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Protein design automation 
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Abstract 

We have conceived and  implemented a cyclical protein design strategy  that  couples  theory,  computation,  and ex- 
perimental testing. The  combinatorially  large  number  of possible sequences  and  the  incomplete  understanding  of 
the  factors  that  control  protein  structure  are  the  primary  obstacles in protein  design. Our protein design automa- 
tion  algorithm  objectively  predicts  protein sequences likely to  achieve a desired  fold.  Using a rotamer  description 
of the side chains, we implemented a fast  discrete  search  algorithm  based  on  the  Dead-End  Elimination  Theorem 
to  rapidly  find  the  globally  optimal  sequence in its  optimal  geometry  from  the  vast  number  of possible solutions. 
Rotamer sequences  were scored  for steric complementarity using  a van  der Waals potential. A Monte  Carlo  search 
was then  executed,  starting  at  the  optimal  sequence, in order  to  find  other  high-scoring sequences. As a test of 
the design methodology,  high-scoring  sequences were found  for  the  buried  hydrophobic  residues  of a homodi- 
meric  coiled coil based on GCN4-p1. The  corresponding peptides were synthesized and  characterized by CD spec- 
troscopy  and size-exclusion chromatography. All peptides were dimeric  and  nearly 100% helical at 1 "C, with 
melting temperatures ranging from 24 "C to 57 "C. A quantitative  structure activity relation analysis  was performed 
on  the designed peptides,  and a  significant correlation was found with surface  area  burial.  Incorporation of a bur- 
ied surface  area  potential in the  scoring  of sequences  greatly improved  the  correlation between predicted  and mea- 
sured  stabilities  and  demonstrated  experimental  feedback in  a complete design cycle. 
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Efforts  to design proteins rely on knowledge  of  the physical 
properties  that  determine protein structure, such as  the  patterns 
of  hydrophobic  and  hydrophilic  residues in the  sequence,  salt 
bridges and  hydrogen  bonds,  and  secondary  structural  prefer- 
ences of amino  acids. Various approaches  to  apply  these  prin- 
ciples have been attempted. For example,  the  construction  of 
a-helical  and @sheet proteins with native-like  sequences was at- 
tempted by individually selecting the  residue  required at  every 
position in the  target  fold  (Hecht et al., 1990; Quinn et al., 
1994). Alternatively, a minimalist  approach was  used to design 
helical proteins, where the  simplest possible sequence believed 
to  be  consistent with the  folded  structure was generated  (Regan 
& DeGrado, 1988; DeGrado et al., 1989; Handel  et  al., 1993). 
An experimental method  that relies on  the  hydrophobic  and  po- 
lar  (HP)  pattern  of a sequence was developed  where a library 
of sequences with the correct pattern  for a four-helix bundle was 
generated by random  mutagenesis  (Kamtekar  et  al., 1993). 
Among  non  de  novo  approaches,  domains  of  naturally  occur- 
ring proteins have been modified or coupled  together to achieve 
a desired  tertiary  organization  (Pessi  et  al., 1993; Pomerantz 
et  al., 1995). 

Reprint  requests  to:  Stephen L. Mayo, 147-75 Biology, California  In- 
stitute of Technology,  Pasadena  California 91 125; e-mail:  steve@mayo. 
caltech.edu. 

Although  the  correct  secondary  structure  and  overall  tertiary 
organization seem to have been attained by several of the  above 
techniques, many designed proteins appear  to lack the  structural 
specificity of  native proteins.  The  complementary geometric ar- 
rangement of amino  acids in the  folded  protein is the  root of 
this specificity and is encoded in the  sequence.  However, few 
protein design methods  to  date  have  applied specific packing 
interactions systematically (Hurley et  al., 1992; Heliinga & Rich- 
ards, 1994; Jones, 1994; Kono&Doi, 1994; Desjarlais&Handel, 
1995). In  addition,  the  qualitative  nature  of  many design ap- 
proaches  has  hampered  the  development  of  improved, sec- 
ond-generation  proteins, because there  are  no objective methods 
for  learning  from  past design  successes and  failures. 

We have conceived and  implemented a cyclical design strat- 
egy that  couples  theory,  computation,  and  experimental testing 
in order  to  address  the  problems  of specificity and  learning 
(Fig. 1). Our  protein design automation  (PDA) cycle is com- 
prised  of four  components: a design paradigm, a simulation 
module, experimental  testing, and  data analysis. The design par- 
adigm is based on  the  concept of inverse  folding  (Pabo, 1983; 
Bowie et al., 1991) and  consists  of  the use of a  fixed backbone 
onto which a sequence of  side-chain rotamers  can  be  placed, 
where  rotamers  are  the  allowed  conformations  of  amino  acid 
side  chains  (Ponder & Richards, 1987). Specific tertiary  inter- 
actions  based  on  the  three-dimensional  juxtaposition of atoms 
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Fig. 1. Protein  design  automation  cycle. 

