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Abstract 

We describe a  new computer  algorithm  for  finding  low-energy  conformations of  proteins.  It is a chain-growth  method 
that uses a heuristic  bias  function to help assemble a hydrophobic  core. We call it the Core-directed  chain  Growth 
method  (CG). We test  the CG  method on several well-known literature examples of HP lattice  model proteins  [in which 
proteins  are modeled as sequences of hydrophobic (H)  and  polar  (P)  monomers],  ranging  from 20-64 monomers in two 
dimensions,  and  up to 88-mers in three  dimensions.  Previous  nonexhaustive methods-Monte Carlo, a Genetic  Algo- 
rithm,  Hydrophobic  Zippers.  and  Contact Interactions-have been  tried on these  same model sequences. CG is  sub- 
stantially  better at  finding the global  optima,  and  avoiding local optima,  and it  does so in comparable or shorter times. 
CG finds  the  global  minimum  energy of the  longest HP lattice  model chain for which the  global  optimum  is  known, a 
3D  88-mer that has only  been reachable  before by the CHCC  complete  search  method.  CG  has the  potential advantage 
that it should  have  nonexponential  scaling with chain length. We believe  this  is a promising  method  for  conformational 
searching in protein folding  algorithms. 
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The conformational search problem 

There  have been many  important  advances on the road to  devel- 
oping a computer protein folding  algorithm  (Levitt & Warshel, 
1975;  Kuntz et al.,  1976; Wilson & Doniach,  1989;  Skolnick & 
Kolinski,  1990;  Covell,  1992,  1994;  Sippl et al., 1992; Vajda et al., 
1993;  Hinds & Levitt,  1994;  Kolinski & Skolnick,  1994;  Monge 
et  al.,  1994; Wallqvist et al., 1994;  Boczko & Brooks,  1995;  Srin- 
ivasan & Rose,  1995;  Sun  et al., 1995; Yue & Dill, 1996). In order 
to devise a computer  method that can predict  the  native structure 
of a  protein from its amino  acid  sequence  alone, it is necessary  to 
have an adequate  energy  function  applied  to an appropriate  chain 
representation  and  searched with  a fast  conformational  search 
method. Currently, the most popular  conformational search meth- 
ods  are  Molecular  Dynamics (MD) and  Monte  Carlo (MC) and its 
variants-simulated annealing  and  genetic  algorithms.  But  these 
conformational  search  methods  are  too  slow  and “inefficient;”  that 
is, they  get stuck in energy  traps  and  are unable to reach  the global 
minima  of  their  energy  functions in a reasonable  amount of com- 
puter  time  (hours to weeks  on  workstations).  Here  we  describe a 
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method  that improves on the speed and efficiency  of existing search 
methods. 

The main problem in developing a conformational  search strat- 
egy  for protein folding  is that the  energy  landscape  is  large,  and 
sometimes  rugged,  and  we  seek the global  minima  (rather than 
local minima), of which there  are  an  exceedingly small  number. 
We are  searching  for a  needle in a  haystack (Dill, 1993). The 
success of a search strategy can  be  judged by two criteria:  how 
deeply it penetrates  the  energy  landscape toward the global  min- 
ima,  and how quickly it gets there. 

Exhaustive  enumeration  methods  are  guaranteed  to reach the 
global  optima, but  the computer  time T required to  get  there in- 
creases  exponentially with  the chain length n, T = a“, where a is 
roughly  the number of significant rotational isomers per monomer. 
Smart pruning strategies  have been applied  in  lattice  models  (Yue 
& Dill,  1993; Yue et al., 1995) to reduce a from  about 5 to 1.125, 
but  the scaling  remains  exponential,  as it does  for  any  strategy 
guaranteed  to  find the global  optimum. 

The most common  search  methods,  MC  and  MD,  are  based on 
sparser  sampling of  the conformational  space, for which  they sac- 
rifice the guarantee  that they will reach  the  global  minimum.  This 
is not to  say  that they won’t reach the  global  minima; it is only to 
say that we  have no guarantee  whether the minimum  found  is a 
global or local one.  Indeed  some proteins, such  as  cytochrome c 
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(Sosnick  et al., 1994)  appear  to  fold  along  funnel-shaped land- 
scapes.  Such proteins are  good  candidates  for such  search  strategies. 
However,  the time  scale  for  folding  cytochrome c is  milliseconds, 
which is 8-12 orders of magnitude  longer than  the  intrinsic time 
step  for  conformational  change, so even  for  “funnelscape”  protein 
models,  it remains a challenge  for a computer  to find a global 
minimum.  MC  and  MD  get  stuck  and  become  sluggish in the  dense 
compact  chain  conformations. 

