.  This file 
contains  one value (a set of amino  acids)  on  each line. During 
the  initial  search,  components  of a pattern  can  take on the val- 
ues corresponding to  the  first s lines  in  this file (s can  be set by 
the user  using option S). The  first 20 lines in  Pratt.sets  should 
contain all the  amino  acids,  one per  line, and  then  the next lines 
contain  sets  of  amino  acids  that  share  some  physiochemical 



1590 I. Jonassen et al. 

0 
0 
c 
0 

100 

90 

80 

70 

60 

50 

40 

30 

20 

10 

0 
1 2  3 4 5 6 7 8 9 1 0 1 1 1 2  

Flexibility 

Fig. 3. Distribution of lengths of flexibilities found in PROSITE release 
12.1 (October 1994). A wildcard region x ( i , j )  has  flexibilityj - i, and 
the histogram shows  how many flexible wildcard regions occur for a 
range of flexibility values. All flexible wildcard regions in PROSITE are 
represented in the histogram, except for one having flexibility 50. 

properties or that  one expects to be interchangeable in con- 
strained positions. By default s = 20, and initially Pratt searches 
for  patterns having only identity components. For example, the 
initial search may find the  pattern D-x(2)-E, which next could 
be refined to D-x-[ILVFI-E-x-[DE]. 

Choosing refinement algorithm 

For the refinement step, the user has a choice between two  dif- 
ferent  algorithms. The fastest, which is used by default, can 
introduce new ambiguous symbols into fixed length wildcard 
regions in the already identified patterns and it can append  the 
patterns with  fixed length wildcard  regions and ambiguous com- 
ponents. It is greedy and is therefore  not guaranteed to identify 
all refined conserved patterns. The set of allowed ambiguous 
symbols is read from Prattsets. This refinement algorithm is fast 
and requires little memory. 

The second  refinement algorithm is used when the user 
switches on  the full refinement option  (U  on  the menu). This 
method is guaranteed to find all conserved refined patterns in 
the class of patterns defined by the parameter values. It can in- 
troduce new ambiguous symbols into both fixed and flexible 
wildcard regions and can also append  the identified pattern with 
wildcard regions and ambiguous symbols. It requires all ambig- 
uous symbols to be represented in Pratt’s internal data structure, 
which requires extra memory (see Methods section). The user 
specifies the number of lines from  Prattsets  to be represented 
in the block data structure using option B. 

For example, if the  pattern D-x(l,2)-[ILV]-E-x(2)-[DE]-F 
matches all the sequences, the initial search (using default param- 
eters) will  be guaranteed to find the  pattern D-x(2,3)-E-x(3)-F. 
Using the simple refinement algorithm  this may be refined to 

D-x(2,3)-E-x(2)-[DE]-F (if there is a line in Prattsets contain- 
ing both D and E). If the second refinement algorithm is used, 
and if both ILV and  DE are sets  included  in the block data struc- 
ture, this will be guaranteed  to  find  the  pattern 
D-~(~,~)-[ILV]-E-X(~)-[DE]-F. 

Ranking patterns 

A measure of significance is calculated for each of the identi- 
fied conserved patterns.  The significance of a  pattern is calcu- 
lated as the sum of the  information  contents of the components 
minus a  penalty for each flexibility. The significance measure 
used  is not a statistical one. A more detailed description is  given 
in the  Methods section. If the significance of a  pattern is above 
the significance threshold (which can be changed by the user), 
the pattern is added to a list that is sorted by Significance. The 
maximum number of elements in the list  is  by default 500 and 
can be changed by the user. Both patterns  found by the initial 
search and patterns found during the refinement phase are added 
to such lists. Finally Pratt  outputs the identified patterns  sorted 
by significance. 

How to obtain the program 

Pratt is written in ANSI C. It has been compiled and tested on 
DEC Alpha, Sun  Sparc 10, and Silicon Graphics Challenge M 
workstations and should be portable to other  platforms having 
an ANSI C compiler. The program is available from anonymous 
ftp servers ftp.ebi.ac.uk and ftp.ii.uib.no. 

Test cases 

We demonstrate how Pratt works on real sequence data, using 
some examples of protein sequence families, three of them from 
PROSITE (release 12.0). The sequences in SWISS-PROT cor- 
responding to each of the  PROSITE families were obtained 
using SRS (Etzold & Argos, 1993). The  Prattsets file used for 
the test cases contains: (1) 20 lines each containing  one single 
amino acid symbol; (2) symbols from the amino acid class hi- 
erarchy, described in Smith and Smith (1990): DE, KRH,  NQ, 
ST, ILV,  FWY, AG; and (3)  sets  with  10 or fewer members listed 
in Table 1 of Taylor (1986). The sequences in SWISS-PROT (re- 
lease 29) matching the identified patterns  (and the PROSITE 
patterns) were found using the MacPattern  program (Fuchs, 
1994). The  run times given  were obtained using a  DEC alpha 
workstation. 

