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Abstract 

A quantitative  form  of  the  principle  of  minimal  frustration is used to  obtain  from a database  analysis  statistical 
mechanical  energy functions  and  gap  parameters for aligning  sequences to  three-dimensional  structures.  The  anal- 
ysis that  partially  takes  into  account  correlations in the energy landscape  improves  upon  the  previous  approxi- 
mations of Goldstein et al. (1994, 1995) (Goldstein R ,  Luthey-Schulten Z, Wolynes  P,  1994, Proceedings of the 
27th Hawaii International Conference on System Sciences. Los Alamitos,  California: IEEE Computer Society 
Press.  pp 306-315; Goldstein R, Luthey-Schulten Z, Wolynes  P, 1995, In:  Elber R, ed. New developments in theo- 
retical sludies of proteins. Singapore: World  Scientific). The energy function allows for  ordering of alignments 
based on  the  compatibility of a sequence  to be in  a given structure  (i.e., lowest energy)  and  therefore removes the 
necessity of using percent  identity or similarity  as  scoring parameters.  The alignments produced by the energy func- 
tion  on  distant  homologues with low percent  identity (less than 21 To) are generally better  than  those  generated 
with evolutionary  information.  The lowest energy alignment  generated with the energy function  for sequences con- 
taining  prosite  signatures  but  unknown  structures is a structure  containing  the  same  prosite  signature,  providing 
a  check on  the  robustness  of  the  algorithm.  Finally,  the energy function  can  make  use  of  known  experimentaI ev- 
idence as  constraints within the  alignment  algorithm  to  aid in finding  the  correct  structural  alignment. 

Keywords: homologous  modeling;  protein  sequence  alignment;  protein  structure  prediction;  statistical  mechani- 
cal  energy  functions 

Protein  folding is a problem of discrimination.  This is true  for 
the physical process of  folding a protein in vitro. I t  is even more 
valid for  the  practical  problem of protein  structure  prediction. 
Many  algorithms  for  protein  structure prediction  lead to  an  en- 
semble of structures  that  satisfy,  to a modest  extent,  the apri- 
ori constraints  on  protein  structure  that  can  be  inferred  from 
a database  and  encoded in  a semiempirical energy function 
(Bowieet  al., 1991; Godzik  et al., 1992; Goldstein et al., 1992a, 
1994; Nishikawa & Matsuo, 1993; Sippl, 1993; Maiorov & Crip- 
pen, 1994). Recently,  the  problem of discrimination in protein 
folding  has been  highlighted using a statistical  mechanical  per- 
spective on  the  problem of energy function-based  structure pre- 
diction  methods.  Previous work along these lines has used only 
the simplest version of the statistical mechanical treatment of the 
energy  landscape  (Goldstein et al.,  1992a, 199213, 1994, 1995). 
In this  paper, we show  how  more  sophisticated  approximations 
can be used that  take  into  account  the  partial  ordering of incor- 
rectly folded or predicted structures. The resulting self-consistently 
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optimized  energy  functions lead to more  reliable  matching of 
sequences  to  structures  and  to  better  alignments. 

Discrimination  enters  the physical  chemistry of protein  fold- 
ing through  the  competition between the  driving  forces that  fun- 
nel the flow of  protein  configuration  toward  the native structure 
and  the  trapping of the molecule in misfolded  configurations. 
Most random heteropolymers  have an energy landscape in which 
trapping  occurs,  but in  which there is no  global  guidance. Al- 
though  random  heteropolymers  have a  lowest or ground-state 
structure,  there  are  traps  nearly  equivalent in  energy that  must 
be  discriminated  against.  Obligate freezing into  such a trap oc- 
curs  during protein folding, when the system reaches  a so-called 
glass transition  temperature, T,. The funneling  process, on  the 
other  hand, allows folding  to  occur  at a higher temperature, 
T,. Only a fraction  of  the sequences will be thermodynamically 
foldable above  the glass transition temperature. These sequences 
are said to satisfy the  “principle of minimal  frustration”  (Bryn- 
gelson & Wolynes, 1987; Sasai & Wolynes, 1990; Goldstein  et  al., 
1992a, 1992b). For these sequences,  the  ground-state  structure 
is considerably  more  stable  than  the  competing  traps.  Concep- 
tually,  for  fast  folding it is necessary to  distinguish  the  ground 
state  from  individual  traps in detail.  The statistical  energy land- 
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scape  theory gives estimates  for  the  trap energy once  the vari- 
ance of the energies of  generic  misfolded  structures is known. 
This  estimate is based on the so-called random energy  model ap- 
proximation.  Within  the  REM  approximation,  the  ratio  of TF. 
to TG that  determines  (to a large extent)  the  nature of the  fold- 
ing kinetics can  be  determined.  When  the  ratio is large, trapping 
is unimportant  and  molecular  dynamics based on  the energy 
functions  can be quite  efficient.  The maximizing  of T,/T, is a 
quantitative  formulation of the principle  of  minimal frustration 
(Bryngelson & Wolynes, 1987). Indeed, within the REM  approx- 
imation,  the  ratio is monotonically  related to  the  difference in 
energy of the  folded  state  and  the  typical  collapsed  states.  It is 
easy to see then  that maximizing that  ratio  not  only  improves 
folding kinetics, but  also allows one  to  discriminate  most  effi- 
ciently  between the  folded  state  and  the bulk  of  collapsed states 
by algorithms  other  than  molecular  dynamics. 

The  generality of the  discrimination  idea was made clear by 
Goldstein et al. (1994, 1995), who  have  shown  how  the  quanti- 
tative physicochemical criterion based on  the principle of minimal 
frustration  also gives the best  Bayesian discrimination  for  the 
probability of  getting a  correctly  folded  structure by sequence- 
structure alignment if the  random energy model landscape is as- 
sumed to be correct. This statistical  mechanical theory, however, 
makes clear that  the  random energy approximation is only  par- 
tially correct.  That  approximation is based on  a lack of corre- 
lations in the energies of  states in the  landscape,  but, when some 
energy terms  are  more  important  than  others,  correlations  that 
satisfactorily minimize the large energy terms but not  the smaller 
contributions  to  the  energy lead to  partial  ordering of the  com- 
peting states.  The  following  Gedankenexperiment  makes clear 
the  problem.  Suppose we find  that  the energy function  that dis- 
criminates  correctly  folded  structures from the bulk of collapsed 
structures gives a very large  interaction between two specific 
kinds of amino  acids because folded  structures  always possess 
this  particular kind of contact,  but it occurs very rarely in ran- 
domly  collapsed  structures. If that  interaction  energy is too 
large, when the  collapsed  structures  are allowed to  readjust by 
alignment with insertions  and  deletions, or readjust by molec- 
ular dynamics,  an  anomalously large fraction of the  competing 
energy states will satisfy  this  empirical  correlation  too.  After 
this, in fact,  this  pair  interaction  would lead to very little  dis- 
crimination between the  folded  structure  and  the minimal en- 
ergy misfolded  structures because those  minima have already 
been partially  ordered to  satisfy  this  interaction.  This is a  con- 
sequence of the energy landscape being correlated,  and is why 
the  REM  approximation  would be poorer  than  expected. 

Both  the  statistical  mechanical  and Bayesian theory suggest 
a way in which these correlations  can be partially taken  into ac- 
count.  When  the  folded  energy is computed, it should  not  be 
based  on  the  energy  difference  of  folded  structures  and all  col- 
lapsed  structures,  but  should  contain  the energy difference be- 
tween the  folded  structures  and  the  thermally  occupied  minima 
in the  ensemble of the  collapsed  structures.  This is the  appro- 
priate stability gap (Bryngelson  et al., 1995). Also,  the variance 
of energies should be computed with the  minima  rather  than all 
collapsed  structures playing the  crucial  role,  at least as  a  first 
approximation. 