There  have been  many efforts to improve upon MC  or  MD 
searches.  Unger  and  Moult  (1993)  have  shown an implementation 
of a Genetic  Algorithm  (GA)  that  is  much  faster than an imple- 
mentation  of  traditional MC in lattice model tests. Methods  for  fast 
conformational  searching of homopolymers  have been developed, 
including  in  the  dense  states.  Reptation  algorithms  and  chain- 
growth  algorithms  have been  used to avoid  trapping of  the  system 
in local energy  minima  (Binder & Heermann, 1988). Although 
reptation is not suitable  for  heteropolymer  problems  such as pro- 
tein folding,  chain  growth  algorithms with “look-ahead’ may hold 
some  promise  (Rosenbluth & Rosenbluth,  1955;  Meirovitch & 
Livne, 1988).  One variant has been adapted by O’Toole  and Pa- 
nagiotopoulos  (1992),  and  our  method  described below also uses a 
look-ahead  process  for the chain  growth.  However,  our  approach 
focuses  more on the use  of nonlocal, rather  than  local, energy 
functions in the heuristics. In the  chain-growth  algorithms  follow- 
ing Rosenbluth  and  Rosenbluth  (1955),  the  heuristic interaction 
energies  exploit  only local information  to  guide the growth  pro- 
cess. External fields  have been  used to  introduce global  protein 
specific  information to bias sampling  toward low energy  structures 
(Garel & Orland,  1990;  Solomon & Liney, 1995). 

Two  other recently developed  conformational  sampling  methods 
are  Hydrophobic  Zippers (HZ)  (Fiebig & Dill, 1993)  and the 
Contact  Interactions  method  (CI)  (Toma & Toma, 1996).  HZ uses 
a  topological definition of  “spatial  localness” to  assemble increas- 
ingly  nonlocal  pairings of monomers  to  zip  up  hydrophobic  cores. 
The  CI  method biases  the  trial moves in a MC  method toward  the 
formation of hydrophobic  contacts.  CI uses a residue-dependent 
temperature that depends on a topological distance  measure  similar 
to the one used in the HZ algorithm.  These  methods have  the 
advantage  that they have  some physical basis; they indicate how 
P-sheets might form, a difficult  problem  for traditional search 
methods;  and they have been shown  to  be much more efficient  than 
traditional MC in several  lattice  model tests  (Yue  et al., 1995; 
Toma & Toma,  1996). 

We believe an important principle in enhancing the speed  and 
efficiency of conformational  search  strategies is to  incorporate 
search  biases that  are  based on some  global  knowledge of what the 
potential function  is  trying  to  achieve, such as the knowledge that 
proteins  have  hydrophobic  cores.  Some of  the methods  described 
above  do  this  to  varying  degrees. Traditional MC  and  MD  do not 
use such  information.  There  remains a need for even greater  effi- 
ciencies in computational  search strategies. The present algorithm 
is intended as a step in this direction.  Our  approach  is based on 
biasing a chain toward finding a good  hydrophobic  core. We be- 
lieve  this is the  main feature that gives the energy  landscape of 
protein folding much of its  overall shape. 

The energy function and chain representation 

Based on the premise that  nonlocal contact  interactions  dominate 
folding, the  most unambiguous way to test conformational  search 
strategies  at the  present time is to use  the HP lattice  model (Lau & 

Dill,  1989; Chan & Dill, 1991; Dill et al., 1995).  Several  search 
strategies  have been  tested  using  this model  (O’Toole & Pana- 
giotopoulos,  1992; Dill et al., 1993;  Fiebig & Dill, 1993; Unger & 
Moult, 1993; Yue & Dill, 1993; Yue et al., 1995;  Hart & Istrail, 
1996;  Toma & Toma, 1996). In the HP model, proteins are  mod- 
eled as sequences of hydrophobic ( H )  and  polar (P) monomers. 
The  monomers  occupy a string  of adjacent  sites on a lattice,  typ- 
ically a 2D square lattice or  3D  simple  cubic lattice.  To  satisfy 
excluded  volume,  each lattice site  can  be  occupied by no  more than 
one  monomer. Two  H monomers that are  adjacent in space, but not 
adjacent in sequence,  are attracted by a contact energy. All other 
types of  interactions are  assumed to be zero. Therefore, the glob- 
ally optimal  conformations in this  model  are simply  those with  the 
maximum  possible  number of HH  contacts. 