are used to  determine  the  sequences  that will potentially best 
adopt  the  target  fold.  Given a backbone  geometry  and  the  pos- 
sible rotamers allowed for  each  residue  position as input,  the 
simulation  must  generate  as  output a rank-ordered list of  solu- 
tions  based on a cost  function  that explicitly considers the  atom 
positions in the  various  rotamers.  The principle obstacle is that 
a fixed backbone  comprised  of n residues  and m possible rota- 
mers per residue (all rotamers of  all  allowed amino acids) results 
in m” possible arrangements  of  the  system,  an  immense  num- 
ber for  even  small design problems. For example, to  consider 
50 rotamers  at 15 positions results in more  than IOz5 sequences, 
which,  at  an  evaluation  rate of IO9 sequences  per  second  (far 
beyond  current  capabilities),  would  take IO9 years to  exhaus- 
tively search  for  the  global  minimum.  The  synthesis  and  char- 
acterization of a subset of amino  acid sequences presented by 
the simulation module generates  experimental data  for  the  anal- 
ysis module.  The analysis  section  discovers  correlations between 
calculable  properties  of  the  simulated  structures  and  the  exper- 
imental  observables. The  goal of the analysis is to suggest quan- 
titative modifications to  the  simulation  and in some cases to  the 
guiding design paradigm.  In  other  words,  the cost function used 
in the  simulation  module describes a theoretical potential energy 
surface  whose  horizontal  axis  comprises all possible  solutions 
to  the  problem  at  hand  (Fig. 2). This  potential  energy  surface 
is not  guaranteed  to  match  the  actual  potential energy surface 
that is determined  from  the  experimental  data.  In  this light, the 
goal of the analysis becomes the correction of the simulation cost 
function in order  to  create  better  agreement between the  theo- 
retical  and  actual  potential  energy  surfaces. If such  corrections 
can be found,  then  the  output of subsequent simulations will  be 
amino  acid  sequences  that  better  achieve  the  target  properties. 
This design cycle is generally applicable to  any  protein system 
and, by removing  the  subjective  human  component, allows  a 
largely unbiased approach  to  protein design, i.e.,  protein design 
automation. 

Results and discussion 

Design paradigm 

The  PDA side-chain selection algorithm  requires  as input a  back- 
bone  structure  defining  the  desired  fold.  The  task  of designing 
a sequence  that  takes  this  fold  can  be viewed as  finding  an  op- 
timal arrangement of amino acid  side  chains relative to  the given 

Sequence  Space 

Fig. 2.  Schematic of actual versus theoretical  potential energy surfaces. 
The  horizontal  axis  represents  all of the  possible  solutions for the sys- 
tem  (all  sequences in all  possible  conformations)  and  the  vertical  axis 
represents  the  energy of the  solutions.  Note  that  the  solution  space is 
discrete;  continuous  lines  are used for  illustrative  purposes  only. 

backbone. It is not  sufficient  to  consider on/y the identity of an 
amino acid when evaluating  sequences. In  order  to correctly ac- 
count  for  the  geometric specificity of side-chain placement, all 
possible conformations of each side chain  must  also be exam- 
ined. Statistical surveys  of the  protein  structure  database  (Pon- 
der & Richards, 1987) have  defined a discrete set of allowed 
conformations, called rotamers,  for each amino acid side chain. 
We use  a rotamer  library  based  on  the  Ponder  and  Richards li- 
brary  to  define allowed conformations  for  the side chains in 
PDA. 

Using a rotamer  description  of side chains,  an  optimal se- 
quence  for a backbone  can be found by screening all possible 
sequences of rotamers, where each backbone position can be oc- 
cupied by each  amino  acid  in  all its  possible rotameric  states. 
The  discrete  nature  of  rotamer sets allows a simple calculation 
of the  number of rotamer  sequences  to be tested. A backbone 
of length n with m possible rotamers per position will have mn 
possible rotamer sequences. The size of the  search  space  grows 
exponentially with sequence length,  which,  for typical  values of 
n and m,  render  intractable  an  exhaustive  search.  This  combi- 
natorial  “explosion” is the  primary  obstacle  to be overcome in 
the  simulation  phase  of  PDA. 

Simulation algorithm 

We use an extension of the  Dead-End  Elimination  (DEE)  theo- 
rem  (Desmet  et  al., 1992,  1994; Goldstein, 1994) to solve the 
combinatorial  search  problem.  The  DEE  theorem is the basis 
for a very fast  discrete  search  algorithm  that was  designed to 
pack  protein side chains on a  fixed backbone with a known se- 
quence.  Side  chains  are described by rotamers  and  an  atomis- 
tic force field  is  used to  score  rotamer  arrangements.  The  DEE 
theorem  guarantees  that, if the  algorithm converges, the global 
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optimum packing is found.  The  DEE  method is readily extended 
to  our  inverse  folding design paradigm by simply  releasing the 
constraint  that a position is  limited to  the  rotamers of a  single 
amino  acid.  This  extension of DEE  greatly  increases  the  num- 
ber of  rotamers  at  each  position  and  requires a significantly 
modified  implementation  to  ensure  convergence  (B.I.  Dahiyat 
& S.L.  Mayo,  unpubl.  results).  The  guarantee  that  only  the 
global  optimum will be  found is still valid,  and in our extension 
means  that  the globally optimal  sequence is found in  its opti- 
mal  conformation.  The initial  scoring function for sequence ar- 
rangements used in the  search was an  atomic  van  der Waals 
potential.  The van der Waals potential reflects excluded  volume 
and  steric  packing  interactions, which are  important  determi- 
nants of the specific three-dimensional  arrangement of protein 
side  chains. 

Following DEE  optimization, a rank-ordered list of sequences 
is generated by a Monte  Carlo  search in the  neighborhood of 
the  DEE  solution.  This list of  sequences is necessary because of 
possible differences between the  theoretical  and  actual  poten- 
tial  surfaces  (Fig. 2). Starting  at  the  DEE  solution,  random po- 
sitions  are  changed  to  other  rotamers,  and  the new sequence 
energy is calculated. I f  the new sequence meets the  Boltzmann 
criteria for acceptance, it is used as  the starting point for another 
jump  (Metropolis et al., 1953). After a predetermined  number 
of jumps,  the best scoring  sequences  are  output  as a rank- 
ordered list. Starting  at  the  global  optimum is critical for the 
Monte  Carlo  routine  to find high-scoring sequences and  to avoid 
searching low-scoring  regions of sequence  space.  Hence,  the 
DEE  algorithm  and  the  Monte  Carlo search are  both critical for 
providing  candidate  sequences for experimental  testing. 