The recipe of  maximizing TF/TG,  taking  into  account  the 
partial  ordering  of  misfolded  structures, is more  complicated 
than  the  simple  algorithm  based  on  the  REM because the min- 
ima themselves depend  on  the energy function.  This leads to  a 

self-consistent optimization  problem,  much like that  done in the 
Hartree-Fock  approximation of quantum  chemistry.  The  iter- 
ative  development of energy  functions  then  proceeds  along  the 
following lines: A first approximation  to  the energy function is 
evaluated by solving the  variational  problem  of maximizing the 
stability gap in  units  of the  standard  deviation of energy  of  col- 
lapsed structures. New structures  are  generated by alignment 
of  a given set of  trial  sequences  from  the  learning set against 
known  structures.  The new minima  are  then used to re-estimate 
the  stability  gap between correct  folds  and these minima,  and 
the  variance  of energy of  the  minima  and this is iterated  until 
self-consistency or maximum degree of discrimination  averaged 
over  the  training set is achieved. We see that this procedure  for 
inferring energy functions is very much  related  to  the issue of 
specific  negative  design in the  problem  of  making  foldable  pro- 
teins de novo. 

In this paper, we carry  out such a self-consistent optimization 
of  statistical  mechanical energy functions based on  a  trial  en- 
ergy function  that  includes  context  terms,  contact  terms,  and 
specific terms  for  hydrogen  bonding. We show  that  the  initial 
energy functions do lead to mildly correlated energy landscapes 
and  that,  upon  initial  alignment,  there is a  partial  ordering of 
competing  structures.  This  ordering is largely parallel  to  the 
microphase  separation  of  two-letter  code  lattice  models, which 
has been emphasized in the  work of Dill and  coworkers (Dill 
et al., 1995; Dill & Stigter, 1995). When  the  optimization  pro- 
cedure is self-consistently carried  out,  discrimination is greatly 
improved. Results are  presented  for  a test set as well as a large 
number  of  predictions of structures where structural  similarity 
might  be  inferred  through  functional  relationships. We herein 
describe the energy function  and  how  the  progress of each  iter- 
ation was monitored  for higher discrimination. Then,  the results 
of using the  self-consistent energy function in threading se- 
quences to putative structures  are described. This is followed by 
a discussion of the effectiveness of the self-consistent  energy 
function. Finally, we conclude with the methodology used in this 
study. 

Energy function 

We have  designed an energy function  to  evaluate sequence- 
structure  compatibility in terms of contributions  from  profile 
(E,,), pairwise contacts (Ec,), hydrogen bonding (Ehb), gap pen- 
alty ( E x ) ,  and  satisfaction  of  experimental  constraints (Ecx): 

These energy terms  can  be expressed as  a  linear  function of en- 
ergy  parameters, y. The  profile energy contribution (E,,), sim- 
ilar to  the energy term described  in  previous  works by Goldstein 
et al. (1992b) and Eisenberg and co-workers (Bowie et al., 1991), 
is a  measure  of  the  propensity  of  an  amino  acid  to reside in  a 
particular  context  of  amino  acids: 

where N denotes  the  number of residues in a protein  and y de- 
notes  the energy parameter, which  is a  function  of  amino  acid 
identity A i ,  secondary  structure S S ; ,  and  surface accessibility 
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SA, .  The  secondary  structure of the  scaffold  proteins  has been 
predetermined with the DSSP algorithm  (Kabsch & Sander, 
1983), and  each  residue  was assigned to  be in either  an  a-helix, 
(3-sheet, turn  @-turn,  3/10 helix), or random coil. The  surface 
accessibility of each residue of  the scaffold  proteins has been cal- 
culated previously by using the  algorithm  of  Richards (1977) as 
implemented in Midasplus  (Ferrin  et  al., 1988), and was as- 
signed as  outside if more  than 18% of  the side chain is exposed 
to  the  surface;  otherwise,  the  residue was  assigned as inside. 

The pairwise contact energy contribution (Ect), analogous  to 
the energy term  introduced in  previous  works by Goldstein  et al. 
(1992b) and  Miyazawa  and  Jernigan (1985), has been modified 
to handle  multi-body  interactions by monitoring  for possible 
multiple  cysteine  bond  formations to  a  single  cysteine residue. 
This is conceptually similar to,  but  distinct  from  the  three-body 
interactions  introduced by Skolnick  and  coworkers  (Godzik 
et al., 1992). This  modification was needed due  to the strong in- 
teraction between  cysteines resulting  from  the  covalent  nature 
of  disulfide  bonds  and  the  chemical  saturation  of  this  covalent 
interaction: 

where 7'' is an energy parameter  that is a function of the iden- 
tities of amino  acids A i  and A, in contact  within a cut-off 
range;  and u is a  unit step  function  dependent  upon  the C, dis- 
tance between residues i a n d j ,  r,,. This energy function has two 
cut-off ranges: a short  range, where 0.0 A < r, < 5.0 A ,  and a 
long range,  where 5.0 A < r2 < 12.0 A. I f  the C, distance of 
residues A ,  and A, are  within  one  of these ranges,  the  corre- 
sponding y" is added  to  the  total  energy.  The y;"(Cys,Cys) is 
the largest energy parameter.  To prevent  multiple cysteine bond 
formation in the  mean-field  alignment,  only  unique cysteine- 
cysteine contacts within the 0.0-5.0 A range  are included in the 
overall  energy. 

The  hydrogen  bonding energy (Ehb) monitors a generic  de- 
scription for  two types  of backbone hydrogen bond  patterns be- 
tween Ni  and 0, atoms,  a-helix  and &sheet. Different types  of 
hydrogen  bonding energy terms  have been  described by other 
authors  (Nishikawa & Matsuo, 1993; Srinivasan & Rose, 1995). 
Our  form  of  the  hydrogen  bond  term is: 

where N denotes  the  number  of residues  in  a protein; -ypb ,  an 
energy  parameter  that is a function  of  any residues i and j in- 
volved in an  a-helix hydrogen bond;  and rzhb, an energy param- 
eter  that is a function  of  any  two  residues i and j involved  in a 
@-sheet hydrogen  bond.  This  energy  term  depends  on  second- 
ary  structure  assignments explicitly, and  does  not  deal with  hy- 
drogen  bonding in turns or with  side  chains. 

The  gap energy (E,) represents three  different classes of  gaps 
as  shown in Figure 1: insertions ( j  - i > 1 with r;,,, < 3.9 A ,  the 
distance between  successive C, atoms in the  scaffold, illus- 
trated by example A), deletions ( j  - i = 1, with  3.0 A < ri,,, < 

A M 

B j= i+l - target 

scaffold 
riTj, j'= i'+ 3 

target 

scaffold 
j'= i'+ 3 

Fig. 1. Examples  of  the  three  categories of gaps. A: Insertions of the 
target  residues  where, i f  residue ion   the  target  protein is pinned  to  res- 
idue i' on  the  scaffold  protein,  target  residuej,  the next pinned  target 
protein  residue, is pinned  to  the  scaffold  residuej', w i t h j  > i + 1 ,  but 
j '  = i' + 1. B: Deletions of the  scaffold  residues, wherej '  > i ' ,  but j = 
i + I and r,,,, < 7.5 A. C: Bulged gaps  were  both j > i + 1 and j' > 
i'+ 1 .  

7.5 A ,  illustrated by example B), and bulges ( j -  i> 1 andr,?, > 
4.0 A ,  illustrated by example C). The use of  three  gap types was 
first introduced by Zuker (1991). In our work,  the initial gap  pa- 
rameters  for  these  three types of  gaps were determined by a 
Bayesian statistical analysis of the distributions for each gap type 
in correct versus random  alignments  (Goldstein et al., 1994, 
1995). A simple  functional  form was  used to  describe  the  ratio 
of  the  correct  over  the  random  gap  distributions, resulting in a 
gap energy  with the  following  form: 
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where n denotes  the  total  number of gaps in an alignment; y g ,  
an energy parameter; i and j ,  the  residue  positions in the  train- 
ing protein; i ’  andj’,  the  residue  positions in the  scaffold;  and 
r,?. refers to  the  three-dimensional  distance between C, coor- 
dinates of  residues i’ and j ’  in the  scaffold.  For  all  gap  types, 
no  gaps were  allowed to  be placed  within the  middle  of a sec- 
ondary  structure  unit  nor was the  length of any given gap  al- 
lowed to exceed 15 residues.  This  last  restriction is based on 
typical gaps  appearing in  multiple  sequence alignments  and  can 
be  varied easily. 