The  advantage of  using  the HP lattice  model to test conforma- 
tional search  strategies is that the conformational  space is discrete 
and  countable  for  any  sequence, the  global minima  are  unambig- 
uously distinguishable  from local minima,  the model has been 
demonstrated to have many protein-like  properties  (Dill  et al., 
1995), and the  model captures the  needle-in-a-haystack  nature  of 
the  search  problem. It is a useful starting  standard,  because several 
conformational search methods have  already  been compared on a 
small set of well-known  test sequences in this  model (Unger & 
Moult,  1993; Yue et al., 1995; Toma & Toma,  1996). 

The conformational search strategy 
Our  Core-directed  chain  Growth  (CG) method grows a chain  con- 
formation by a systematic  covalent addition of one  “segment” at a 
time.  A segment is a connected string of a few  residues,  the  length 
of which depends on a procedure  described below. Our method 
begins by estimating the  size  of  the hydrophobic  core.  Following 
Yue and Dill ( 1993), we count the total number of H monomers in 
the sequence, and construct a core, which is as nearly square as 
possible,  that can  contain all the  H monomers.  This is not the  final 
true  core of the  native  protein; i t  is an optimal core  constructed  as 
if there  were no chain  connectivity  constraint, but it gives a frame- 
work for  construction. We refer to  this  optimal  construct  as “the 
core.”  The  space  inside  and  outside of  the core is arranged in shells 
or  layers.  Figure 1 illustrates these  definitions  and  shows a grow- 
ing chain. 

The  CG  algorithm begins by randomly  selecting any  H  mono- 
mer, numbered i in the sequence, that has a sequence  neighbor 
i ~ I or i + 1 that is also hydrophobic.  This first residue is placed 
randomly o n  the outermost shell of the  core  (see Fig. I ) .  

For the  first segment,  and all subsequent  ones as they  are added 
to the existing  chain, we explore all possible segment  conforma- 
tions by exhaustive  enumeration, with preceding  segment  confor- 
mations held fixed.  Chain  growth by segment  “look-ahead” has 
been studied  extensively by Meirovitch, particularly  for estimating 
partition functions  (Meirovitch, 1977, 1983b, 1983a,  1985; Meiro- 
vitch & Livne, 1988). Segment  conformations that violate excluded 
volume  constraints  (either within  the segment  or by interference 
with preexisting  segments) are eliminated.  Among the remaining 
acceptable  segment  conformations, a conformation of  the  newly 
added  segment is chosen  according to a weight  computed  from the 
following heuristic function, f;,: 

,f - x s;jP/d + s / p  + 
I? - 2 S H H  

H € . w ~ ~ w ~ ? I   P E  w’,qm<’nl HH < o t t 1 m  I \  

+ x sPP + x S H P .  ( 1 )  
P P  <‘0?11‘1<’1~ H P  <<,,,I‘,< 1 ,  
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Fig. 1. A growing chain shown superimposed on its lattice core and sur- 
rounding layers. Thin full line indicates the core. Thin dashed lines indicate 
the shells. Chain segments already laid down and fixed into place are 
indicated with heavy line bonds. Dashed bonds indicate a chain segment 
for which an exhaustive search is being performed during the current 
growth step. Circled residue is the first residue that was laid on the lattice. 
Arrows point to  end residues of previously grown chain segments. Mini- 
mum segment length was chosen to be three residues in this example. 