Model  system and experimental testing 

The  homodimeric coiled  coil  of CY helices was selected as  the ini- 
tial design target.  Coiled coils are synthesized  readily by solid- 
phase  techniques  and  their helical secondary  structure  and di- 
meric  tertiary  organization  ease  characterization.  Their se- 
quences  display a  seven-residue periodic H P  pattern called  a 
heptad  repeat, (a .b . c .d . e . f . g )  (Cohen & Parry, 1990). The a 
and d positions  are  usually  hydrophobic  and  buried  at  the di- 
mer interface,  whereas  the  other  positions  are usually polar  and 
solvent  exposed  (Fig. 3). The  backbone needed for  input  to  the 
simulation  module was taken  from  the  crystal  structure of 
GCN4-p1 (O’Shea et al., 1991). The 16 hydrophobic a and d po- 
sitions were optimized in the  crystallographically  determined 
fixed field of the rest of the  protein.  Homodimer sequence  sym- 
metry was enforced,  only  rotamers  from  hydrophobic  amino 
acids  (A, V, L,  I ,  M, F, Y, and  W) were considered,  and  the as- 
paragine  at  an a position,  Asn 16,  was not  optimized. 

Optimizing the 16 a and d positions  each with 238 possible hy- 
drophobic  rotamers results  in 23816 or lo3*  rotamer sequences. 
The  DEE  algorithm  finds  the  global  optimum in 3 min,  includ- 
ing rotamer energy  calculation  time. The  DEE solution  matches 
the  naturally  occurring  GCN4-p1  sequence of a and d residues 
for all of the 16 positions. A 106-step  Monte  Carlo  search  run 
at a temperature of 1 ,OOO K generated  the list of sequences rank 
ordered by their  score. To test  reproducibility,  the  search was 
repeated  three  times  with  different  random  number seeds and 
all trials  provided essentially identical results. The  second best 
sequence is a Val 30 to  Ala  mutation  and lies 3 kcal/mol  above 
the  ground  state  sequence.  Within  the  top 15 sequences,  up  to 

Fig. 3. Helical  wheel  diagram of a coiled  coil. One  heptad  repeat is 
shown viewed down  the  major axes of the helices. The a and d positions 
define  the  solvent-inaccessible  core of the  molecule  (Cohen & Parry, 
1 990). 

six mutations  from  the  ground  state  sequence  are  tolerated, in- 
dicating  that a variety  of packing  arrangements  are  available 
even for a  small coiled coil.  Eight  sequences with a  range of  sta- 
bilities were selected for experimental  testing,  including six from 
the  top 15 and  two  more  about 15 kcal/mol higher in  energy, 
the 56th and  70th in the list (Table 1). 

The designed a and d sequences were  synthesized  using the 
GCN4-p1  sequence  for  the b.c  and e . f . g  positions.  Standard 
solid-phase  techniques were  used and,  following  HPLC  purifi- 
cation,  the  identities of the  peptides were confirmed by mass 
spectrometry. CD spectroscopy was  used to assay the  second- 
ary  structure  and  thermal stability of  the designed peptides. The 
CD spectra of  all the  peptides  at 1 “C  and a concentration of 
40  pM  exhibit  minima at  208 and 222 nm  and a maximum  at 
195 nm, which are  diagnostic  for a helices (Fig.  4A).  The ellip- 
ticity values at 222 nm indicate that all  of the peptides are >85% 
helical (approximately -28,000 deg cm2/dmol), with the excep- 
tion of PDA-3C, which is 75% helical at  40  pM  but increases 
to  90% helical at 170 p M  (Table 2). The melting temperatures 
(T,’s) show a broad  range of values (Fig.  4B),  with six of the 
eight peptides melting at greater than physiological temperature. 
Also,  the T,’s were not  correlated  to  the  number  of  sequence 
differences from  GCN4-p 1. Single amino acid  changes  resulted 

Table 1. Partial Monte Carlo list from coiled coil prediction 
consisting of the peptides synthesized and characterized” 

Name  Sequence  Rank  Energy 
- 

PDA-3Hb 
PDA-3A 
PDA-3G 
PDA-3B 
PDA-3D 
PDA-3C 
PDA-3F 
PDA-3E 

RMKQLEDKVEELLSKNYHLENEVARLKKLVGER 
RMKQLEDKVEELLSKNYSLENEVARLKKLAGER 
RMKQLEDKVEELLSKNYHLENEMARLKKLVGER 
RLKQMEDKVEELLSKNYHLENEVARLKKLVGER 
RLKQMEDKVEELLSKNYHLENEVARLKKLAGER 
RHKQUEDKAEELLSKNYHLENEVARLKKLVGER 
RHKQFEDKVEELLSKNYHLENEVARLKKLVGER 
RHKQLEDKVEELLSKNYHAENEVARLKKLVGER 

1 
2 
5 
6 

13 
14 
56 
IO 

-118.1 
-115.3 
-112.8 
-112.6 
-109.7 
-109.6 
-103.9 
-103.1 

a Monte  Carlo  rank  and  score  are listed and  the a and d positions  are 
indicated  by  bold  type  to  highlight  the  optimized  positions.  The  fixed 
b .c and e- f  -g positions  are also included  in  order to show the  complete 
sequences that were  synthesized and  tested. 

Matches  GCN4-pI  wild-type  sequence. 
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Fig. 4. Typical CD data. A: Spectra of PDA-3A and PDA-3E show  the  minima  at 222 and 208 nm  and  the  maximum at 195 nm 
characteristic  of a helices. B: Thermal  melts of these  peptides  monitored  at 222 nm were used to  calculate T, , , 's  from  the  min- 
ima of plots of d[O] /dT" versus T (inset). 

in some of the  most  and least stable peptides, demonstrating  the 
importance  of specificity in  sequence  selection. 

Size-exclusion chromatography  confirmed  the dimeric nature 
of these  designed  peptides.  Using  coiled  coil  peptides  of known 
oligomerization  state  as  standards,  the PDA peptides  migrated 
as  dimers.  This result  is consistent  with  the  appearance of 0- 
branched  residues  at a positions  and leucines at d positions, 
which have  been  shown  previously to  favor  dimerization  over 
other  possible  oligomerization  states  (Harbury et al., 1993). 