The  constraint energy term (Ecs) is used only  in our mean-field 
alignment to  aid in guiding an alignment to  incorporate  exper- 
imental data. Possible  experimental constraints include  distance 
constraints  between  certain residues determined  from labeling 
or  mutation experiments, as well as  structural  information  from 
CD experiments. 

A set of known  structures  from various  folding classes is cho- 
sen to  train  the energy parameters.  Each  protein  in  this set has 
at least one  structural analogue  in the  Protein  Data Bank (PDB). 
A structural analogue is defined as a  known structure  that is sim- 
ilar to  the native fold.  This includes homologues  as well as non- 
related sequences. The  term  structural  analogue is used instead 
of  homologue because the energy function aligns two sequences 
based on  structural  not genetic information. A  training protein’s 
native  structure,  along  with  its  alignment  to  each of  its known 
structural  analogues,  constitute  the ensemble  of “correct”  folds. 
Misfolded  structures  are  taken  to be relatively compact  struc- 
tures with varying degree of correct  secondary structure.  The full 
ensemble (3,000 states) of misfolded  structures of each  training 
protein  are  generated by translating  the  training protein’s se- 
quence  over  protein  structures with unrelated  folds.  Once a 
training set has been selected,  an  optimized energy function 
can  then  be  obtained by maximizing the  dimensionless  ratio of 
TF/TG,  or equivalently the  ratio of the stability gap 6E between 
the  average energy of the  correct  folds  and  the  mean energy of 
the  full  ensemble of misfolded  structures  to  the  standard devi- 
ation AE of the energies  of the  misfolded  structures  (Goldstein 
et al.,  1992a, 1992b). This energy function  can  be expressed  as 
a  linear function of the energy parameters, y, in  which 6E = Ay 
and A E 2  = yBy, where A and y are vectors and B is a matrix 
given by: 

and 

respectively, where  the index i denotes a specific energy  contri- 
bution; X, is the  frequency  that  the  ith energy interaction  oc- 
curs in a structure.  There  are 210 contact  interactions  for  each 
cut-off  range, 160 profile  parameters, 8 gap  parameters,  and 2 
hydrogen  bond  parameters.  The (Xi),,,,,,, denotes  the  fre- 
quency  of  occurrence  of that particular  interaction  averaged  over 
the  native  structure of  a training  protein  and its alignments  to 
its  structural  analogues;  and (h;),;sJ,/d,d is the  average  fre- 
quency  of  occurrence of that particular  interaction in the ensem- 
ble of misfolded  structures  for  the given training  protein.  The 
solution  of  the  maximization  problem  for TF/TG leads to  an 
explicit form  for  the  optimal y; y = ( B - ’ > ( A > ,  where (B-’ ) 
and (A) are  averaged over the set of training  proteins. 

The thermally  occupied minima, defined  as the alignments  of 
the  training  proteins  to  unrelated  folds  that  are  produced with 
this energy function,  are  partially  ordered  to  satisfy  individual 
large interaction energy terms.  Re-evaluating  the energy func- 
tion by maximizing  the  ratio of 6E/AE, where  the new stabil- 
ity gap is defined  as  the  difference between the  mean  energy of 
correct  folds  and  the  mean energy of  the  thermally  occupied 
minima of misfolded structures,  and  the new standard deviation 
is over the energy distribution of  these minima, will increase the 
discrimination between correct and misfolded structures. Deter- 
mination of the energy function is achieved  in  a  self-consistent 
fashion because the thermally  occupied  minima of the misfolded 
structures  are  dependent  upon  the energy function.  Therefore, 
the  optimal y values for  each  iteration, n’, are  calculated  as 
follows: 

yn,  = (B;’)(An,). (8) 

where  the ( h;),n;s,o&d values  in Equations 6 and 7 now  denote 
the  average  frequency  of  occurrence in the  thermally  occupied 
minima of  misfolded  structures  rather  than  the  full  ensemble. 
In order  to provide smoother convergence,  a  relaxation method 
was employed where  a  linear combination  of  the y n P l  and  the 
current 7“. values  was performed  to  produce  the  final y, values: 

y n  = ( 1  - E)Y~-I + CY,,. (9) 

In the  work  presented  here, t = 0.33. 
The  progress of each successive optimization was evaluated 

with a discrimination  score  for  each  protein in the  training set: 

6E D = -  
“ A E ~ ’  

where 

Again  the ( ) indicates  an  average over  energy states.  The  en- 
ergy of the  folded  structure, (Ef)correcr, is evaluated  as  the av- 
erage  over  the  native  fold  and  the  training protein’s alignments 
to  each of its structural  analogues.  The energy of  the misfolded 
structures, (E,),,,,,,, is evaluated  as  the energy of  the  train- 
ing  protein’s alignments  to a set of scaffolds with nonrelated 
folds  produced by using the  nth  order  iterated energy function. 
Figure 2 shows  an  example  of  the  discrimination between two 
different energy functions, n = 0 (Fig.  2A)  and n = 1 (Fig. 2B) 
for  the  training  protein  myoglobin  (Takano, 1977, PDB  code 
SMBN). 

The energy function used in  the  zeroth  order (n = 0) approx- 
imation was based  on  previous  work  done by Goldstein et al. 
(1994, 1995), in which the energy parameters, excluding the  gap 
energy terms,  are calculated by solving the  variational  problem 
of  maximizing  the  stability  gap in units of the  variance of the 
full ensemble of misfolded  structures  (Fig. 2). The  penalty  term 
for  gaps was then  evaluated  separately  using  the Bayesian  ver- 
sion of the  analysis.  Once  the values of  the energy func- 
tion have been calculated,  the thermally  occupied minima of the 
misfolded  structures  can be produced by aligning  a set of train- 
ing proteins  against  known  structures.  Unlike  the  distribution 
of all misfolded structures,  the thermally  occupied minima now 
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A 0.3 

0 . 2  

-250 

B 0 . 3  

0 . 2  

0.1 

0 1 -  

n=0 

:. 
: 

: 
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L 

homologs - 
minima - 

f u l l   e n s e m b l e   m i s f o l d e d -  

- 2 0 0  -150  -100 -5  0 0 5 0  

n=1 

- 2 5 0  - 2 0 0  -150 -100 - 5  0 0 5 0  

Fig. 2. Distributions of energetic states  for  the training protein myoglobin. The discrimination score D, is evaluated by calcu- 
lating the stability gap, 6E, over the standard deviation, AE. A: Distributions of energetic states  for  the correct structures  (na- 
tive + alignment to homologues), the thermally occupied minima of misfolded structures (alignment to 83 unrelated scaffolds), 
and the full ensemble (3,000 states) of misfolded structures (5mbn sequence translated over unrelated structures) in that  order, 
from left to right. All structures  are evaluated with the  zeroth  order  approximation energy function. B: Distributions of ener- 
getic states for the correct structures and thermally occupied minima of misfolded structures in that  order, from left to right. 
All of the  structures are evaluated with the  first  iterate energy function. 

contain insertions and deletions. The  introduction of insertions 
and deletions in the misfolded structures allows the  gap penalty 
term to be evaluated directly with the rest of the energy terms. 
Once the minima have been obtained,  the stability gap and vari- 
ance can be re-estimated until self-consistency or maximum de- 
gree  of discrimination averaged over the training set  is achieved. 