Example families from PROSITE 

We use two zinc  finger  families and one snake toxin family from 
PROSITE  as test cases. Data about  the  PROSITE entries are 
summarized in Table 1 and results from  the program being run 
on these families are summarized in Table 2. The patterns in 
PROSITE  are intended to be diagnostic for  the three families 
of protein sequences. 

Zinc finger C2H2 (accession number PS00028) 
This is a family  of eukaryotic and viral DNA binding proteins. 

The PROSITE pattern describes the DNA binding domain  it- 
self. There are 241 family members listed in PROSITE, includ- 
ing one false negative  (does not contain the pattern but is a C2H2 



Finding flexible patterns in unaligned protein sequences 1591 

Table 1. Summary of the three test cases from PROSITE 

PROSITE  ID  No. of sequences Average length PROSITE  pattern 

1 Zinc finger C2H2 24 1 393 C-X(~,~)-C-X(~)-[LIVMFYWC]-X(~)-H-X(~,~)-H 
2 Zinc finger C3HC4 47  644 C-X-H-X-ILIVMFYI-C-X(~)-C-ILIVMYAI 

- - 

3 Snake toxin 164 

zinc finger-containing protein) and four sequences of unknown 
status (might be zinc finger proteins). The  PROSITE pattern 
also matches 20 other sequences (false positives). Using default 
parameters,  the  pattern C-x(2,4)-C-x(l2)-H-x(3,5)-H (match- 
ing 292 sequences in SWISS-PROT) was found in  29 s .  Setting 
the minimum  number  of sequences (option M on  the menu) 
to 240, we find the pattern C-x(2,4)-C-x(3)-[ILVFYC]-x(8)- 
H-x(3,5)-H, which is a restriction of the  PROSITE  pattern. 
This second run  takes 36 s. This pattern finds 260 sequences in 
SWISS-PROT (release  29),  giving  the same number of false pos- 
itives as the original PROSITE  pattern. 

Zinc  finger C3HC4 (accession number PS00518) 
This is a family of eukaryotic and viral proteins  containing 

a conserved cysteine-rich domain, probably involved in zinc- 
dependent binding to DNA. The PROSITE entry Iists  47 members, 
46 matching  the PROSITE  pattern. Using default  parameters, 
we find the pattern C-x-H-x-[ILVMFYC]-C-x(2)-C, in 3 min 
and 55 s. This pattern matches 59 sequences in SWISS-PROT 
(1 1 false positives), whereas the  PROSITE pattern gives three 
false positives.  Disallowing  flexibilities, the same pattern is found 
in 9 s. Reducing the minimum number of sequences to 46, Pratt 
finds  the  pattern C-x-H-x(2)-C-x(2)-C-[ILVMY] matching 49  se- 
quences in SWISS-PROT (release  29),  giving three false positives, 

Snake toxin family (accession number PS00272) 
This family includes 164 cytotoxins, neurotoxins,  and venom 

peptides. The proteins  all have four disulfide bridges, one of 
which  is  covered  by the PROSITE pattern. This pattern matches 
155 out of the 164 family members and 13 other sequences (false 
positives). Running the program using default  parameters, no 
conserved pattern (with significance above the threshold) is 
found (running time: 1 s). Setting the minimum number of se- 
quences to 155, the most significant pattern  found was G-C- 
x(l,3)-C-P-x(8, IO)-C-C-x(2)-[EPDN], which  is quite similar to 

- . .  - 
64 C-P-x(6,8)-[LIVYST]-x-C-C 

the PROSITE pattern (see Table 1). This second run took 51 s. 
The fuzzy position [LIVYST] in the  PROSITE pattern was not 
identified.  The reason is that it is within a flexible region, and 
the greedy refinement procedure does not search for fuzzy  sym- 
bols within flexible regions. The  pattern identified by Pratt 
matches 155 sequences  in SWISS-PROT (no false positives) and 
is therefore  a  more diagnostic pattern for  the family than  the 
PROSITE  pattern. 

Other test cases 

We also tested Pratt  on two further  protein families from the 
recent literature: the  SH3 domain  (Musacchio et al., 1992) and 
the  PHD finger domain (Aasland et al., 1995). These test cases 
are more difficult than  the ones above and we therefore included 
all the sets from Table 1 in Taylor (1986) in the file Pratt.sets. 

SH3 domain 
These are peptide binding domains found in many eukaryotic 

signal transduction  proteins.  The  domain is short (roughly 63 
amino acids long) and weakly conserved between the different 
examples. In the structure-based alignment of Thompson et a]. 
(1994a), there is only one exactly  conserved  residue. We ran Pratt 
on  the 64 sequences in Musacchio et al. (1992). Only the  SH3 
domains of the sequences were included in the search. Default 
parameters gave no  patterns in  less than 1 s. Including the seven 
amino acid sets from Smith and Smith (1990), DE,  KRH,  NQ, 
ST,  ILV,  FWY, and AG, in the initial search, we found  no sig- 
nificant patterns using 7 s. Setting the minimum number of 
sequences to 5 5 ,  the program  runs  for 18 s and finds some 
significant patterns.  The two most significant patterns are A- 

x(3)-[GREAKSDNQ], and G-x-[IVF]-P-x(2,4)-[ILV], both 
corresponding to columns in the alignment of Thompson et al. 
(1994a). Next we  used Pratt  to find conserved patterns on a 