The  characterization of the PDA peptides  demonstrates  the 
successful  design of several stable  dimeric helical coiled  coils. 
The  sequences were generated  automatically in the  context of 
the design paradigm by the simulation module using well-defined 
inputs  that explicitly consider the HP patterning  and steric spec- 
ificity of  protein  structure. Two-dimensional NMR experiments 
aimed  at  probing  the specificity of  the  tertiary  packing  are  the 
focus  of  further  studies  on these peptides.  Initial  experiments 
show  significant protection of amide  protons  from chemical ex- 

Table 2. CD data and calculated structural properties of the PDA  peptidesa 

-[e1222 T m   EM^ A!Tp AAp yo1 Rot 
Name  (deg  cm2/dmol) ("C) (kcal/mol) (A ) (A2) (A3) bonds (kcal/mol) 

EcQ 

PDA-3H 
PDA-3A 
PDA-3B 
PDA-3G 
PDA-3F 
PDA-3D 
PDA-3C 
PDA-3E 

33,000 
30,300 
28,200 
30,700 
28,800 
27,800 
24,100 
27,500 

57 
48 
47 
47 
39 
39 
26 
24 

-118.1 
-115.3 
-1  12.6 
-112.8 
-103.9 
-109.7 
-109.6 
-103.1 

2,967 
2,910 
2,977 
3,003 
3,000 
2,920 
2,878 
2,882 

2,341 
2,361 
2,372 
2,383 
2,336 
2,392 
2,400 
2,361 

1,830 
1,725 
1,830 
1,878 
1,872 
1,725 
1,843 
1,674 

28 
26 
28 
32 
28 
26 
26 
24 

-234 
-232 
-242 
- 240 
-188 
- 240 
-149 
- 179 

-308 
-312 
-306 
- 309 
-302 
-310 
-304 
- 309 

(kcal/mol) 
E v d W  

409 
400 
379 
439 
420 
370 
398 
41 1 

. ~ ~~ 

207 
203 
210 
212 
212 
206 
215 
203 

I28 
128 
127 
128 
128 
127 
129 
127 

". " "" .. - ~- ~. .~ ~~ 

a EMC is the  Monte Carlo energy; AAnP and AAP are  the  changes  in  solvent-accessible  nonpolar  and  polar  surface  areas  upon  folding,  respec- 
tively; ECQ is the  electrostatic  energy  using  equilibrated  charges; ECG is the  electrostatic  energy  using  Gasteiger  charges; Evdw is the  van  der  Waals 
energy; Vol is the side-chain  van  der  Waals  volume;  Rot  bonds is the  number  of  side-chain  rotatable  bonds  (excluding  methyl  rotors);  Npb  and 
Pb  are  the  number of buried  nonpolar  and  polar  atoms,  respectively. 

. 
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change  and  chemical  shift  dispersion  comparable  to  GCNCp1 
(B.I. Dahiyat, Y. Xu, & S.L.  Mayo,  unpubl. results) (Oas et al., 
1990; Goodman & Kim, 1991). 

Data analysis and design feedback 

A detailed  analysis  of  the  correspondence between the  theoret- 
ical and  experimental  potential  surfaces  (Fig. 2), and  hence  an 
estimate of the accuracy of the  simulation cost function, was en- 
abled by the collection of  experimental  data. Using thermal  sta- 
bility as a  measure  of  design performance, melting temperatures 
of  the  PDA  peptides were plotted  against  the  sequence  scores 
found in the  Monte  Carlo  search  (Fig. SA). The  modest  corre- 
lation, 0.67, in the  plot  shows  that,  although  an exclusively van 
der Waals scoring  function  can  screen  for  stable  sequences, it 
does  not  accurately  predict  relative  stabilities.  In  order  to  ad- 
dress  this  issue, correlations between calculated structural  prop- 
erties and T , ’ s  were examined  systematically using quantitative 
structure-activity  relationships  (QSAR), which is a statistical 
technique used commonly in structure-based  drug design (Hop- 
finger, 1985). 

Table  2 lists various  molecular  properties  of the  PDA peptides 
in addition  to  the  van  der Waals-based Monte  Carlo scores and 
the  experimentally  determined T,’s. A  wide range  of  proper- 
ties was examined, including  molecular  mechanics components, 
such  as  electrostatic  energies,  and  geometric  measures, such as 
volume.  The  goal  of  QSAR is the  generation of equations  that 
closely approximate  the  experimental  quantity, in this case T, , 
as a function  of  the  calculated  properties.  Such  equations sug- 
gest  which properties  can  be used  in an improved  cost  function, 
The  PDA analysis module employs  genetic function  approxima- 
tion  (GFA)  (Rogers & Hopfinger, 1994), a novel method  to  op- 
timize  QSAR  equations  that selects  which properties  are  to  be 
included  and  the  relative weightings  of the  properties using  a 
genetic algorithm.  GFA  accomplishes  an efficient search  of  the 
space  of possible equations  and robustly  generates  a list of  equa- 
tions  ranked by their  correlation  to  the  data. 

Equations  are  scored by lack of  fit  (LOF), a weighted  least- 
square  error  measure  that resists overfitting by penalizing equa- 
tions with more terms  (Rogers & Hopfinger, 1994). GFA optimizes 
both  the  length  and  the  composition  of  the  equations  and, by 
generating a set of QSAR  equations,  clarifies  combinations  of 
properties  that  fit well and  properties  that recur in  many  equa- 
tions. All of  the  top five equations  that  correct  the  simulation 
energy (EMC) contain  burial of nonpolar  surface  area, AA,, 
(Table 3). The  presence  of AA,, in all of  the  top  equations, in 
addition  to  the low LOF of the  QSAR  containing  only E,, and 
AA,,,  strongly  implicates  nonpolar  surface  burial  as a critical 
property  for predicting peptide stability. This  conclusion is not 
surprising given the  role of the  hydrophobic effect  in protein en- 
ergetics (Dill, 1990). 