Results 

Discrimination scores 

The discrimination scores D,, (Table 1) for the 29 representative 
training proteins (see the Materials and methods) indicate that, 

in general, the Y,, values are better able to differentiate between 
correct and misfolded structures than  the Y ~ - ~  values. The 
maximum degree of discrimination for  the majority of the train- 
ing proteins is obtained with the 2nd-iterative energy parameters 
(see Supplementary  material in Electronic Appendix). As seen 
in the last column of Table 1 ,  the yz parameters provide a mean 
increase in discrimination  of 44% over the yo parameters.  The 
only  two decreases in discrimination  through self-consistent 
optimization are Bence-Jones immunoglobin (Epp et al., 1975, 
PDB code lREI(A))  and hemerythrin  (Stenkamp et al., 1978, 
PDB code lHMQ(A)). Nevertheless, the self-consistent energy 
function generates a perfect alignment for  the native  scaffold 
for each protein, and produces alignments to their respective 
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Table 1. Discrimination scores, Dn, for each successive iteration for the 29 training proteinsa 

PDB  NRES 

a Proteins 
2cro 63 

lccr 1 1 1  

1 bp2 123 
2hhb(A) 141 
3cln 143 
Ifdh(G) 146 
5mbn 153 

B Proteins 
5PCY 99 
Irei(A) I07 
2paz 123 
2ilb 153 
lf19(H) 215 
3hfm(H) 215 

lrla(2) 238 
lcms 323 

a+B or a/B Proteins 
1 fdx  54 
lalc 122 
lrbb(A) 124 
lsnc 135 
2dhf(A) 182 
2act 218 
2prk 279 

21dx 331 

2liv 3 44 
Meanc 

__ 

lwrp(R) 102 

Ihmq(A) 113 

2 ~ ~ 3 )  235 

1  pfk  (A) 319 

3gpd(G) 334 

~" - 

Name  Zeroth 
_ _ _  ______. 

434 Cro protein 
TRP repressor  (trigonal  form) 
Cytochrome c 
Hemerythrin  (MET) 
Phospholipase 
Hemoglobin  (deoxy) 
Calmodulin 
Hemoglobin  (deoxy,  human  fetal) 
Sperm  whale  myoglobin  (deoxy) 

Plastocyanin 
Bence-*Jones  immunoglobulin 
Pseudoazurin  (cupredoxin) 
Interleukin-l*P 
R19.9(IC*G2B=K=)  Fab  fragment 
IG*G1 Fab  fragment 
Poliovirus  (TYPE  1,  Mahoney  strain) 
Rhinovirus  serotype I (HRVl)  coat  protein 
Chymosin  B 

Ferredoxin 
or-*Lactalbumin 
Ribonuclease  B 
Staphylococcal  nuclease 
Dihydrofolate  reductase 
Actinidin  (sulfhydryl  proteinase) 
Proteinase K 
Phosphofructokinase  (R-state) 
Apo-Lactate  dehydrogenase 
~-Glyceraldehyde-3-phosphate dehydrogenase 
Leucine/isoleucine/valine-binding protein 

" .__~_____ ___ ~ _ _ . _ _  

3.70 
2.41 
4.43 
3.80 
6.35 
2.37 
5.31 
3.31 
3.79 

5.35 
3.93 
6.55 
6.14 
2.14 
4.71 
2.58 
2.53 
3.36 

1.97 
6.63 
5.68 
6.31 
3.36 
5.06 
3.16 
3.85 
2.92 
3.44 
5.34 
4.18 
" 
" 

First 
-~ 

3.60 
3.80 
4.62 
4.22 
6.35 
2.90 
5.95 
3.63 
4.62 

6.28 
4.15 
8.69 
7.62 
2.79 
5.40 
3.79 
3.18 
4.19 

2.53 
7.51 
6.49 
8.15 
4.28 
6.59 
6.33 
5.56 
3.92 
4.72 
6.90 
5.13 
- -~ ___ 

" 

Second 
"_ 

4.40 
4.44 
5.02 
3.48 
7.63 
3.36 
6.99 
4.39 
5.49 

6.82 
3.59 
8.85 
9.46 
2.55 
6.62 
5.16 
3.91 
5.56 

2.21 
7.78 
6.91 
9.61 
5.01 
7.60 
6.89 
7.10 
5.03 
7.24 
8.83 
5.93 

Second 

zerothb 
~ ~ _ _ ~  

~ _ _ ~  

1.19 
1.84 
1.13 
0.92 
1.20 
1.42 
1.30 
1.33 
I .45 

1.28 
0.91 
1.35 
1.54 
1.20 
1.41 
2.00 
1.55 
1.65 

1.12 
1.17 
1.22 
1.52 
1.49 
I .50 
1.83 
I .84 
1.72 
2.10 
1.65 
1.44 

a The energy of the  correct  structure  for  each  training  protein is the  average of itself and its  structural  analogues. 
Ratio  of  the  second  iterate  discrimination  score  versus  the  zeroth-order  discrimination  score. 
The  mean value is the  average  discrimination  score  over  all  the  folding  motifs.  The  greatest  average  discrimina- 

tion is obtained with the  second  iterate values and  these y values are used in all the  calculations  presented in this paper: 

structural  analogues  that  are  more energetically stable  than 
alignments  to  unrelated  structures. 

The  partial  ordering of competing  structures  through  the 
sequence-structure  alignment  minimization  can  be  observed 
most directly through  the surface-accessibility parameter.  In  the 
full  distribution of misfolded  structures,  hydrophobic residues 
have  equal  probability  of  being  placed  on  the  surface or being 
buried  (Fig. 3). On  the  other  hand,  in  the  thermally  occupied 
minima,  there  are fewer hydrophobic residues on  the  surface, 
which is more  comparable  to  the  correct  folds  and  thus  more 
representative  of a protein  found in nature.  The  change in  in- 
side/outside  placement  does  not  vary  significantly  among  the 
thermally  occupied  minima. 

Alignments of known structures 

To test our energy function, we created a test set of 16 known 
structures  representing  the  various  folding  types of a ,  0, a/@,  

and a+@. Each  protein in this list had  to  have a known  struc- 
tural  analogue with  limited  sequence  similarity (less than  31%). 
In general  it is difficult to  find  appropriate test proteins because 
we need the  X-ray  crystal  structures of the test protein  and  at 
least one  analogue with low percent identity. Most of  the  known 
X-ray  structures  with  this  requirement  fall  within similar fold- 
ing classes (Murzin  et  al., 1995). Due  to  this  constraint,  only 4 
of  the 16 test  proteins  chosen  are in folding classes (Murzin 
et al., 1995) different  from  those of the  training set. Each of the 
16 test proteins was aligned to  42 putative  scaffolds, which in- 
cluded the  native  structure  and  one  structural  analogue with low 
percent  identity (17.3-30.3%). A mean-field threading  program 
was  used to  align  the test proteins  to  each  of  the  putative  scaf- 
folds using the self-consistently optimized energy function  as  the 
scoring  matrix.  The  structure with the lowest  energy  was con- 
sidered to  be  the  predicted  structure  (Table 2). The  q-scores 
listed  in Table 2 are  used  as a measure of structure  similarity 
(Goldstein et al., 1992b)  between the  X-ray  structure  and  the 
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Fig. 3. Frequency  of  occurrence  of  hydrophobic  and  hydrophilic  resi- 
dues  both in the  interior  and  surface of molten  globular  structures.  The 
shaded  regions  indicate  the  frequency for  the  correct  (crystallographic) 
structures.  The  unshaded regions correspond  to  the  misfolded  structures 
generated by translations  and  after  various  stages  of  optimization (n = 
0, 1,  2  iterate  energy  functions, respectively). Initially  there is little  cor- 
relation  between  inside/outside  and  hydrophobicity.  Upon  continued 
self-optimization,  microphase  separation in the  minima  generated  from 
unrelated  scaffolds  becomes  clear. 

alignments derived  using the present  energy function  (Equation 
1) (q), as well as the  standard  (q-NW)  and a modified (q-P-NW) 
Needleman-Wunsch  algorithm  (Needleman & Wunsch, 1970) 
(see the  Materials  and  methods) using  a  modified Dayhoff scor- 
ing matrix  (Gribskov & Burgess, 1986). The  q-score  measures 
what  fraction  of  the  pairwise  distances between corresponding 
residues  in the  aligned  structure (riYr) match  the  correct  dis- 
tances ( r , . )  in the  X-ray  structure: 

q = [N(N- 1)1”Cexp[-(r ;J  - r i , j . ) 2 / u 2 ] .  (13) 
J> i  

The width of  the gaussian function is less than 2 A and  has weak 
dependence  on  the  sequence  length, u2 = 21j - i J 0 . ’ 5 ,  to allow 
a greater  tolerance in the  distances  for residues further  apart. 
If there is an  error  greater  than 2 A at  large  separation in the 
sequence ( j  - i > loo), no  contribution  to q exists and  the  com- 
parison is poor.  The  q-scores  emphasize  compact  regions in a 
protein (e.g., the  core  domain)  and  deemphasize discrepancies 
in isolated fragments, particularly at  the  ends of the aligned pro- 
teins. A q-score > 0.4 is interpreted  as  an  indication  of  struc- 
tural  similarity  and  corresponds  to  an RMS value < 6 A, 
as shown in Table 2. The average  q-score of misfolded structures 