X(~)-[FWY]-~(~,~)-[ILV]-X(~)-[GVSDN]-X(~)-[ILVMFYW]- 

Table 2. Summary of results obtained when running Pratt on the three families in Table la  

Parameters used Time used Most significant pattern identified 

1 Default 

2 Default 
NMIN = 240 

No flexibilities 
NMIN = 46, no flex. 
Default 3 
NMIN = 155 

0:29 
0:36 
4:47 
O:@ 
0: 18 
0:Ol 
051 

a The  numbers in column  one refer to  the  same  column  in  Table 1. NMIN is the  minimum  number of sequences required  to 
match  the  pattern  (option M from  the menu). Times are given as  minutes  and  seconds. 



1592 I .  Jonassen et al. 

larger  data set of 70 SH3  domain  containing  proteins.  The 
proteins  were  selected  from  the  results  of a profile  search 
(Thompson  et  al., 1994b) against  SWISS-PROT.  In  this  case, 
the  complete  proteins were  used (average  length 721 residues). 
A search  with  default  parameters gave no  significant  patterns 
in 11 min.  Setting  the  minimum  number  of sequences to  65 
and otherwise using default  parameters, we found  among  others 
the  patterns G-[ILMFYWKQR]-[ILVMFAN]-P-x(0,2)-Y- 

[VMKTAPSNI-Y-[ILVMFI-[VKTEASQR]. This run took 49 min. 
Sixty-seven sequences  in SWISS-PROT (release 30) match  both 
patterns. 

[ILVPI-[VKTCEAGSQR]  and W-x(12,14)-P-[VKTCAGSDR]- 

PHD finger  domains 
We analyzed 27 sequences  containing  the P H D  finger (Aas- 

land et al., 1995). The  average  length of the  sequences is 874 
amino acids.  Using default  parameters,  Pratt  takes 18 s but out- 
puts  no  patterns.  Setting  the  minimum  number  of  sequences 
to 24 and  otherwise  using  default  parameters,  Pratt uses 13 
min,  and  outputs  the  pattern C-x(2,4)-C-[YCEPGSDNQR]-x- 

[YWCEPGSDNQ]-x(2)-[IFHCAPGSDN] (which is a refinement 
of  the  pattern C-x(2,4)-C-x(4)-H-x(2)-C) and  many  variations 
of  it. 

[VMFWHTAPGSN]-x-H-x(2)-C-[ILVMFYHTCA]-x(l 1)- 

Discussion 

The  program  Pratt is a flexible tool  for  finding  conserved  pat- 
terns in  a  set of  unaligned  protein  sequences.  It  allows  the user 
to specify the  type of patterns  to be searched  for,  and it is guar- 
anteed  to  find all  conserved patterns in the specified class. Using 
both flexible wildcard  regions  and  ambiguous  positions,  Pratt 
can  find biologically interesting  patterns.  The test  cases show 
that it can recover known  patterns  for  some  PROSITE families, 
and in one  case it detected a more selective pattern  than  the  one 
given in PROSITE  (snake  toxin  family).  It was also  shown  to 
identify  interesting conserved patterns in  some recently described 
sequence  families  not yet in PROSITE. 

In  many cases the  program is very fast.  For  example it finds 
the  pattern C-~(~,~)-C-X(~)-[ILVFYC]-~(~)-H-X(~,~)-H con- 
served  in 240 zinc  finger sequences  in  36 s. The  algorithm  for 
finding  patterns with variable  wildcard  regions is an extension 
of  the  depth  first  search  strategy  described in Neuwald  and 
Green (1994). The  more  ambiguous  positions  are  detected  dur- 
ing the  refinement  phase.  Each  of  the  most  significant  patterns 
detected  during  the  search of pattern  space is analyzed to check 
if new ambiguous positions can  be  added.  This  two-phase  strat- 
egy allows  Pratt  to  detect weakly conserved  positions  without 
sacrificing too  much efficiency. If Pratt  cannot  find  any signif- 
icant  conserved  pattern  in  the specified class,  this is normally 
reported quite quickly, and  the user can easily rerun the  program 
using more permissive parameter  values. 

Pratt  also  has weaknesses. It is not very well suited  for  find- 
ing patterns conserved  in a small subset  of the sequences input. 
It will be  guaranteed  to  find  all  such  patterns,  but it may  take 
a long  time. Also it  is not  able  to  find  patterns having no (or just 
one or two) well-conserved positions.  The significance measure 
used by Pratt is not well justified  theoretically.  This is a com- 
mon  problem  with  all  the  methods  that allow gaps  (Roytberg, 
1  992). 