To assess the  predictive  power of these  QSAR  equations,  as 
well as their  robustness,  cross  validation analysis was conducted. 
Each  peptide  was  sequentially  removed  from  the  data set and 
the  coefficients of the  equation in question were refit.  This new 
equation was then used to predict the withheld data  point,  When 
all of  the  data  points  had been predicted in this  manner,  their 
correlation to  the  measured Tm’s was computed  (Table 3). Only 
the EMc/AA,,  QSAR  and  the E,c /AA, , /AA,  QSAR  per- 
formed well in  cross  validation. The EMc/AA,,  equation  could 
not  be expected to fit the  data  as  smoothly  as QSAR’s with three 
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Fig. 5. Comparison of simulation cost functions to experimental T,,’s. 
A: Initial cost function, which contains only a van der Waals term for 
the eight PDA peptides. B improved cost function containing polar and 
nonpolar surface area terms weighted by atpmic solvation parameters 
derived from QSAR analysis; 16 cal/mol/A2  favors  nonpolar surface 
burial and 86 cal/mol/A* opposes polar surface  burial. 

terms  and hence had a lower cross  validated r 2 .  However, all 
other  two-term QSAR’s had  LOF  scores  greater  than 48 and 
cross  validation  correlations less than 0.55 (data  not shown). The 
QSAR  analysis  independently predicted  with no subjective  bias 
that  consideration  of  nonpolar  and  polar  surface  area  burial is 
necessary to  improve  the  simulation.  This result is consistent 
with previous studies  on  atomic  solvation  potentials  (Eisenberg 
& McLachlan, 1986; Wesson & Eisenberg, 1992). Further, sim- 
pler structural measures,  such as  number  of buried atoms, which 
reflect  underlying  principles  such  as  hydrophobic  solvation 
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Table 3. Top five QSAR equations generated by GFA with 
LOF, correlation coefficient, and cross validation scores" 

QSAR equation  LOF r2   CVr '  
~ ~~~ ~ 

~ ~ ~ ~ . ~~~~ ~~ "" ~~~~~~ ~ ~ 

-1.44 * EM, + 0.14 * AA,,, - 0.73 * Npb 16.23 0.98 0.78 
-1.78*E~<  +0.20*AA, , , -2 .43*Rot  23.13 0.97 0.75 
-1.59 *  EM^ + 0.17 * AAnl, - 0.05 * VOl 24.57 0.97 0.36 
- 1 . 5 4 * E ~ c  + 0.11 * A A , ,  25.45 0.91 0.80 
-1.60 * EMC + 0.09 * AA,, - 0.12 * A A ,  33.88 0.96 0.90 

~~ .~ ~~~~~~~~ - 
~~ . . -  ~~ ~ ~~~~~~~ 

AA,,,  and AA, are  nonpolar  and  polar  surface  buried  upon  fold- 
ing,  respectively. Vol i s  side-chain  volume,  Npb i s  the  number  of  bur- 
ied nonpolar  atoms,  and  Rot i s  the  number of rotatable  bonds. 

(Chan et al., 1995), were not deemed as significant by the QSAR 
analysis. These results justify  the cost of calculating actual  sur- 
face areas,  though in some  studies simpler potentials have been 
shown  to  perform well (van Gunsteren & Mark, 1992). 

AA,, and AA, were introduced  into  the  simulation  module 
to correct the cost function.  Contributions  to surface burial  from 
rotamer/template  and  rotamerhotamer  contacts were calculated 
and used in the  interaction  potential.  Independently  counting 
buried surface  from  different  rotamer  pairs, which is necessary 
in DEE, leads to overestimation of burial because the radii used 
in the  determination of solvent-accessible surfaces  are  much 
larger than  the van der Waals contact radii and hence can  over- 
lap  greatly in a  close-packed  protein  core. To account  for  this 
discrepancy, the areas used in the  QSAR were recalculated using 
the pairwise area  method  and  a new EMc/AA,,/AA, QSAR 
equation  was  generated.  The  ratios of the E,, coefficient to 
the AA",, and AA, coefficients are scale factors  that  are used in 
the  simulation  module  to  convert  buried  surface  area  into  en- 
ergy,  i.e.,  atomic  solvation  parameters.  Thermal stabilities are 
predicted well by this  cost function  (Fig. 5B). In addition,  the 
improved  cost  function still predicts  the  naturally  occurring 
GCN4-pI  sequence as the  ground  state.  The  surface  area  to  en- 
ergy scale factors, 16 cal/mol/A2  favoring  nonpolar  area burial 
and 86 cal/mol/A2  opposing  polar  area  burial,  are  similar in 
sign,  scale, and relative magnitude to solvation potential  param- 
eters derived from  small molecule transfer  data  (Wesson & 
Eisenberg, 1992). 

h repressor mutants 

To demonstrate  the  generality  of  the  cost  function,  other  pro- 
teins  were examined using the  simulation  module. A library of 
core  mutants of the  DNA-binding  protein h repressor  has been 
characterized extensively by Sauer and coworkers (Lim & Sauer, 
1991). Specifically, a cluster  of three buried residues, V36, M40, 
and V47, were randomly  mutated  to Val, Met,  Leu, Ile, or Phe. 
Seventy-eight of  the 125 possible combinations were  generated. 
Also,  this  data set has been  used to  test  several computational 
schemes and  can serve as a basis for  comparing  different  force 
fields  (Lee & Levitt, 1991;  van Gunsteren & Mark, 1992; Hel- 
linga & Richards, 1994). The  simulation  module, using the cost 
function  found by QSAR, was  used to find  the  optimal  confor- 
mation  and energy for  each  mutant  sequence. All hydrophobic 
residues within 5 A of the  three  mutation sites were also left free 
to be relaxed by the algorithm.  This 5-A sphere  contained 12 res- 
idues,  a  significantly  larger  problem  than  previous  efforts  (Lee 
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& Levitt, 1991; Hellinga & Richards, 1994), which were rapidly 
optimized by the  DEE  component  of  the  simulation  module. 
The  rank  correlation of the  predicted energy to  the  combined 
activity score  proposed by Hellinga  and  Richards is shown in 
Figure 6. The wild type  has  the lowest  energy of  the 125 possi- 
ble sequences, and  the correlation is essentially equivalent to pre- 
viously published  results, which demonstrate  that  the  QSAR- 
corrected  cost  function is not specific for coiled  coils and  can 
model  other  proteins  adequately. 

