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Abstract: Single copies of an 4 - 7 0  residue domain  are shown 
to be present in thesequences of  14eukaryoric proteins, including 
yeast byr2, STEl 1, ste4, and STESO, which are essential partici- 
pants in sexual differentiation.  This  domain,  named  SAM (ster- 
ile alpha  motif),  appears to participate in other  developmental 
processes  because it is also present in Drosophilapolyhomeotic 
gene product  and related homologues, which are  thought  to reg- 
ulate  determination  of  segmental specification in early  embryo- 
genesis.  Its appearance in byr2  and  STEl I ,  which are MEK 
kinases, and in proteins  containing pleckstrin homology, src ho- 
mology 3,  and discs-large homologous region domains, suggests 
possible participation i n  signal transduction  pathways. 

Keywords: Drosophila development;  homology; signal trans- 
duction; yeast sterile genes 

Identification, by sequence  analysis, of  a homologous  domain 
family,  can  prompt detailed experimental investigation  leading 
to elucidation of domain  and  molecular  functions. For exam- 
ple,  identifications of large families of src homology  (SH2  and 
SH3)  and  pleckstrin  homology  (PH)  domains  have  facilitated 
a greater  understanding of the regulatory nature of  signal trans- 
duction  pathways (reviewed  in Cohen  et  al., 1995; Pawson, 
1995). More recently, further  domain families  present  in  signal 
transduction  proteins,  including  [he discs-large homologous re- 
gion (DHR, or GLGF; recently renamed ‘PDZ’) (Ponting & 
Phillips, 1995) and  phosphotyrosine  interaction  domain  (PID) 
(Bork & Margolis, 1995) have been documented.  Here it is re- 
ported  that a novel domain is common  to yeast proteins  that  are 
essential for sexual responses induced by mating  pheromones and 
to animal proteins that  are essential during  embryo morphogenesis. 

During  an  investigation of DHR-containing  protein  se- 
quences, a  region of a Caenorhabditis elegans putative  protein 
sequence  (R01H10.8) was found initially to be similar to Schizo- 
saccharomyces pombe ste4 and  mouse Mgl1 sequences,  and 
eventually to be similar to a total  of 13 sequences  (Fig. 1). These 
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similarities, particularly  conservation  of  hydrophobic residues 
throughout  the  alignment,  indicate  that these  sequences encode 
homologous  domains  that have  a common  evolutionary  ances- 
tor. Unlike most other  intracellular  domains,  the  residue limits 
of SAM sequences are well defined, because SAMs in byr2 (res- 
idues 1-66) and C33B4.3 (residues 1,045-1,) 10) begin and  end 
with N-terminal  and  C-terminal residues,  respectively (Fig. 2). 

Four  proteins, byr2, STEl1,  ste4,  and STESO, which contain 
this  domain,  are essential participants in sexual differentiation 
in yeasts: mutations in  their corresponding genes induce steril- 
ity (Rhodes et al., 1990; Okazaki et al., 1991; Wang et al., 1991; 
Ramezani Rad  et al., 1992). Consequent to this,  and to the all 
(a-)helical predicted secondary  structures of these  sequences, this 
domain has been named SAM, an acronym for sterile alpha  mo- 
t i f .  S. pombe byr 2 (also called  ste8) and Saccharornyces  cere- 
visiae STEl I are  orthologous MEK kinases that  participate in 
the  MAP  kinase  cascades  as  part of the  Rasl  and  pheromone 
response  pathways (reviewed in Neiman, 1993; Herskowitz, 
1995). The  N-terminal  noncatalytic regions of STEl 1 and  byr2 
contain binding sites for STES and  Rasl, respectively (Choi 
et al., 1994; Masuda et al., 1995), as well as negatively regulat- 
ing kinase activity (Cairns et al., 1992; Stevenson et al., 1992). 
These  protein-protein  interactions suggest  possible functional 
roles for  the byr2 and STEl I N-terminal SAMs.  Other MEK ki- 
nases, tobacco  NPKl  and  mouse  MEKK,  do  not  appear  to pos- 
sess  a SAM-related  sequence. 