How  does  Pratt  compare  to  other  programs  for  finding  con- 
served patterns in  a set of  unaligned protein sequences? As  Pratt 
has been  specifically  designed to  find  patterns  of conserved res- 
idues  having  variable  spacing, we are  particularly  interested in 
whether  other existing programs  can  find  this  type of pattern. 
The  two  programs  for finding patterns of  constantly spaced con- 
served positions  described  in  Smith  et al. (1990) and  Neuwald 
and  Green (1994) do  not  have  this  ability.  Neither d o  they  al- 
low for  ambiguous  positions  in  the  same  general way as  does 
Pratt.  However  the  second  method seems to  be well suited  for 
finding patterns conserved  in an  arbitrary sized subset  of the se- 
quences;  Pratt is not well suited  for  this  purpose. 

The  method  described  in  Roytberg (1992) identifies a set of 
sequence  segments, one  from each  sequence, so that all pairwise 
distances between the  segments  are below a threshold.  The dis- 
tance  measure allows for  substitutions  and insertions/deletions, 
which means that  the method  can find conserved patterns  allow- 
ing  for  gaps.  It will be hard  for  this  method  to efficiently find 
patterns  of  conserved residues with  constant or variable  spac- 
ing.  It  does  not recognize and  therefore  cannot  exploit cases 
where  some  positions  within  such a pattern  are  conserved  and 
others  are allowed to  vary freely. Without  this  information  the 
similarity between two  segments  matching a pattern  may  not 
seem  significant. Using a liberal  distance threshold, this method 
may be able to  find  this  kind  of pattern,  but  not very efficiently. 

The  methods in Ogiwara  et  al. (1992) and Wang et  al. (1994) 
are based on  the  detection of more or less strictly  conserved 
k-tuples  and  can  find  patterns  consisting  of  k-tuples with vari- 
able length  spacing between them. These methods  work best for 
k having  a  value of  at least 3,  and  for these  values  of  k  they will 
probably  not  find a pattern like the  one  that  Pratt  found in the 
zinc  finger  sequences. On  the  other  hand, these methods,  as well 
as  Roytberg (1992) and  Saqi  and  Sternberg (1994), are likely to  
find  patterns  that  Pratt will not  find.  The  Gibbs  sampler-based 
method  (Lawrence  et  al., 1993) is superior  to  Pratt  at  aligning 
weakly conserved  regions  lacking  strongly  conserved  positions 
but is unable  to  find  patterns  having  variable length spacing be- 
tween conserved  positions. 

Conserved  patterns in a set of  sequences  can  also  be  found 
using multiple  sequence  alignment  programs  like  Clustal W 
(Thompson et al., 1994a), followed by manual inspection to  find 
conserved  blocks of alignment. In cases  where the sequences are 
difficult  to  align,  this  method  may miss short conserved motifs. 
Pratt  can  be used to  search very  efficiently for  conserved  pat- 
terns in such  sequences.  The  two  approaches  are  complemen- 
tary.  No  one  tool will be best for  finding  all  types  of  patterns. 
Pratt is a  flexible tool  for  finding  conserved  patterns  and it al- 
lows the user to  search  for  patterns of  conserved positions with 
limited variable  length  spacing.  It  should be used together with 
other  tools when analyzing a set  of sequences believed to  be 
related. 

Pratt  can  be  further  developed  in  different  directions.  The 
methods  can trivially be  modified to  find  repeated  patterns  in 
one sequence. This  has  not been implemented.  In  this  modified 
version the user would  input  the  minimum  number  of  matches 
to  a pattern in one  sequence  instead  of  the  minimum  number 
of  sequences to  match a pattern.  Another possibility is to  use 
Pratt  as a search  engine  as  part  of a larger  pattern  finding sys- 
tem.  This  could  be used to  search  for  different classes of  con- 
served patterns,  running  Pratt several times  on  the  same set of 
sequences  using different  parameter values. Each  time it should 



Finding flexible  patterns in unaligned protein sequences 1593 

allow for more general patterns  and/or decrease the minimum 
number of sequences to be matched. The  wrap  around could re- 
peatedly run Pratt in this way until a sufficiently significant pat- 
tern is identified or until the system decides to give up.  This 
would free the user from having to experiment with Pratt's pa- 
rameters and would also  make  it possible to use Pratt in a fully 
automated fashion. 

Methods 

The algorithm for searching and pruning the space of possible 
patterns is an extension of the method described by Neuwald and 
Green (1994). Their method searches the space of a restricted 
type  of pattern  and reports the most significant identified pat- 
terns that match any  number of sequences, where the signifi- 
cance is a  function  of both  the number of sequences matched 
and  the  pattern itself. They are able to find fixed patterns hav- 
ing a minimum number of identity components  and  a  number 
of ambiguous  components (consisting of pairs of amino acids) 
in a restricted way. 

We restrict the search of pattern space to patterns  matching 
more  than  a minimum number of sequences. This makes it pos- 
sible for us to prune  the search space very efficiently, which al- 
lows us to extend the class of patterns that can be found. We 
briefly describe the block data structure and the basic search al- 
gorithm. Both are similar to the  ones described in Neuwald and 
Green (1994), where a  more detailed description is given. Next 
we describe how the  algorithm has been modified to allow for 
more general ambiguous positions and for variable length wild- 
card regions, and we outline the algorithms for refining patterns. 