Table 2. The two most energetically stable alignments using the self-consistent energy function 
for  a test set of I6 sequences with known structuresa 
~ ~ - _ _ _ ~  

Self-recognition  Predicted  structure 
RMS 070 

PDB  Target 4’ PDB  Analogue  RMSC Nwd 4’ 4-NWc  q-P-NW‘ 
~ 

a-Proteins 
256b(A)  Cytochrome  b562  (oxidized) I .OO 2ccy(A)  Cytochrome c’ 
3icb  Calcium  binding  protein 1 .OO 4tinc  Troponin  C 
lflpz  Crab  hemoglobin 1 1.00 21bh Hemoglobin V 
21h4 Leghemoglobin  (deoxy) 1 .OO 5mbn  Sperm  whale  myoglobin 
lmba Sea  hare  myoglobin  (MET) 1.00 Smbn  Sperm  whale  myoglobin 

1 r69 434 Repressor  (amino-terminal) I .OO llrd(4)  lambda  Repressor-operator 

8-Proteins 
1 aaj  Amicyanin 1 .00 6pcy  Plastocyanin 
2rhe  Bence-*Jones  protein 1.00 3hfm(H) IG*GI Fab  fragment 
lcd8  CD8 (T-cell CO-receptor) 1 .OO 2fb4(H)  Immunoglobin  Fab  fragment 
3hfm(L) IG*GI Fab  fragment  0.94  3hfm(H) IC*GI Fab  fragment 
2ifb  Intestinal  fatty  acid  binding 

lgsq  Glutathione  S-transferase 1 .OO lgta  Glutathione  S-transferase 

protein I .OO lcrb  Cellular  retinol  binding  protein 

a+@ and c d f l  Proteins 
l fxl  Flavodoxin 1.00 3fxn  Flavodoxin 
3dfr  Dihydrofolate  reductase 1 .OO 8dfr  Dihydrofolate  reductase 
61dh Apo-lactate  dehydrogenase 0.92 4mdh(A)  Malate  dehydrogenase 
2gbp  Galactose/glucose  binding 

protein 0.93 labp Arabinose-binding  protein 

5.01 11.62 
3.30 3.37 
2.74 4.39 
2.82 4.01 
2.56 5.30 
4.79 3.57 
3.27 2.97 

3.29 4.34 
4.96 4.92 
5.00 9.24 
7.64 7.06 

3.02  2.89 

2.32 2.49 
4.16 3.20 
3.93 9.20 

6.34 5.33 

0.44 0.23 
0.52 0.51 
0.64 0.48 
0.57 0.55 
0.63 0.48 
0.46 0.63 
0.55 0.61 

0.43 0.40 
0.46 0.43 
0.40 0.30 
0.31 0.38 

0.64 0.63 

0.61 0.62 
0.51 0.66 
0.47 0.36 

0.53  0.47 

0.49 
0.51 
0.41 
0.39 
0.68 
0.68 
0.61 

0.42 
0.47 
0.36 
0.32 

0.67 

0.63 
0.48 
0.40 

0.47 

17.3 
29.3 
22.5 
18.3 
26.0 
21.8 
28.6 

20.2 
27.2 
21.3 
25.2 

30.53 

30.4 
29.6 
20.2 

22.5 

a For  every  target  sequence,  the  structure  with  the  most  stable  energy  was  the  native  one  followed  by  the  test  protein’s  structural  analogue. 
Structural  similarity  score between the test protein’s X-ray  structure  and  the  alignment  to  its  structural  analogue  produced by the self-consistent 

RMSD  for C a  atoms  only  calculated  with  X-PLOR  for  alignment  produced  by  the  energy  function. 
RMSD  for C a  atoms  only  calculated  with  X-PLOR  for  alignment  produced  by NW. 

energy  function. 

e Structural  similarities  between  the  test  protein’s  X-ray  structure  and  the  alignment  to  its  structural  analogue  using NW. 
‘Structural  similarities  between  the  X-ray  structure  and  the  alignment  to  its  structural  analogue  produced  with  P-NW. 
Percent  identity  based on the  NW  alignment.  All  sequences  were  aligned  to  a  set of 42 putative  structures  containing  the  native  structure  and 

one  structural  analogue  with  limited  percent  identity  (17.3-30.5%). 
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is roughly  0.14 (see Fig. 4), with an  RMS value  between 13 and 
21 A. The  RMS values  were calculated  by  X-PLOR  (Briinger, 
1987) using  only  the C, coordinates.  Self-recognition  was 
achieved for  all test cases generally with exactly correct  align- 
ment,  although  three  had  minor  shifts resulting in  q-scores 
slightly lower than 1 .O. This is to be expected to  some extent be- 
cause  the  alignment  algorithm uses the  structural  information 
of a scaffold,  not  sequence  identity  to set up a scoring  matrix 
for  an  alignment between two sequences. The  scaffold with the 
second  most  stable energy  in all 16 test  cases  was the  proteins' 
structural  analogue. 

One alignment  of interest is the threading of cytochrome 6562 
subunit A (Mathews et al., 1975, PDB  code 256B(A)), to  the 
subunit A  of cytochrome c prime's scaffold  (Weber et al., 1980, 
PDB  code  2CCY).  The self-consistently  optimized  energy func- 
tion  produces  an  alignment  with a q-score of 0.44,  whereas  the 
NW  alignment  only gives a q-score of 0.28.  The  distance  plots 
of the  energy  function  and  NW  alignments of 256B(A) --t 

2CCY(A) versus the  actual 256B(A) X-ray  structure  are  shown 
in Figure 5. The energy function alignment produces a structure 
that is more similar to  the  original  6562  native  form,  as is also 
evident from  the  comparison of  secondary structure given in Fig- 
ure  6.  This  figure  also  illustrates  the  advantage of not  depend- 
ing solely on sequence  identity to  align two  sequences.  The 
present  energy  function  alignment  has a sequence  identity of 
13.2%  compared  to 20.1 To for  the  NW  alignment,  but is struc- 
turally  much  more similar 

In  the case of apo-lactase  dehydrogenase  (Abad-Zapatero 
et al., 1987, PDB  code  6LDH),  the  alignment  methods  have 
comparable  q-scores,  but  the energy function-based  algorithm 
produces a structure with a decidedly better  RMS value. The 
nearly equivalent  q-scores  indicate  that  the  core  structures  are 
about  the  same  and  the  distance  plots  (Fig. 7) indicate  that  the 
discrepancy in the NW  alignments (both  standard  and physically 
based NW) arises from  an incorrect structure assignment to  the 
first 20 residues. 