Concluding  remarks 

A  full circuit of  the  PDA cycle has been completed.  The  cores 
of stable  peptides that achieve the target fold have been designed 
by a largely automated  computational design procedure  that 
includes  specific tertiary  interactions  and systematically incor- 
porates  experimental  feedback. By using DEE,  the  simulation 
module can very rapidly  find the optimal sequence from the vast 
number of  possibilities. Further,  generating  a list of  candidate 
sequences  and synthesizing and  experimentally  characterizing 
them allowed a  quantitative analysis of properties  important to  
successful  design. A critical feature  that  had been missing from 
the simulation,  the effect of  solvation, was derived from  the  data 
and  incorporated  into the cost function.  This feedback  improved 
design performance  and,  importantly, was not based on subjec- 
tive interpretation of the  data. 

The  PDA design cycle and its elements  can be used  in the  fu- 
ture  as part of de novo  protein  design,  protein redesign, and mu- 
tation strategies. Significant challenges that lie ahead include  the 
generation of de  novo  backbone  structures  for use in the  simu- 
lation  module,  improvement of polar residue rotamer libraries, 
and  the  treatment  of  partially  buried  and  nonburied  positions. 
However, even with these obstacles,  strategies  such  as  PDA, 
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Fig. 6. Rank  correlation of energy  predicted by the  simulation  module 
versus the  combined  activity  score of X repressor  mutants  (Lim & Sauer, 
1991; Hellinga & Richards, 1994). 
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which address  packing  and specific tertiary  interactions, will be 
an  important  part of protein design  in the  future. 

Methods and materials 

Sequence optimization: DEE and Monte  Carlo search 

Our  rotamer  library is similar to  that used by Desmet and  CO- 
workers (Desmet et al., 1992). X ,  and xz angle  values of rotamers 
for all amino  acids except Met,  Arg,  and Lys were expanded 
-t 1 SD  about  the  mean value from  the  Ponder  and  Richards li- 
brary in order to minimize  possible errors  that might  arise from 
the  discreteness of the  library. x, and x4 angles that were un- 
determined  from  the  database statistics  were  assigned  values of 
0" and 180" for Gln and 60°, -60", and 180" for  Met, Lys, and 
Arg.  The  number of rotamers per amino  acid is: Gly, 1; Ala, 
I; Val, 9;  Ser, 9;  Cys,  9;  Thr,  9;  Leu, 36; Ile, 45; Phe, 36; Tyr, 
36; Trp, 54; His, 54; Asp, 27; Asn, 54; Glu, 69; Gln, 90; Met, 
21; Lys, 57; Arg, 5 5 .  The cyclic amino acid Pro was not included 
in the  library.  Further, all rotamers in the  library  contained ex- 
plicit hydrogen  atoms.  Rotamers were  built with bond lengths 
and  angles  from  the Dreiding force field (Mayo  et  al., 1990). 

A  Lennard-Jones 12-6 potential with radii and well depth  pa- 
rameters  from  the  Dreiding  force field was used for van der 
Waals interactions.  Nonbonded  interactions  for  atoms  con- 
nected by one or two  bonds were not  considered. van der Waals 
radii for atoms connected by three  bonds were scaled by 0.5. Ro- 
tamerhotamer pair energies and  rotamer/template energies were 
calculated in a  manner  consistent with the  published  DEE  al- 
gorithm (Desmet et al., 1992). The template consisted of the  pro- 
tein backbone  and  the side chains of  residue  positions not to be 
optimized.  No  intraside-chain  potentials were calculated.  This 
scheme  scored  the  packing  geometry  and  eliminated bias from 
rotamer  internal energies. Prior to DEE, all rotamers with tem- 
plate  interaction energies greater  than 25 kcal/mol were  elimi- 
nated.  Also,  any  rotamer  whose  interaction was greater  than 25 
k c a l h o l  with all other  rotamers  at  another residue  position was 
eliminated.  A  program called PDA-SETUP was  written that 
takes  as  input  backbone  coordinates,  including side chains  for 
positions not  optimized,  a  rotamer  library,  a list of positions to 
be optimized,  and  a list of the  amino  acids to be considered  at 
each  position. PDA-SETUP  outputs  a list of rotamer/template 
and  rotamerhotamer energies. 

The pairwise solvation  potential was implemented in two  com- 
ponents  to  remain  consistent with the  DEE  methodology: ro- 
tamer/template  and  rotamerhotamer  burial. For the  rotamer/ 
template  buried  area,  the  reference  state was defined  as  the ro- 
tamer in question  at  residue i with the  backbone  atoms  only of 
residues i - 1, i ,  and i + 1. The  area of the side chain was calcu- 
lated with the  backbone  atoms excluding solvent but not counted 
in the  area.  The  folded  state was defined  as  the  area of the ro- 
tamer in question  at  residue i ,  but  now in the  context  of  the en- 
tire template  structure, including nonoptimized side  chains. The 
rotamer/template  buried  area is the  difference between the ref- 
erence  and  the  folded  states.  The  rotamerhotamer reference 
area is simply the  sum  of  the  areas  of  the isolated rotamers.  The 
folded  state is the  area  of  the  two  rotamers placed  in their rela- 
tive positions on  the  protein  scaffold,  but with no template  at- 
oms  present.  The  Richards  definition  of  solvent-accessible 
surface  area  (Lee & Richards, 1971) was used, with a  probe  ra- 
dius of I .4 A and Drieding van der Waals radii. Carbon  and SUI- 

fur,  and all attached  hydrogens, were considered  nonpolar. 
Nitrogen  and oxygen, and all attached  hydrogens, were consid- 
ered  polar.  Surface  areas were calculated with the  Connolly al- 
gorithm using a dot  density of 10 A - 2  (Connolly, 1983). In more 
recent implementations  of  PDA-SETUP,  the  MSEED  algo- 
rithm  of  Scheraga  has been used in conjunction  with  the  Con- 
nolly algorithm  to speed up  the calculation (Perrot et al., 1992). 