The  basic  algorithm 

Given N sequences SI, S 2 ,  . . . , SN over some alphabet E (typ- 
ically the set of one letter codes for  the  amino acids), having 
lengths L I ,  L 2 ,  . . . , L N ,  (Si  = Si, . . . , Sl,), we define B: as 
the set of all k-segments (a k-segment is a  substring of length 
k)  from the sequences. To be able to detect patterns near the 
ends of sequences, k-segments are constructed also at  the ends 
by padding the sequences with dummy symbols not in E. Then 
for all i between 1 and k inclusive, and  for each symbol a in 
E, the block data  structure contains the set bi,u C B: of all 
k-segments having a in position i .  This  can  then be used to ef- 
ficiently find all segments in B: matching a fixed pattern. For 
example, the set of segments from the sequences SI, S 2 ,  . . . , 
SN matching the pattern D-x(2)-E is bl ,D n b4,E, i.e.,  the set  of 
all segments having D in the first position and E in the fourth 
position. 

The basic algorithm uses the block data structure when ex- 
ploring the space of a restricted class of patterns. This is a vari- 
ation of the algorithm of Neuwald and Green (1994). We want 
to find all fixed patterns with only identity components, match- 
ing at least Nmin of the sequences. The search is done in a re- 
cursive  way. The recursion starts with the  empty  pattern 
(denoted e), which matches all k-segments. Let P be the  pattern 
and let M p  be the set of k-segments matching P. So, initially 
P = e and M p  = B f .  At each level of  recursion,  a  pattern P 
(which does  match at least Nmin sequences) is considered. All 
simple extensions of P,  giving patterns within the defined class, 
are generated.  A simple extension of P is P appended with (1) 
a fixed wildcard region, followed by (2) an amino acid symbol. 

When extending the empty pattern, no wildcards are appended. 
So, P may be extended to  the  pattern P' = P-x(   i ) -a  where i is 
an integer and a is an amino acid symbol. The set of segments 
matching P' is Mp, = M p  fl bL(P)+i+l,u.  It can be efficiently 
calculated using M p  and the block data structure. The extended 
patterns having matches in at least Nmin sequences are recur- 
sively analyzed in the same way.  If no simple extension of P 
matches at least Nmin sequences, and if P has significance above 
the threshold, P i s  added to a list  of patterns to be refined and 
reported. 

The  algorithm may be  used to find fixed patterns with am- 
biguous symbols by allowing the pattern components to  take  on 
either the value of a single amino acid or an ambiguous sym- 
bol specifying a set  of alternative amino acids. This makes it  pos- 
sible to find patterns such as D-x(2)-[DE]. Neuwald and Green 
allow for ambiguous positions in a restricted way using a simi- 
lar approach  to  the  one described here. We let the user specify 
a set of possible values for the  pattern  components in the ini- 
tial search.  This is done by specifying the number of lines (s) 
from  the file Pratt.sets  to be included. The number of ambigu- 
ous symbols to be included in the block data structure is also 
specified by the user and should be the same as s or bigger than 
s (if the guaranteed refinement algorithm is used). For each set 
A (corresponding to an ambiguous symbol) to be included  in the 
block data structure, and for each i between 1 and k inclusive, 
the block data structure  contains  the set bi,A of all k-segments 
having an  amino acid  in  set A in position i .  The recursive search 
algorithm above can be  used to search this space of patterns. A 
simple extension is now a fixed length wildcard region and a 
symbol corresponding to  one of the first s lines in Prattsets. 

Flexible patterns 

We  now describe  how the method has  been extended to find flex- 
ible patterns of the  form defined in Equation 1. To be able to 
find all segments matching a flexible pattern in an efficient way, 
we define for each flexible pattern P a  corresponding (finite) set 
F( P )  of fixed patterns. F( P )  is defined so that  an L ( P )  seg- 
ment s = s, , . . . , sL(p)  matches P ( A ,  matching s,) if and only 
if s matches at least one  pattern Q in F ( P )  (s, matching the 
first  component in Q). The set of fixed patterns  corresponding 
to P ,  is 

. . . -A,- , -x(k,_l)-A,] .   (2)  

The  number of fixed patterns in F ( P )  is equal to  the product 
of flexibilities for P defined under Results. See Figure 4 for  an 



1594 I .  Jonassen  et al. 

example  of a flexible pattern  and  the  corresponding set of fixed 
patterns.  The set of  segments matching P i s  M p  = UQEF(P)MQ,  
which can  be  calculated  as  above,  because  all  patterns in F (  P )  
are fixed patterns. Below we give an efficient way to  calculate 
M p  in  the recursive search  procedure. 