The  alignment of a squid  glutathione  S-transferase  (Ji et al., 
1994, PDB code 1GSQ) to a  blood fluke glutathione  S-transferase 
(McTigue et al., 1995, PDB code IGTA) produced from  the self- 
consistent energy function  has a much lower q-score  than  the 
alignments  produced with evolutionary  scoring  matrices.  The 
energy  difference between the alignment produced with the self- 
consistent energy function  compared  to  the alignment  generated 
with the  modified  Dayhoff  matrix is not  that  significant (-167 
units  for EF alignment  and -154 units  for  P-NW).  The lower 
q-score in the energy function  alignment arises  because the en- 
ergy function  does  not allow the  gap in the first half of the he- 
lix (residues 38-40 of  IGTA) that occurs in the P-NW alignment. 
It is energetically unfavorable  because  the  structure loses three 
hydrogen  bonds,  has slightly  lower profile  contributions,  and 
contact  interactions in the longer cut-off  range. Figure  8 shows 
the distance  plots of the  alignments  produced by the energy func- 
tion  (Fig.  8A)  and  the  P-NW  (Fig. 8B). This  figure  illustrates 
the loss of tertiary  interactions (i.e., the  distance plot of the EF 

Energy 
Fig. 4. Energy of alignment versus q-score for the  sperm  whale  myoglobin  sequence  aligned  to  its  native  fold, two homolo- 
gous scaffolds,  and 83 nonrelated  structures. 
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Fig. 5. Distance plots of  256b(A)  comparing  alignments  generated  from 
two  different  schemes,  self-consistent  energy  functions  and  evolution- 
ary  scoring  matrix  with  default  parameters. A: Distance  plot  from  the 
256b(A)  X-ray  structure  (lower  half)  and  the  alignment of 256b(A)  to 
2ccy(A)  using  the  self-consistent  energy  function  (upper  half). All con- 
tacts  indicated  have  an r$, < 12 A. This  plot  illustrates  the  high  struc- 
tural  similarity between the  X-ray  structure  and our predicted  structure. 
B: Distance  plot of the  256b(A)  X-ray  structure  (lower  half)  and  the 
alignment  of  256b(A)  to  2ccy(A)  using NW (upper  half). 

alignment  has  off-diagonal  areas  that  are less dense than  the dis- 
tance  plot  of  the  NW  alignment)  due  to  the  shift  in  the energy 
function  alignment. 

The  alignment  of  the galactose/glucose  binding protein (Vyas 
et al., 1988, PDB  code  2CBP)  to  arabinose binding protein (Qui- 
ocho & Vyas, 1984, PDB  code  IABP)  produced  using  the en- 
ergy  function  has a higher  similarity  to  the  native  fold between 
residues 200 and 265 than  the  alignment  generated  from  the ge- 
netic scoring matrix.  The  tertiary  interactions  are  more native- 
like in this area  for  the energy function alignment,  as  can be seen 
in Figure 9. However,  the energy function  does a poor  job  of 
aligning the last 30 residues. The native fold of 2CBP  has  an ex- 
tented  loop  (residues 276-288) away  from  the  core of the  pro- 
tein, which the  lABP  scaffold  does  not  contain.  The  energy 

105 1 

function  does  not place a gap in the  target  at  this  point,  nor  any 
place later in the  sequence  due  to  energetic  reasons.  This gives 
rise to  RMS  deviations  (RMSDs)  ranging  from 12 to  20 A for 
the  final 30 residues. The  NW  alignment  shows a  higher  degree 
of  correct  tertiary  structure between the  residue  ranges  of 255- 
265 and 299-309 (Fig. 9) arising from a gap in the target between 
residues 292 and 297. Therefore,  the  higher  q-score  for  the  en- 
ergy function  alignment is due  to  the  higher  similarity  to  the 
native  fold in the  core  of  the  protein  and  the lower RMS  score 
is due  to  the  poor  alignment  of  the  final  30 residues. 

Although  the  quality (defined  here by q-score  and  RMS values) 
of  the  alignments  produced by various  methods  are generally 
similar, it is important  to  mention  that  only  the self-consistent 
energy function  alignments  can be ordered by energy, as  shown 
in Table 1. Thus, these  alignments reflect accurately the  thermo- 
dynamic stability  of the  alignment, whereas the  traditional per- 
cent identity  can be misleading. In  general,  the energy function 
generates  better  alignments than  the  standard  evolutionary scor- 
ing matrices when the percent identity between the  two sequences 
is low (less than  21%). 

Structure prediction for proteins with prosite signatures 

Another  type  of test for  this energy function is to  create a set 
of proteins with unknown  structures  but whose  sequences con- 
tain  the  same  PROSITE  signature.  These sequences were then 
aligned  to 43 putative  scaffolds, which included  two  structures 
containing  the  corresponding  PROSITE signature. Four differ- 
ent  sets  of  proteins were  chosen:  a  set containing  the  immuno- 
g l o b i n h a j o r  histocompatibility  signature,  the  flavidoxin 
signature,  the  dihydrofolate  reductase  signature,  and  the  thio- 
redoxin  signature. 

Immunoglobin  and  major  histocompatibility  proteins  are in- 
volved in the  immune  response  against  bacterial  and viral anti- 
gens, respectively. Immunoglobin  proteins  are  found  on  the 
surface of B cells and  bind a specific antigen.  Histocompatibil- 
ity proteins,  found  on  the  surface of  nearly  all nucleated verte- 
brae  cells, will bind  an  antigenetic  fragment  and  then  be 
recognized by T cell receptor  proteins.  Both  types of proteins 
have a region containing an Ig-Mhc motif of  (F,Y)xCx(V,A)xH, 
with four  conserved  residues, F or Y, C,  V or A,  and  H. We 
chose the  chain sequences  of  10 immunoglobin  and 9 histocom- 
patibility proteins  from  the  SWISS-PROT  database  (Bairoch & 
Boeckmann, 1994) due  to  their low sequence  identity (less than 
28%) with two  known  structures  containing  the  Ig-Mhc  motif 
(Padlan et al., 1989, PDB code 3HFM;  Garrett et al., 1989, PDB 
code  3HLA).  3HLA(A)  and  3HFM(H)  are  two-domain  struc- 
tures in which one  domain is structurally similar. The  structure 
with  the  lowest  energy  for  each  sequence  was  either  the 
3HFM(H)  or  3HLA(A)  (Table 3). In  each  case,  the 19 SWISS- 
PROT sequences  align their  Ig-Mhc  motif  to  the  Ig-Mhc  mo- 
tif  in both  the  3HFM(H)  and  3HLA(A)  scaffolds. 

Flavidoxin  proteins  are involved  in the  electron  transfer in 
photosynthesis.  These  proteins  contain  a  prosite  motif  of (L,I,V) 
(L,I,V,F,Y) (F,Y) x  (S,T) xx (A,C) xTxxxAxx (L,I,V). We chose 
seven protein  sequences  from  the  SWISS-PROT  database  that 
had relatively  low sequence  identity  with  two  flavidoxins of 
known  structure (Smith  et al., 1977, PDB  code  3FXN;  Waten- 
paugh  et  al., 1972, PDB  code  IFXI).  These seven flavidoxin se- 
quences were then aligned to 42 putative  structures,  two of which 
were 3FXN  and  lFXl.  The  scaffold with the lowest  energy for 
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A Alignment: 

1 
X-ray: ttnnnnnnnn 
EF : nnnnnnnnnn 
Nw: nnnntttttt 

51 
tttttnnnnn 
ttttnnwnn 
ntttnnnnnn 

101 
nnnnHt 
n m n m  
HBtt" 

B Alignment : 

131 
x-ray: tttBBBBBtt 

apaz : ---BBBBBBB 
lpaz : ---BBBBBBB 

5pCY : ---BBBBBBB 

181 
ttBBBBBttt 
tBBBBBB-tt 
ttttBBBttt 
ttttBBBttt 

Secondary  structure assignment 

nnnnmnnnt ttnnnnnnnn nnnnnnnnnn tttttttttt 
nnnnnnnttt ttnnnnnunn nnnnnntttt tttttttttt 
ttt--nnnnn nnnnnnnnnt tttttttttt tttttmnnn 

nnnnnnnww nnnnnnnnnn tttnnnnnnn ntnnnnnnnn 
nnnnnnnmn nnnnnnnnnn n-tnnnnnnn nnnnnnnnnn 
nnnnnnnnnn nnnnnnnntn nnnnnnnnnn nnnnnnnnnn 

(85% secondary structure  correct) 
(60% secondary structure  correct) 

Secondary  structure assignment 

tBHHAHHHtt tttttttttt tttBBBtttt BBBBBBBttt 
ttBBBBBBt- ----- tBBt- ---BBBBBtt tBBBBBBBBt 
Btttttttt- ----- tBBt- ---BBBBBtt tBBBBBBBtt 
BBttttt--- ----- BBBhB BBBBBBtttt BBBBBBBB" 

tBBBBBtttt tBBBBBtttt BBBBBBBBBt ttttttttBB 
tttttttttt BBBBBBBBtt tBBBBBBBB- tt---tttBB 
tttttBBBtt ttBBBBBBtt tBBBBBBB-t tt---tttBB 
ttBBBBBttt tBBBBB-ttt tBBBBBBt-t tt---ttttt 

nnnmnnnnn n 
""""" - (75% secondary structure) 
nnnttttnnn H (69% secondary structure) 
nnnnnnnttn n (73% secondary structure) 