DEE was implemented with a novel addition  to  the improve- 
ments suggested by Goldstein (1994). As has been noted, exhaus- 
tive application  of  the R = 1  rotamer  elimination  and R = 0 
rotamer-pair flagging equations  and limited application  of  the 
R = 1 rotamer-pair flagging equation  routinely fails to  find  the 
global  solution.  This  problem  can be overcome by unifying res- 
idues into "super residues"(Desmet  et  al., 1992, 1994; Goldstein, 
1994). However,  unification  can  cause  an  unmanageable in- 
crease in the  number of super  rotamers per super residue  posi- 
tion  and  can lead to  intractably slow performance because the 
computation time for applying the R = 1 rotamer-pair flagging 
equation increases  as the  fourth  power of the  number  of  rota- 
men.  These  problems  are  of  particular  importance  for  protein 
design applications given the  requirement  for large numbers  of 
rotamers per residue  position. In order  to limit memory size and 
to increase performance, we developed  a  heuristic  that  governs 
which residues (or super residues) get unified and  the  number 
of rotamer (or super  rotamer)  pairs  that  are  included in the 
R = 1 rotamer-pair flagging equation.  A  manuscript  detailing 
this  implementation of DEE is in preparation.  A  program called 
PDA-DEE was written that takes a list of  rotamer energies from 
PDA-SETUP  and  outputs  the  global minimum  sequence  in its 
optimal  conformation with  its energy. 

The  Monte  Carlo  search  starts  at  the  global  minimum se- 
quence  found by DEE.  A residue  was  picked randomly  and 
changed  to  a  random  rotamer selected from  those allowed at 
that  site.  A new sequence energy was calculated  and, i f  i t  met 
the Boltzman criteria for acceptance, the new sequence was used 
as the starting  point  for  another  jump. If  the  Boltzman test 
failed,  then  another  random  jump was attempted  from the pre- 
vious sequence. A list of the best sequences found  and their ener- 
gies was maintained  throughout  the  search. Typically IO6 jumps 
were made, 100 sequences saved,  and  the  temperature was set 
to 1 ,OOO K.  After  the search was over, all of the saved  sequences 
were quenched by changing  the  temperature  to 0 K ,  fixing the 
amino  acid  identity,  and  trying every  possible rotamer  jump 
at every position.  The  search was implemented in a  program 
called PDA-MONTE, whose input was a global  optimum so- 
lution  from  PDA-DEE  and  a list of  rotamer energies from 
PDA-SETUP.  The  output was a list of the  best  sequences 
rank  ordered by their score. 

PDA-SETUP,  PDA-DEE,  and  PDA-MONTE were im- 
plemented in the  CERIUS2  software  development  environment 
(Biosym/Molecular  Simulations,  San  Diego,  California). 

Coiled  coil sequence prediction 

Homodimeric coiled coils were modeled on the  backbone  coor- 
dinates  of GCNCp1, PDB ascension code  2ZTA (Bernstein  et al., 
1977; O'Shea  et al., 1991). Atoms of all  side  chains  not  opti- 
mized were left in  their  crystallographically determined positions. 
The  program  BIOGRAF  (Biosym/Molecular  Simulations,  San 
Diego, CA) was used to generate explicit hydrogens on the struc- 
ture which  was then  conjugate  gradient  minimized  for 50 steps 
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using the  Dreiding  forcefield.  The H P  pattern was enforced by 
only allowing hydrophobic  amino acids into  the  rotamer  groups 
for  the  optimized a and d positions.  The  hydrophobic  group 
consisted  of  Ala,  Val,  Leu,  Ile,  Met,  Phe,  Tyr,  and  Trp  for a 
total of 238 rotamers per position.  Homodimer  symmetry was 
enforced by penalizing by 100 kcal/mol  rotamer  pairs  that vio- 
late  sequence  symmetry.  Different  rotamers of the  same  amino 
acid were allowed at symmetry  related  positions. The asparagine 
that occupies the a position at residue 16 was left in the  template 
and  not  optimized. A lo6 step  Monte  Carlo  search  run  at a 
temperature  of  loo0 K generated the list of candidate sequences 
rank ordered by their  score. To test reproducibility, the search was 
repeated  three  times  with  different  random  number seeds and 
all  trials provided essentially  identical  results. The  Monte  Carlo 
searches  took  about 90 minutes. All calculations in this  work 
were performed on a Silicon Graphics 200 MHz R4400 processor. 

Data analysis and design feedback 
Properties were calculated using BIOGRAF  and  the  Dreiding 
force field. Solvent-accessible surface  areas were calculated with 
the  Connolly  algorithm  (Connolly, 1983) using  a probe  radius 
of 1.4 A and a dot  density  of 10 A - 2 .  Volumes  were calculated 
as  the  sum  of  the  van  der Waals volumes  of  the  side  chains  that 
were optimized.  The  number  of  buried  polar  and  nonpolar 
heavy atoms were defined  as  atoms,  with  their  attached  hydro- 
gens,  that expose less than 5 A* in the  surface  area  calculation. 
Electrostatic energies  were calculated using a dielectric of  one 
and  no  cutoff was  set for  calculation of nonbonded energies. 
Charge  equilibration  charges  (Rappe & Goddard, 1991) and 
Gasteiger charges (Gasteiger & Marsili, 1980) were used to gen- 
erate  electrostatic energies. Charge  equilibration  charges were 
adjusted manually to provide neutral backbones and neutral side 
chains  in  order  to  prevent  spurious  monopole  effects.  The se- 
lection of  properties was limited by the  requirement  that  prop- 
erties  could  not  be highly correlated.  Correlated  properties 
cannot  be  differentiated by QSAR  techniques  and  only  create 
redundancy in the  derived  relations. 