SAMs also  occur within three proteins  that  share a  similar do- 
main  composition  and  that  are  most similar  within  their SAM 
sequences. These  are: Drosophila melanogaster polyhomeoric 
gene  product  (ph)  (Dura et al., 1957), mouse RAE-28 (Nomura 
et al., 1994), and Drosophila tumor suppressor  gene lelhal(3)ma- 
lignanf brain tumour product (I(3)mbt) (J. Wismar et al., un- 
publ.). Drosophila ph is thought to be among  the Polycomb 
group of genes that  encode  chromatin  proteins; these maintain 
the process of  spatial  regulation  during  determination  of seg- 
mental  identity in early  embryogenesis  (Jurgens, 1985; Dura 
et aI., 1987). RAE-28  appears to be a ph counterpart in mouse, 
and a human ph homologue is partly  encoded by an expressed 
sequence  tag (EST, Genbank  code T09455), implying  that  this 
developmental  control  gene is present  across  the  animal 
kingdom. 
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Fig. I .  Multiple  alignment  of 14 SAM  sequences,  displayed  using  Alscript  (Barton,  1993a).  An  initial  database  search with the 
C.  elegans ROlH10.8  sequence,  using  BLAST  (Altschul et al., 1994) at  the  NCBl yielded two  candidate  homologues, S. pombe 
ste4  and  mouse M g l l .  These  three  sequences  showed  pairwise  sequence  similarities  (2-scores >8.50, probabilities  of  matching 
by chance, P < I x l O - 4 ,  P < 8 x IO” ,  P < 6 x IO”) indicative  of  homology.  Subsequent  sequence  alignment  using AMPS 
(Barton, 1990) yielded  a  profile and  a  pattern  that  were  scanned  against  PIR (v44), SWISSPROT,  and  PATCHX  databases, 
using  local  similarity and  pattern-matching  algorithms  (Barton & Sternberg, 1989; Barton,  1993b).  Sequences  were  added  to 
the  alignment if they  scored  significantly  higher than  both  the  adjudged levels of  noise in both  scanning  procedures.  A  further 
three  iterations  of  this  procedure,  as well as  identification of SAMs in C. elegans C33B4.3 and Drosophila l(3)mbt using BLAST 
(Altschul et al., 1994) yielded a  total  of 13 SAMs.  A  final  SAM  from  the  byr2  homologue, S .  cerevisiae STEl I ,  was  appended 
as it scored  at levels equivalent to  the highest “noise”  score. Sequences from  the ets gene family (e.g., PIR accession code  TVHUE2) 
scored  among  the  highest  noise  scores, yet considerable  dissimilarity  was  noted  between  SAM  and  ets  consensus  sequences  at 
their  C-termini;  therefore,  no  positive  identification of ets  sequences as  containing  SAMs was possible.  In  these  procedures, 
the  BLOSUM62  matrix was used throughout.  The highest probability  that  either  of  two  alignment  “blocks”  (positions 1-13 and 
29-70) was arrived  at by chance  was  calculated  using  MACAW  (Schuler et al., 1991) as P < 3 x IO”*.  The  average  of  pair- 
wise Z-scores and  percentage  identities  among  the 14 SAMs was 5.70 and  22%. respectively  (excluding  two  pairs of sequences 
where  percentage  identities  were  above  60%).  Secondary  structures,  predicted  using  the  program PHD  at   an expected  accuracy 
of >82% (Rost & Sander, 1993). are  indicated by h (helices) and I (loops).  Accession  codes and  residue  limits  are given in  pa- 
rentheses. The ph  sequence  shown  corresponds  to  the  proximal  unit  of  the  two  independent  repeats.  Positions  where  the  chem- 
ical character  of  residues is conserved  in >75% are  shown in bold  and  shaded. 

The  remaining seven SAM-containing  proteins possess no 
well-documented  functions. S. cerevisiae BOB1 and  BEBl  are 
proteins that bind an SH3-containing  molecule, BEM 1, and each 
contains  SH3  and PH  domains,  implying  their  participation  in 
signal  transduction  pathways. C. elegans putative  proteins 
R01H10.8  and C33B4.3 each possess  a  single DHR domain, 
which again suggests their  participation in signalling.  Mouse 
Mgl 1 possesses an N-terminal  SAM,  followed by a C-terminal 
tail homologous  to  N-terminal regions of two  putative  proteins 

of unknown  function: C. elegans ZK177.8 and Bacillussubtilis 
ipa-93d gene product (accession  codes U21321 and S39748). 

The  functions of SAMs  remain to  be determined  although 
their small size (65-70 residues)  precludes any  catalytic role. As 
outlined  for  byr2  and  STEl1,  they  may  mediate a protein- 
binding  function. In contrast, it is possible that  they  may  pos- 
sess DNA-binding functions, via recognition helices. This is sug- 
gested by the  high  content,  in  SAMs, of short helices separated 
by turn-forming glycines (Fig. I), which are  features  common 
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Fig. 2. Domain  organization  of  SAM-containing proteins. Close  homo- 
logues are given  in  parentheses.  Domains  shown  are: SH3. P H  (Cohen 
et al., 1995; Pawson, 1995, and  references  therein),  DHR  (Ponting & 
Phillips, 1 9 9 9 ,  ankyrin  repeats  (Bork, 1993), C4 zinc  finger  (Evans & 
Hollenberg, 1988), and  leucine  zipper  (Landschulz  et  al., 1988). Regions 
rich  in  particular  amino  acids  are  shown  by  thick  lines.  The  C-terminal 
region of Mgl 1 (shown  by an  arrow) is homologous  to C. elegans pu- 
tative  protein ZK177.8 and B. subfilis putative ipa-93dgene product. 
Total  numbers of amino  acids  are  shown  at  their  C-terminal  ends. 

to  other DNA-binding sequences such as helix-turn-helix and 
helix-loop-helix motifs. Whatever their molecular role, their 
presence  in such a variety of eukaryotic proteins indicates a gen- 
eral function in  cell differentiation in organisms as divergent as 
yeast and vertebrates. 
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