Fig. 6.  Secondary  structure  assignments  arising  from  two  different  alignments.  A:  Secondary  structure  assignment of each res- 
idue  as  defined  by DSSP algorithm  for  256b(A)  X-ray  structure,  the  alignment  of  256b(A)  to  2ccy(A)  generated  using  the  self- 
consistent  energy  functions,  and  the  alignment  of  256b(A)  to  2ccy(A)  obtained  from  using  Needleman-Wunsch.  The  second- 
ary  structure of each  residue is represented  as  either  an  a-helix (H), a  &sheet (B) ,  or either  a  turn or random  coil  (t).  The "-" 
symbol  represents  a  gap in the  alignment  that is assigned as  a  random  coil  in  calculating  percent  correct  secondary  structure. 
B: Secondary  structure of each  residue in the  copper  A  domain of cytochrome c oxidases  defined by the  report of the  X-ray 
structure  and  the  alignments  of  copper A to Spcy, Zpaz, and  lpaz  generated  using  the  self-consistent  energy  function  with  ex- 
perimental  constraints.  Secondary  structure  assignment  as in A. 

each  sequence is one  of  the  two  known  flavidoxins  (Table 3). 
In all cases, the flavidoxin sequences align their flavidoxin  signa- 
ture  to  the flavidoxin signature  found in both  known  structures. 

Dihydrofolate  reductase  proteins  are cytosolic enzymes  that 
help  catalyze  the  reaction of NADPH + H +  .+ NADP+ + HZ.  
These  proteins  contain a Dhfr  signature  of (L,I,F) Gxxxx 
(L,I,V,M,F)  PW. A set of  five sequences  containing  this  motif 
were extracted  from  SWISS-PROT  database.  These  sequences 
were then  aligned to  43 random  structures.  Two o f  these  struc- 
tures were dihydrofolate  reductase  proteins  (Bolin et al., 1982, 
PDB  code  4DFR(B);  McTigue et al., 1993, PDB  code  8DFR). 
The lowest  energy structure  for  all  of  the  sequences was either 
4DFR(B)  or  8DFR  (Table 3), and all  sequences  have  their Dhfr 
signature  aligned  to  the  Dhfr  signature  of  the  4DFR(B)  or 
8DFR. 

Thioredoxins are small  proteins of approximately 100 residues 
in length.  They  participate in various  redox  reactions via the re- 
versible oxidation of an active  center  disulfide  bond.  These 

proteins  contain a thioredoxin  signature  of  (S,T,A)x(W,G) 
C(A,G,V)(P,H)C  (T)x(W)C(G)(P)C. A set of six sequences 
containing  this  motif was extracted  from  the  SWISS-PROT 
database. These sequences were then aligned to 43 random struc- 
tures.  One of the  structures in this set was thioredoxin (reduced 
form)  (Holmgren et al., 1990, PDB  code  2TRX(A)). In each 
case,  the lowest  energy structure was 2TRX(A),  and all se- 
quences  have  their  thioredoxin  signature  aligned  to  the  signa- 
ture in 2TRX(A). 

Use of constraints in the prediction of the 
copper A domain of cytochrome c oxidase 
from Paracocuus denitrificans 

Cytochrome c oxidase is a three-subunit  complex  that is found 
in the  membrane  of  the  mitochondria  and is the  last  part of the 
respiratory  chain.  The  copper A domain is part  of  the  subunit 
I1 and is water  soluble.  This  domain  contains  two  copper  ions 
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Fig. 7. Distance  plots of the  first 150 residues  of 61dh comparing  the 
results of two  alignment  schemes,  self-consistent  energy  function  and 
evolutionary  scoring  matrix.  A:  Comparison of the  X-ray  structure  of 
61dh (lower half) versus the  alignment of 61dh to  4mdh(A) using the self- 
consistent  energy  function  (upper  half). B: Alignment  of 61dh to 
4mdh(A)  scaffold  (upper  half)  produced  by  Needleman-Wunsch  align- 
ment  algorithm  to  the 61dh X-ray  structure.  The  evolutionary  scoring 
matrix  incorrectly  aligns  the  first 20 residues  of  the 61dh sequence to  the 
4mdh(A)  scaffold,  causing  a  discrepancy between the  predicted  and  na- 
tive structures.  The  alignment  produced  from  the  self-consistent  energy 
function  does  not  exhibit  this  discrepancy. 

that  accept  an  electron  from  cytochrome c. When  this  domain 
is separated  from  the  membrane, it has  an ER spectrum  that is 
similar to blue copper  proteins. Blue copper  proteins have four 
conserved residues that  are  the  ligands  for  their  copper  ion,  H, 
C ,  H, M. That  the  ligands  of  the  copper A sequence  are H181, 
C216,  C220, and M227 for  one of the  coppers,  and  4218, C216, 
C220,  and  C224  for  the  other  copper  ion  has been inferred by 
numerous  bioinorganic  and  spectroscopic  experiments  (Han 
et  al., 1991; Antholine  et  al., 1992; van  der  Oost et al., 1992; 
Kelly et al., 1993; Steffens  et  al., 1993; Farrar et al., 1995). The 
ligands  for  the  first  copper  ion  are  the  same  as in the  blue  cop- 
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Fig. 8. Distance  plots  of  lgsq  aligned to Igta.  A:  Comparison of the 
native  fold of lgsq (lower half)  to  the  alignment of lgsq to  the  lgta  scaf- 
fold using the  self-consistent  energy  function  (upper  half). B: Alignment 
of lgsq to  lgta using  the PNW alignment  algorithm  (upper  half)  com- 
pared  to Igsq's native  fold  (lower  half).  The  alignment  produced  using 
our energy  function  has less tertiary  structure  than  the  one  produced 
using  the  standard  defaults  with  the  modified  Dayhoff  matrix. 

per proteins, so constraints were included (see the Materials and 
methods) in the energy function  for these four residues  based 
on their distances  found in the blue copper  structures.  The res- 
idues  involved  in the  constraints,  the  distance  ranges between 
these residues, as well as  the  stability  and  penalty energy  units 
are given  in Table 4. The  top five most  stable  structures of the 
alignment  of  this  sequence (residues 100-253 of  subunit I1 of cy- 
tochrome c oxidase) to 60 putative &sheet structures  are all blue 
copper  proteins.  The  analogy  to blue copper  proteins  had been 
suggested earlier o n   o t h e r  grounds (Han et  al.,  1991; Steffens 
et al., 1993). 

The P. denitrificuns cytochrome c oxidase  structure was pub- 
lished after our predictions were made  (Iwata et al., 1995). The 
chemical  constraints  inferred previously were confirmed  to be 
correct.  The  copper A soluble  domain  of  subunit I1 has 10  beta 
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Fig. 9. Distance plots of  Zgbp aligned to  labp. A: Comparison between 
the X-ray structure of Zgbp (lower half)  and the alignment of 2gbp to 
the labp scaffold using the self-consistent energy function (upper half). 
B: Alignment of 2gbp to the labp scaffold (upper half) using the  de- 
fault parameters with a modified Dayhoff matrix compared to the X-ray 
structure of Zgbp (lower half).  This figure illustrates the stronger ter- 
tiary interactions between  residues  200-260  of the energy function align- 
ment versus the genetic alignment.  This  figure  also shows the loss of 
tertiary  interactions occurring with the last 20 residues for the energy 
function alignment due  to the  poor alignment of residues 280-309. 