Genetic function  approximation  (GFA) was performed in the 
CERIUS2  simulation  package version  1.6 (Biosym/Molecular 
Simulations,  San  Diego,  California).  An  initial  population  of 
300 equations was generated consisting of random  combinations 
of three  properties.  Only  linear  terms were used and  initial  co- 
efficients were determined by least-squares regression for  each 
set  of properties.  Redundant  equations were eliminated  and 
10,000 generations  of  random  crossover  mutations were per- 
formed. If a mutant  had a better  score  than  the  worst  equation 
in the  population,  the  mutant replaced the worst equation. Also, 
mutation  operators  that  add or remove  terms  had a 50% prob- 
ability of being  applied  each  generation,  but these mutations 
were only accepted if the  score was improved.  No  equation with 
greater  than  three  terms  was  allowed.  Equations were scored 
during evolution using the lack  of fit (LOF)  parameter, a scaled 
least-square  error  (LSE)  measure  that penalizes equations with 
more  terms  and hence  resists overfitting.  LOF is defined  as: 

where c is the  number of terms  in  the  equation  and M is the 
number  of  data  points. Five different  randomized  runs were 

done  and  the  final  equation  populations were pooled.  Only 
equations  containing  the  simulation  energy, E,,, were consid- 
ered, which resulted in 108 equations  ranked by their LOF. Gen- 
eral cross validation was performed by removing each data point 
in turn  and  then  fitting  the  properties of the  equation  to  the re- 
maining data using  least-squares  regression. The excluded data 
point was then  predicted by the new equation.  When all of the 
data  points  had been predicted in this  way, a correlation  coef- 
ficient was calculated  for  the  predicted versus the  actual  data. 

X Repressor simulation 

Template coordinates were taken from  PDB file lLMB (Beamer 
& Pabo, 1992). The  subunit  designated  chain 4  in the  PDB file 
was  removed from  the  context of the rest of the  structure (ac- 
companying  subunit  and  DNA)  and, using BIOGRAF, explicit 
hydrogens were added.  The  hydrophobic residues with side 
chains within 5 A of the  three  mutation sites (V36,  M40, V47) 
are Y22, L31, A37,  M42, L50, F51, L64, L65,168,  and L69. All 
of  these  residues are  greater  than 80% buried except for  M42, 
which is 65%  buried,  and L64,  which is 45%  buried. A37 only 
has  one possible rotamer  and  hence was not  optimized.  The 
other  nine  residues in the 5 A sphere were  allowed to  take  any 
rotamer  conformation  of  their  amino  acid.  The  mutation sites 
were  allowed any  rotamer of the  amino  acid  sequence in ques- 
tion.  Depending on the  mutant  sequence, 5 X to 7 X 10l8 
conformations were possible.  Rotamer  energy  and  DEE calcu- 
lation  times were 2-4 min.  The  combined activity score is that 
of  Hellinga  and  Richards (1994). 

Peptide  synthesis and purification 

Thirty-three  residue  peptides were synthesized on an Applied 
Biosystems Model 433A peptide synthesizer  using Fmoc  chem- 
istry,  HBTU  activation,  and a modified Rink amide resin from 
Novabiochem.  Standard  0.1  mmol  coupling cycles were used 
and  amino termini were acetylated.  Peptides were cleaved from 
the resin by treating  approximately 200 mg of resin  with  2 mL 
trifluoroacetic  acid  (TFA)  and 100 pL water, 100 pL  thioanis- 
ole, 50 pL  ethanedithiol,  and 150 mg phenol  as scavengers. The 
peptides were isolated and purified by precipitation and repeated 
washing with cold methyl  tert-butyl  ether  followed by reverse- 
phase HPLC  on a  Vydac C8  column (25 cm X 22 mm) with a 
linear  acetonitrile-water  gradient  containing 0.1'70 TFA.  Pep- 
tides  were then lyophilized and  stored  at -20 "C until use. 
Plasma  desorption  mass  spectrometry  found all molecular 
weights to be within one unit of the expected  masses. 

CD 

CD spectra were measured  on  an Aviv 62DS  spectrometer  at 
pH 7.0 in 50 mM  phosphate, 150 mM  NaCI,  and  40  pM  pep- 
tide. A 1-mm-pathlength cell was used and  the  temperature was 
controlled by a thermoelectric  unit.  Thermal  melts were  per- 
formed in the  same  buffer using 2" temperature increments with 
an  averaging  time  of 10 s and  an  equilibration  time of  90 s. T,, 
values  were  derived from  the ellipticity at 222 nm by 
evaluating  the  minimum  of  the d[O]222/dT" versus T plot 
(Cantor & Schimmel, 1980). The T,'s were reproducible  to 
within  1 O. Peptide  concentrations were determined  from  the ty- 
rosine absorbance  at 275 nm (Huyghues-Despointes  et al., 1993). 
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Size-exclusion chromatography 

Size-exclusion chromatography was performed with a Synchro- 
pak GPC 100 column (25 cm x 4.6 mm) at  pH 7.0 in 50 mM 
phosphate and 150  mM NaCl at 0 "C. GCN4-pl  and p-LI (Har- 
bury et al., 1993) were used as size standards. Ten-microliter in- 
jections of 1 mM peptide solution were chromatographed at 0.20 
mL/min  and  monitored at 275 nm.  Peptide  concentrations were 
approximately 60 pM as estimated from peak heights. Samples 
were run in triplicate. 
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