The recursive procedure  exploring  the  space of fixed patterns 
is modified to  search  the  space  of flexible patterns. Let P be a 
flexible pattern, let F ( P )  be the  corresponding set of fixed pat- 
terns,  and let M p  be the set of k-segments matching P .  Initially, 
P = e, F(  P )  = [ e ] ,  and M p  = B.  At  each level of  recursion we 
are considering a pattern P and all  its  simple  extensions.  A  sim- 
ple  extension  of P is P appended with  (1) a (possibly flexible) 
wildcard  region x( i , j ) ,  and (2) an  amino  acid set a in V' (Vu is 
the set of allowed pattern  components), which makes  a new pat- 
tern P' = P-x( i , j ) -a .  The set  of  fixed patterns  corresponding 
to P' is F ( P ' )  = U ; c k c , , Q E F J ( p )  [ Q-x(k ) -a ) ,  and  the set of seg- 
ments  matching P' is Mp,  = UQ,EF(P,)  MQr, which can be ef- 
ficiently calculated  using 

To be  able  to  calculate Mp,  in this  way, we store  for  each Q in 
F ( P )  the  length of Q ,  L (  Q ) ,  and  the set of  segments  matching 
Q ,  MQ. Note  that if F ( P )  contains m fixed patterns,  then 
F ( P ' )  will contain ( j  - i + l ) . m  patterns.  Having  calculated 
M p f ,  we check if it contains  segments  from  at least N,, se- 
quences.  lf it does,  this  means  that  the new pattern P' matches 
the  minimum  number of  sequences, and it is analyzed recursively 
in  the  same way. If no simple  extension  of P matches at  least 
Nmin sequences,  and if P has significance above  the  threshold, 
P is added  to a list of patterns  to  be  refined  and  reported. 

Guaranteed refinement algorithm 

The  most  significant  conserved  patterns  discovered  during  the 
search of pattern space can be refined using either  of two refine- 
ment  algorithms.  The  guaranteed  refinement  algorithm is used 
by  Pratt if the user  switches on  the  full  refinement  option.  It 
takes,  as  input, a conserved  pattern P and  carries  out a new 
search of pattern  space using the  above recursive algorithm  but 
allowing  for  more  ambiguous  pattern  components.  It uses P to  
direct  the  search  and  matches  patterns  only  against  segments in 
Mp.  Because the  refinement search is constrained to  a subset of 
the  segments, we can  afford  to allow for  more  ambiguous sym- 
bols.  Using  the  menu,  the  user specifies how  many  ambiguous 
symbols to  be included  in the block data  structure  and how many 
of these to  be  allowed  as  pattern  components  during  the  initial 
search.  During  the  refinement  search,  pattern  components  are 
allowed to  take  on  the value  of any  symbol included  in the block 
data  structure.  As a result,  the  refinement  procedure  can  sub- 
stitute  any wildcard position  in P with a symbol included  in the 
block data  structure  and  can  also  expand  the  pattern  to  the right 
(but  not  to  the  left).  The  algorithm is guaranteed  to  find  all re- 
fined  patterns in the class considered  matching  at least Nmin se- 
quences.  It is quite expensive computationally,  requiring  more 
space  for  the  block  data  structure,  and  one new search  of  pat- 
tern  space  for  each of the  most  significant  patterns  identified 
during  the  initial  search. 

Fast and greedy refinement algorithm 

The second  refinement  algorithm  considers  all wildcard positions 
in fixed wildcard  regions  and  checks if the  pattern  obtained by 
substituting  the wildcard with an  ambiguous symbol matches  at 
least Nmin sequences. This is the  procedure used by Pratt unless 
the user  switches on  the  full  refinement  option.  In  order  to re- 
fine a pattern P ,  we first  append  wildcard  symbols  to  the  end 
of P so that  the  refinement  step  may  extend  the  pattern  to  the 
right.  Extension  to  the  left  cannot  be  done in the  same way be- 
cause  of the asymmetric nature of the block data  structure. Each 
ambiguous  symbol is one  of,  or a of  subset  of  one  of, a list L 
of  allowable  amino  acid sets. L is given by the user as  the file 
Prattsets,  one line  per amino  acid  set. 

We consider  one  wildcard  position wi in P at a time  starting 
with the leftmost  wildcard wi in a fixed wildcard  region. For ex- 
ample, if P is D-x(2)-E, we first  consider  the wildcard position 
immediately  after  the D, matching  the  second  position  in seg- 
ments  matching P .  For each amino acid symbol r, we count  the 
number  of times n ( r )  that r in  a segment  matching P matches 
wi. We then  sort  the  amino acid  symbols according  to  the  num- 
ber of  matches, so that n ( r ,  ) 2 n ( rz )  2 . . . n ( rz0) .  We want 
to  find a  set R of amino  acid  symbols, so that (1) R is a subset 
of a set in L (a set is a subset  of  itself),  and (2) so that when w, 
in P i s  substituted with the  ambiguous symbol corresponding  to 
R,  the  resulting  pattern still matches  at least Nmin sequences. 
We greedily  try finding  such a set by including  the  amino  acids 
most  frequently  matched with wi .  Initially we let R = [ r ,  ) .  
Then, until at least Nmjn sequences are  matched,  or until further 
expansion is not  possible, we expand R with the first r, so that 
(1) r, is not  already  included in R ,  and (2) there is a set u in L 
so that ( R  U ( r ,  ) )  u. I f  a set R with the  desired  properties is 
found, we make a new pattern  P'  from P by substituting  the 
wildcard w, with R. Then  both P and P' are recursively ana- 
lyzed in the  same  way,  only  considering wildcard positions to  
the  right  of w,.  This is a greedy algorithm,  and it is not  guar- 
anteed  to  find a refined pattern with the desired  properties, even 
if  one exists. 