The main task of the heuristic function is to foster the formation of 
a hydrophobic core. In f h ,  the first two terms are "unitary" based 
on propensities of H or P to be  in a core, and the last terms are 
"binary" based on pair interactions: HH, HP, or PP. The unitary 
terms describe a  sort of "mean-field" bias to move H monomers 
toward the core and to move P monomers toward the surface. 
Table 1 shows the components of the scoring function (positive 
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means favorable). This function does not preclude P's inside or H's 
outside. The scoring function does not influence the energy of a 
conformation; the bias function simply chooses which conforma- 
tions to explore first. 

The binary parameters favor HH contacts, in a "time-dependent" 
or "growth-dependent" way.  At first, the HH score, SHH,  is set to 
zero, to prevent premature hydrophobic collapse. At later stages, 
the HH attraction is strengthened. Because any PH contacts pro- 
hibit potential HH contacts, we set SpH < 0 from the beginning. 

The function fh  is highly degenerate: many different conforma- 
tions have the same scorefh. We choose among the highest-scoring 
conformations randomly. 

After fixing the conformation of a segment, we choose the next 
segment by stepping along the sequence toward one of the two 
chain ends. We choose randomly between the two possible growth 
directions until a chain terminus is reached; then growth is unidi- 
rectional. For each added segment, we must choose its length. 
The segment length, lsejimpnr. is chosen to be between an upper 
limit, 1,~'&,,,, and a lower limit, l , ~ ~ m e n , .  A segment is chosen to be 
long enough to reach the next H in the sequence, or to have the 
upper limit length, whichever is shorter. The aim is to have H as 
the last residue in the segment because the core region is smaller 
than the non-core region and contacts with H monomers are stron- 
ger determinants of structure than those with P monomers. The 
segment length minimum is needed to insure that conformational 
searching is not too local. This cycle of choosing a growth direc- 
tion, then a segment length, then enumerating all segment confor- 
mations and selecting a good one, is repeated until the chain is 
fully grown (see Fig. 2 ) .  

After laying down a full-chain conformation, we use a second 
phase of iterative refinement for those chains that reached a  suf- 
ficiently large number of HH contacts. We chose the best 1 % of the 
conformations for refinement. For the chosen conformations, we 
delete backward from the end until  we reach a randomly chosen 
nucleus of length lnUc. Then the algorithm regrows the rest of the 
chain in the same manner as described above. This second phase 
gives a substantial improvement in the search power. We stop the 
algorithm after some tolerable period of computer time. There is 

Table 1. Parameters of the heuristic function 

Parameter Value Description 

Weight  of H in core region. 
Weight  of H outside core region. 
Weight  of P outside core region. 
Weight  of P in first shell inside core region. 
Weight  of P in the deeper shells of the core region. 
Weight of HH contacts while 1 < I13 l,.ha,,,.h 
Weight  of HH contacts while 1/3 l ihuln 5 1 < 3/4 &ha,,,. 

Weight of HH contacts while I 2 314 
Weight  of PP contacts. 
Weight of HP contacts. 
Minimum segment length in growth step. 
Maximum segment length in growth step. 
Length of the segments left as nuclei in the second phase. 

a 

"Weight is decremented by - I in  each lattice shell surrounding the estimated core region. 
hl, Current length of chain. &hain, Length of complete chain. 
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Fig. 2. CG  algorithm. 

no  guarantee that CG will find  global  minima.  But  we find (see 
below) that CG finds  global  optima  more reliably  than other  meth- 
ods that have  been  tested  on  the  same HP model  sequences. 

Tests of search speed and penetration depth 

Table 2 shows  2D  lattice  model  tests  on  sequences  generated by 
Unger  and  Moult  (1993).  Using  those test sequences,  Unger  and 
Moult  showed that their  GA  was  much  faster than  their MC search 

Table 2. Performance of the CG method in comparison 
to results  reported in the literature 

l a  
tGA tC.1 tCG 

Em,nh (min)' (min)"  (min)' 

20 -9 8.6 X 4.8 X 10-4 3.6 X IO-*  
24 -9 1.0 x IO" 4.0 x 1.1 x IO" 
30 -8 6.1 X IO" 3.0 X 10-3 7.8 X 10.' 
36 - 14 9.1 X IO" 1.1 x IO" 2.2 x IO" 
48 -23 - 5.8 x IO" 6.3 X IO" 

60 -3s - 1.0 x 10" 9.7 x 10' 
64 -42 - 

so -21 5.3 x 10' 0.4 X 10" 3.1 X I O 2  

- 9.1 X 10' 