Significance of  a  flexible  pattern 

Others  (e.g., Karlin & Altschul, 1990; Neuwald & Green, 1994) 
have  defined the significance of a fixed pattern matching  a num- 
ber  of sequences  according to  the  probability  of  the  sequences 
sharing  the  pattern by chance. This is not easily extended to flex- 
ible patterns. We define a significance measure in another way. 
What we need  is  a  significance measure  that we can use to  rank 
the  identified  patterns  and  also  to  define a lower  threshold of 
significance  for  patterns  to  be  reported. Because all patterns 
identified  are to match  at least N,, sequences, we do  not  take 
into  account  the  number  of  sequences  matched when evaluat- 
ing the  significance  of a pattern. 

We define a measure  of  significance  for a pattern  that is the 
sum  of  the  information  contents  of  the  pattern's  components 
(Shannon, 1948). To deal with  flexibility, we simply subtract a 
constant  number of bits for each flexibility. This measure is used 
to  rank  the identified patterns. A pattern with  high information 
content is considered  significant. 

More  formally,  for a pattern P as given in Equation 1, we de- 
fine  the  information  content  of P to  be 



Finding flexible patterns in unaligned  protein  sequences 1595 

The  information  content  of a single position Ai  is the  decrease 
in  uncertainty given that  only  symbols  from Ai  occur  in  this 
position: 

where pa is the  probability  of  amino  acid a ,  S is the set of all 
amino  acids,  and pa, = CaEA,pa.  Thep, values were calculated 
from  the  frequency  of  amino  acid a in SWISS-PROT.  For  the 
constant  c, we have used the  value 0.5. Note  that  the  informa- 
tion  content is the  same  for  all  identity  components. For test 
cases we have looked  at,  the significance measure defined above 
seems to give a reasonable  ranking  of  identified  patterns. 

Time and space complexity 

The  block  data  structure  and  the  data  structures  needed when 
doing  the  search  of  pattern  space  can  require a lot of memory. 
All  sets  are  implemented using bit-vectors.  Given N sequences 
of  average  length L .  The  block  data  structure with set of sym- 
bols VE will require  on  the  order of kl VEI [NL/81 bytes. For 
example, if N = 100, L = 200, k = 50, and I VEI = 20, on  the 
order  of 2.5 Mbyte is needed  for  the  block  data  structure. 

The search itself also requires some  memory. If M i s  the max- 
imum  number  of  components, F is the  maximum  product  of 
flexibilities, G is the  maximum  length of a wildcard,  and is 
the set of  symbols t o  be used  in the  search,  on  the  order  of 
M.F.max(  G + 1,Ih I + 1) [NL/8 ]  bytes are needed. For ex- 
a m p l e , i f N = l O O , L = 2 0 0 ,  lVAl = 2 0 , a n d M = F = G = 1 0 ,  
more  than 5.25 Mbytes  are needed for  the search. Using reason- 
ably  powerful  modern  workstations,  the  memory  requirement 
is not a problem  for  analyzing  on  the  order  of  hundreds of pro- 
tein  sequences  of  typical  length. 

As  an  alternative  to  storing  sets  for  ambiguous  symbols 
A in the  block  data  structure, we could  choose  to  store  only  the 
sets bi,, for  all  single  amino  acid  symbols  and, when bi,a is 
needed, A being an  ambiguous  symbol,  generate it from  the sets 
for  single  amino  acids UaEA b;,,. During  the  search,  this  oper- 
ation will be  done  many  times, which can  justify  the  extra  time 
and  memory  needed  for  generating  and  storing  each set bi,A 
separately.  When limited  system  resources are available, and big 
sets  of  sequences  are  to  be  analyzed,  this  solution  may  be  the 
preferred. 

The  time complexity is difficult to analyze. The  time used will 
depend  on  the  sequence  lengths.  The  longer  the  sequences  the 
more  patterns will randomly  match N,, sequences,  and  there- 
fore we will prune  the  search  at a lower level. The  more closely 
related the sequences are,  the less efficiently can  the search  space 
be  pruned.  The smaller Nmjn is relative to  N, the longer time  the 
search will take,  and  the  more  patterns will be  found.  The  time 
complexity  dependency on N, the  number  of  sequences, is  lin- 
ear.  Worst  case  behavior will arise  with  long, closely related 
sequences. 