"Sequence  length. 
bGlobal  energy  minimum in units  of  number of HH contacts. 
'Estimate of CPU  time required to find the  minima using a  GA for the 

sequences  for  which  the  minima  were  found  (Unger & Moult, 1993). 
dEstimate of CPU  time  required  to find the minima  using  the  CI  Algo- 

rithm  for  the  sequences  where the method  succeeded  (Toma & Toma, 
1996). 

eAverage  CPU  time needed to  find  the  global  energy  minimum using 
CG. 
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strategy. Using the same  test  sequences,  Toma  and  Toma  (1996) 
recently showed  that  the CI method  was  faster  than  the  GA  method 
of Unger  and  Moult. Also, the  CI  method of Toma  and  Toma  found 
the 48-mer  and  60-mer  structures  that the GA had failed to find 
previously. Table 2 compares  our  CG  results with the  GA  and  CI 
results. The  times  given  for  the  GA  and the CI  method  are  esti- 
mates of the CPU  time  needed by a Sparc 1 workstation  based on 
the reported  number of energy  evaluations.  The  times  given  for CG 
correspond  to  the  measured  CPU  times  on a Sparc 1. 

Table 2 shows  that the CG search strategy penetrates  to  lower 
free  energies than  the GA or CI methods.  The  CG  approach  finds 
the  conformations of minimum  free  energy in all cases. In contrast, 
GA  does not find  the 48-mer, 60-mer, or 64-mer  structures,  and the 
CI  method  does not find  the 64-mer. Moreover,  the CG method 
discovered that the  48-mer  and  60-mer  structures that Unger  and 
Moult  believed  were the  global minima  are, in fact,  only  local 
minima.  Our CG search  finds  structures of lower  energy in those 
two  cases.  For  these  short  sequences in 2D,  our  method is slower 
than C1, and roughly comparable to GA (although our comparisons 
are  somewhat  different:  Unger & Moult  [I9931  and  Toma & Toma 
[ 19961 report the best speed in five runs, whereas  here  we  report 
average  speeds). If we define  the  mean "search  velocity" as the 
total depth of  the free  energy  landscape  (to the global  minimum) 
divided by the time required to get there, it is clear that  all these 
methods  give very  high  search  velocities for  the  short  chains (9 
contacts/3.6 X IO" = 2.50 HH  contacts per minute  for the  20-mer, 
compared  to  4.6  contacts  per  minute  for  the  64-mer). As  noted 
below,  the CG  method increasingly overtakes the GA  and  CI meth- 
ods  for  longer  chain  lengths, particularly in three  dimensions. 

Figure 3 shows the chain-length  dependence of  the average  CPU 
time required by CG  to find the  global  minimum  on a Sparc 1 
workstation.  This  figure  shows that  the dependence of the  search 
time  on  sequence  is  often  greater than  the dependence on chain 
length. In this  case,  the  longer  sequences in the  test set of Unger 
and  Moult need less  search  time by CG than  would be  predicted 
from the shorter  sequences. 

Table 3 shows  longer  chain  3D test cases. Table  3 gives  the 
search  times  for the I O  different 3D 48-mer  sequences used by Yue 
et  al. ( 1  99.5) to  compare  MC  and  HZ  search  methods. We show 
also the computer  times  for the constraint-based  exhaustive  method 

1000 I I I 1 

" " .  1 

10 20 30 40 50 60 70 80 
chain length 

Fig. 3. CG  search  speed versus chain  length. Average CPU  time  (Sparc I )  
needed  to find the  global  energy  minimum, for the 2D HP  lattice model 
proteins  of  Unger  and  Moult (1993). 
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Table 3. Performance of the CG method in comparison to MC, HZ, and CHCC in finding 
the global energy minima of HP model 48-mer proteins on 3 0  cubic lattices 

 NO.^ EVC' (min)' 
t H Z  

(min)' 
k H C C  

(min)g 
tCG 

1 
2 
3 
4 
5 
6 
7 
8 
9 

I O  

- 30 
- 30 
-31 
- 30 
- 30 
- 30 
-31 
-31 
- 30 
- 30 

-31 
- 32 
-31 
- 30 
- 30 
- 29 
- 29 
- 29 
-31 
-33 

- 32 
- 34 
- 34 
-33 
-32 
-32 
-32 
-31 
- 34 
-33 

1.5 X 104 

7.1 x 104 
8.2 X 104 

1.1  X 105 

2.2 X 104 
1.4 X 104 
1.6 x 104 
4.1 X 103 

1.6 X IO6 

1.8 X IO5  

3.0 X IO '  
2.3 X IOo 
3.0 X IO '  
7.1 X I O '  
3.2 X 10' 
8.0 X I O '  
1 .1  x I O '  
5.3 x IO '  
8.3 X 10' 
4.8 X IO" 

9.4 x 100 
3.5 x I O '  
6.2 X I O '  
2.9 X I O '  
1.2 x IO '  
4.6 X 10' 
6.4 X IO '  
3.8 X I O '  

h - 

1.1 x IO" 

aSequence number corresponds to sequences and numbers given in  Yue et al. (1995). 
'Minimum energy obtained by MC, as given in  Yue et al. (1995) (one HH contact corresponds to one energy unit) 
'Minimum energy obtained by applying HZ algorithm, as given in  Yue et al. (1995). 
dGlobal energy minimum as determined by Yue et  al. (1995). 
eEstimate of CPU time needed to find the global energy minimum using HZ algorithm. 
'CPU time needed by CHCC (Yue et al., 1995). 
gAverage CPU time needed to find the global energy minimum using CG. 
hGlobal minimum was not reached within 72 h, but E = 33 is reached in 26 min. 

(CHCC, Yue & Dill, 1993; Yue et al., 1995). CHCC is currently the 
fastest lattice method that is guaranteed to find the global mini- 
mum. The  two left-hand energy columns show that the MC and HZ 
methods each found a global minimum for only 1 of the 10 se- 
quences. Toma and Toma (1996) reported that the CI method finds 
global minima in 2 of the 10 cases. Our CG method finds global 
minima for  9 of the 10 sequences. For sequence 9, where CG fails 
to find the global minimum in 72 h, it finds a first excited state in 
26 min. Therefore, although it is not perfect, the CG method is the 
only nonexhaustive method currently available that is reasonably 

reliable in finding global minima for these 3D 48-mers. It is worth 
noting that reaching global optima, by any method, normally takes 
far longer than reaching near-global optima because energy land- 
scapes become very narrow as a function of depth. In that regard, 
the most challenging test of a search method is whether it finds 
global optima, rather than just local optima. CG performs very 
well in this regard. 

Moreover, the search times for CG  are about as short as those of 
CHCC, and a few orders of magnitude faster than our estimate of 
how long HZ  would have taken to find the true minima. It is 

Sequences" 

HPHPPHHPHPPHPHHPPHPH 

HHPPHPPHPPHI'PHPPHPPHPPHH 

PPHPPHHPPPPHHPPPPHHPPPPHH 

PPPHHPPHHPPF'PPHHHHHHHPPHHPPPPHHPPHPP 

PPHPPHHPPHHI'PPPPHHHHHHHHHHPPPPPPHHPPHHPPHHPPHPPHHHHH 

H H P H P W P H P H H H H P H P P P H P P P H P P P P I ~ P P P H P H H H H P H P H P H P H H  

PPHHHPHHHHHHHHPPPHHHHHHHHHHPHPPPHHHHHHHHHHHHPPPPHHHH HHPHHI'RP 

HHHHHHHHHHHHPHPHPPHHPPHHPPHPPHHPPHHPPHPPHHPPHHP~H~~lPH€~HHHH HHtIHHH 

Examples of globally opt imal  conforrnalionsb 7ntn 

RFFLBLPLLBRBRBLBRRF 

RLBRBRFRFLFFFRFLFLBLBRB 
!I 

42 FLFKRBBRFRRBLBLBLFLBLFLBLFLFRFLFHFLFRFRBRFRBRFRBRBRBI,L,FLLLLBBBI~ 

35 BBLLLBRRRBLLLLBBRFRRRBLLBLBRBRFFRRFFFFRBBBBRRFFLFFFLLFRFR BR 
'1 RBLLFFRFRBRFFLFRRRFRRRFFRBBRBLLHLLLLBBRFRBBLBLL FR 

'3 BBRBLBRBLBBHLLFFRFLFFLBBBBBBBLFRFLFRFRBRRB 

1.4 LLLFRFLFFFLLHBRBLBRBBLFLLLFRRFLFRFLC 
x FRBRFRRRFLLFRFLLBLLLBRRR 
9 

Fig. 4. HP test sequences and their native conformations in two dimensions. aSequences taken from Unger and Moult (1993). bL, left; 
R, right; F, forward; B, backward. 'Energy of globally optimal conformations. 
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r 