The  time used also  depends  on  the class of  patterns  that  the 
user  wants to search. The  more flexibility allowed, the  more  am- 
biguous the symbols, and  the bigger the sets the  ambiguous sym- 

bols define,  the longer time  the  search will take.  The refinement 
step  may  also  be  time consuming, and  the  time used refining  de- 
pends on  how  many  patterns  to be refined  and which algorithm 
is chosen for  the refinement  step. The  guaranteed refinement al- 
gorithm will be very time  consuming  if,  again,  the set of  ambig- 
uous  symbols is big,  and if the  ambiguous  symbols  define big 
sets.  The  time used by the  faster  refinement  algorithm  depends 
on  the set L of allowable ambiguous symbols, the  number of sets 
in L .  and  the size of  each  set. 

Acknowledgments 

Inge Jonassen was paid by a  grant  from  the  Norwegian Research Coun- 
cil. We thank  Toby  Gibson  and  Rein  Aasland for suggesting test cases 
and Amos Bairoch for  advice  on  using  PROSITE. 

References 

Aasland R ,  Gibson TJ, Stewart AF.  1995. The PHD finger: Implications for 
chromatin-mediated  transcriptional regulation. Trends Biochem Sci 
20:56-59. 

Bairoch A, Boeckmann B. 1992. The SWISS-PROT protein sequence data 
bank. Nucleic Acids  Res 20:2019-2022. 

Bairoch A, Bucher  P.  1994. PROSITE: Recent developments. Nucleic Acids 
Res 22:3583-3589. 

Devereux J, Haeberli P, Smithies 0. 1984. A comprehensive set  of sequence 
analysis programs for  the VAX. Nucleic Acids  Res 12:387-395. 

Dodd IB, Egan JB. 1990. Improved detection of helix-turn-helix DNA- 
binding motifs in protein sequences. Nucleic Acids  Res l8:5019-5026. 

Etzold T, Argos P. 1993. SRS-An indexing and retrieval tool for flat file 
data libraries. Comput  Appl Biosci 9:49-57. 

Fuchs R. 1994. Predicting protein function:  A versatile tool for  the Apple 
Macintosh. Comput  Appl Biosci /0:171-178. 

Henikoff S, Henikoff  JG. 1991. Automatic assembly of protein blocks for 
database searching. Nucleic Acids Res I9:6565-6572. 

Karlin S, Altschul SF.  1990. Methods for assessing the statistical significance 

Nutl Acud Sci USA 87:2264-2268. 
of molecular sequence features by using general scoring schemes. Proc 

Lawrence CE, Altschul SF, Wootton JC, Boguski  MS.  Neuwald  AF,  Liu JS. 
1993. Detecting subtle sequence signals: A Gibbs sampling strategy for 
multiple alignment. Science 262:208-214. 

Musacchio A, Gibson T, Lehto VP, Saraste M. 1992. SH3-An  abundant 
protein domain in search of a function. FEBS Lett 307:55-61. 

Neuwald  AF, Green P.  1994. Detecting patterns in protein sequences. J M o l  
Biol239:698-712. 

Ogiwara A, Uchiyama I ,  Yasuhiko S,  Kanehisa M. 1992. Construction  of 
a dictionary of sequence motifs that characterize groups of related pro- 
teins. Protein Eng 5:479-488. 

Pearson WR, Lipman DJ. 1988.  Improved tools for biological  sequence com- 
parison. Proc Nut1 Acad Sei USA 82:3073-3071. 

Roytberg MA. 1992. A search for common patterns in  many  sequences. Com- 
put  Appl Biosci 8:57-64. 

Saqi MAS, Sternberg MJE. 1994. Identification of sequence motifs from 
a set  of proteins with related function. Protein Eng 7:165-171. 

Shannon CE. 1948. A mathematical theory of communication. Bell System 
Tech J 27:379-423, 623-656. 

Smith HO,  Annau  TM,  Chandrasegaran S. 1990. Finding sequence motifs 

87:826-830. 
in groups of functionally related proteins. Proc Nut1 Acad Sci USA 

Smith RF, Smith TF. 1990. Automatic generation of primary sequence pat- 
terns  from sets of related protein sequences. Proc Nutl Acud Sei USA 
87:118-122. 

Taylor WR. 1986. Identification of protein sequence homology by consen- 
sus template  alignment. J Mol Biol 188:233-258. 

Thompson  JD, Higgins DG, Gibson TJ. 1994a. Clustal W: Improving the 
sensitivity of progressive multiple sequence alignment through sequence 

cleic Acids Res 22:4673-4680. 
weighting, position-specific gap penalties and weight matrix choice. Nu- 

Thompson JD, Higgins DG, Gibson TJ. 1994b. Improved sensitivity  of pro- 
file searches through  the use of sequence weights, gap excision and the 
BLOSUM62 matrix. Comput  Appl Biosci 10:19-29. 

Wang JTL,  Marr  TG,  Shasha D, Shapiro BA, Chirn GW. 1994. Discover- 

classification. Nucleic Acids  Res 22:2169-2775. 
ing active motifs in sets of related protein sequences and using them for 