Fig. 5. 48-mers in three  dimensions.  “Sequences taken from Yue et al. (1995). hU: up, D: down, L: left, R: right. ‘Energy of globally 
optimal  conformations. ’Minimum energy not reached by CG. 

known that each additional HH contact, close to the global mini- 
mum, requires an exponentially increasing search time, so the 
column fHZ in Table 3 is estimated on that basis. CG has the dis- 
advantage compared to CHCC that it does not guarantee the global 
optimum, but the possible advantage that, because it is not exhaus- 
tive and therefore should not scale exponentially with chain length, 
it  may be useful for much longer chains.  The problem is that there 
are very few longer-chain test cases currently available. The longest 
chain test case available for which a provable global minimum is 
known is an &mer searched by the CHCC method (K. Yue, pers. 
comm.). CHCC finds global optima for the 88-mer in about 40 min 
and the CC method finds a global minimum for that sequence within 
72 h on a Sparc 10 workstation. 

Figures 4, 5,  and 6 list the test sequences we used, along with 
some examples of globally optimal conformations. 

The superior efficiency of the CG algorithm compared to the HZ 
algorithm is also shown in Figure 7, where the lowest energies 

PIIPHH~’I I I IPI IPI ’ l~HP~HP~l lP~HPl’HPPHPl’ l l l l I~~’H~l~l l ’P t lHHl’ l ’  HH 

H~’PHHHPPHPt lHPHH~l i~ t ’Hl’Pt lP t ’Ht lP l ’ t l~PHPPHHl’Pt i  P 

Fig. 6. 88-mer in three  dimensions. ”K. Yue (pers.  comm.). ’U, up; D, 
down; L, left; R, right; F, forward; B,  backward. ‘Energy of globally 
optimal  conformation. 

found in  10-h CPU time on a Sparc 1 workstation are shown. The 
CG method uniformly reaches conformations with substantially 
lower energies than HZ in that time, and the relative performance 
increases with chain length. 

The choice of the parameter values is not particularly critical. 
The values in Table 1 were used in all the cases we reported here. 
We have not attempted to optimize them. It may  be possible to 
improve the search efficiencies. 

Conclusions 
We have described a new conformational search method that we call 
Core-directed chain Growth (CC). For several 2D and 3D lattice 
model literature test sequences, we find that CG substantially out- 
performs other nonexhaustive methods, according to published lit- 
erature results, including various implementations of MC, GA, CI, 
and HZ. CG is effective in finding conformations of  very  low free 
energy, finding global optima in 90% of the published 3D 48-mer 
structures, in contrast to all other nonexhaustive methods, which find 
only 20% or less. The algorithm owes its efficiency to the use  of 
biasing interactions that guide the chain growth to favor hydropho- 
bic burial while they prevent clustering of neighboring hydropho- 
bic residues early in the growth process, because these often impede 
nonlocal contacts characteristic of  very low-energy structures. 

The  CG method is even competitive in efficiency with CHCC, 
the complete search algorithm of  Yue and Dill (1993). Possible 
advantages are that: (1)  the search time in the CG method may  not 
scale exponentially with the chain length, as CHCC does, and thus 
might reach longer chain lengths in reasonable computer time; (2) 
CG does not  rely on HP lattice-specific features, and therefore 
should generalize readily to more realistic protein folding models; 
and (3) these ideas are simple to implement. 
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Fig. 7. Search  depth  of CG  (crosses)  versus HZ (boxes)  for 3D HP lattice 
model  proteins  in I O  h CPU  time on a  Sparc I workstation.  One  HH  contact 
corresponds to one  energy  unit. CG reaches  lower  free  energies in a  given 
search  time. 
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