strands  and 2 helices. Figure 10 shows the C, trace of our most 
stable  fold for this sequence, which  is based on the plastocya- 
nin scaffold  (Church et al., 1986, PDB code SPCY) where the 
residues known to be in beta strands  are colored red and  the 
binding ligands are colored green. The plastocyanin scaffold 
does not contain any helices, whereas the copper A domain con- 
tains two. However, the region  between  /3-strands 3 and 4 in our 
alignment has a gap insertion of 14 residues that could possi- 
bly  be modeled into a helix. The secondary structure assignments 
of our  top three alignments of SPCY, lPAZ, and 2PAZ have 
a total of 75%, 69070, and 73% correct secondary structure as- 
signment, respectively (Fig. 6). The percent of secondary struc- 
ture assigned correctly to the copper A sequence is  slightly  lower 

helical 
region beginning 

end 

I 

U 

Fig. 10. Sequence of the  copper  A  domain of the subunit 11 of cyto- 
chrome c oxidase from I? denitrificuns threaded onto the 5pcy struc- 
ture. Residues  in  red are known to form P-sheets 3-10 as defined by the 
report on the  cytochrome c oxidase X-ray structure. Green depicts 
ligand-binding residues. A bulge gap is found between  residues 185 and 
187 with a C,, distance of 7.2 A. The first helical region, indicated with 
arrows, is not assigned correct secondary structure. The first and last 
residues of the aligned copper A sequence are labeled with arrows. 

than one would expect. However, this is mainly due  to  the in- 
ability to model the helix found between @-strands 3 and 4 of 
the  copper A structure because this structural element is lack- 
ing  in the blue copper protein scaffolds used  in this analysis. This 
helps illustrate that the predicted structure can only be as good 
as the  scaffolds available for alignment. 

Discussion 

In the present work,  a self-consistent procedure  taking into ac- 
count  the  partial  ordering of misfolded structures was used to 
determine  an energy function that gives improved sequence- 
structure alignments. The optimization of the energy function 
through self-consistency  allowed for  a higher discrimination be- 
tween the correct and thermally occupied minima in the ensem- 
ble of misfolded  states by incorporating  some  correlation 
between the folded and misfolded energy states. It also enabled 
us to optimize simultaneously the  gap energy parameters along 
with all the other energy terms. In testing the degree of discrim- 
ination D, of a given iterative  optimization n (Table l ) ,  only  a 
few of  the  training  proteins have slightly lower discrimination 
with the self-consistent energy function. Even in the case of 
lREI(A), the present energy function is still able to find self- 
alignment and  the structurally analogous scaffolds of lREI(A) 
as the lowest energy states upon sequence threading. The  prob- 
lem of decrease in discrimination for lREI(A) is probably en- 
hanced by our  definition of surface accessibility. Surface 
accessibility is defined for a complete protein, with all subunits 
included. Because we  use subunit scaffolds as  single subunit pro- 
teins, the surface accessibility for  some of the residues in these 
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Table 3.  The most  stable alignment using the  self-consistent  energy function  for a set of sequences 
with  unknown  structure  that  contain  a PROSITE signaturea 

- - 

SWISS-PROT 

Ig-Mhc  Signature 
B2MG-BOVIN 
B2MG-PONPY 
B2MG-RAT 
HA2B-MOUSE 
HA2P-HUMAN 
HA2Q-MOUSE 
HA2S-MOUSE 
HA2Z-HUMAN 
HB25LHUMAN 
HB2B-HUMAN 
HB2G-HUMAN 
HB2S-HUMAN 
KACA-RAT 
KACB-RAT 
KAC-MOUSE 
LACILMOUSE 
LAC3-MOUSE 
LACS-MUSSP 
LAC-HUMAN 

Flavidoxin  signature 
FLAV-ANASP 
FLAV-AZOVI 
FLAV-CHOCR 
FLAV-CLOAB 
FLAV-DESVH 
FLAV-KLEPN 
FLAV-RHOCA 

Dhfr  signature 
DYRB-ECOLI 
DYRC-ECOLI 
DYR-BPT4 
DYR-ENTFC 
DYR-LACCA 

Thioredoxin  signature 
THI 1 -YEAST 
THIO-CHICK 
THIO-HUMAN 
THIO-MOUSE 
THIO-RABIT 
THIO-RAT 

~- 

~ ...______ 
~ ~ ~ _ _ _ _ _ _  

Target  name 

Name 

(F,Y)xCx(V,A)xH 
Bovin  0-2  p-globuline 
Orangutan  0-2  p-globuline 
Rat  0-2  p-globuline 
Mouse  H-2  histocomp.  antigen 
Human  H-2  histocomp.  antigen 
Mouse  H-2  histocomp.  antigen 
Mouse  H-2  histocomp.  antigen 
Human  HLA  histocomp.  antigen 
Human  HLA  histocomp.  antigen 
Human  HLA  histocomp.  antigen 
Human  HLA  histocomp.  antigen 
Human  HLA  histocomp.  antigen 
Rat 1G K chain 
Rat IG K chain 
Mouse IC X chain 
Mouse IC X chain 
Mouse IC X chain 
Mouse IG X chain 
Human IC X chain 

(L,I,V)(L,I,V,F,Y)(F,Y)x(S,T)xx(A,G). . . 
Anabaena sp.  flavodoxin 
Azotobacter vinelandii flavodoxin 
Chondrus crispus flavodoxin 
Clostridium  acetobutylicum flavodoxin 
Desulfovibro vulgaris flavodoxin 
Klebsiella pneumoniae flavodoxin 
Rhodobacter capsulatus flavodoxin 

(L,I,F)Gxxxx(L,I,V,M,F)PW 
E. coli DHFR 
E. coli DHFR 
Bacteriophage  T4  DHFR 
Enterococcus faecium DHFR 
Lactobacillus casei DHFR 

(S,T,A)x(W,C)C(A,G,v)(P,H)C(A). . . 
Saccharomyces cerevisiae thioredoxin I 
Chick  thioredoxin 
Human  thioredoxin 
Mouse  thioredoxin 
Rabit  thioredoxin 
Rat  thioredoxin 

" ..~ - 

- 
~~ ~ 

.~ 
" .. ~~~ 

PDB 

3hfm(H) 
3hfm(H) 
3hfm(H) 
3hla(A) 
3hla(A) 
3hla(A) 
3hla(A) 
3hla(A) 
3hla(A) 
3hla(A) 
3hla(A) 
3hla(A) 
3hfm(H) 
3hfm(H) 
3hfm(H) 
3hla(A) 
3hfm(H) 
3hla(A) 
3hla(A) 

lfxl 
l f x l  
lfxl 
lfxl 
3fxn 
1 fxl 
l fxl  

4dfr  (B) 
4dfr(B) 
4dfr(B) 
4dfr(B) 
4dfr(B) 

2trx(A) 
2trx(A) 
2trx(A) 
2trx(A) 
2trx(A) 
2trx(A) 
-~ - .~ 

Predicted  homologue 

Name 
~~ 

IG*GI Fab  fragment 
IG*Gl Fab  fragment 
IG*G1 Fab  fragment 
Human class I histocompatibility 
Human class I histocompatibility 
Human class I histocompatibility 
Human class I histocompatibility 
Human class I histocompatibility 
Human class I histocompatibility 
Human class I histocompatibility 
Human class I histocompatibility 
Human class I histocompatibility 
IG*GI Fab  fragment 
IG*GI Fab  fragment 
IG*GI Fab  fragment 
Human class I histocompatibility 
IG*GI Fab  fragment 
Human class I histocompatibility 
Human class 1 histocompatibility 

Flavodoxin 
Flavodoxin 
Flavodoxin 
Flavodoxin 
Flavodoxin 
Flavodoxin 
Flavodoxin 

Dihydrofolate  reductase 
Dihydrofolate  reductase 
Dihydrofolate  reductase 
Dihydrofolate  reductase 
Dihydrofolate  reductase 

E. coli thioredoxin 
E. coli thioredoxin 
E. coli thioredoxin 
E. coli thioredoxin 
E. coli thioredoxin 
E. coli thioredoxin 

~~~ ~ ~ ~ _ _ _ ~  -~ ~~~ 

~ 

070 

Ident. 
___ 

20.8 
19.6 
18.6 
16.9 
25.3 
19.3 
18.5 
19.4 
22.9 
21.2 
19.7 
23.2 
22.6 
21.7 
19.8 
24.2 
27.2 
24.2 
22.2 

29.5 
25.2 
29.3 
23.1 
30.4 
23.1 
25.2 

29.1 
34.2 
25.8 
33.3 
27.7 

32.7 
24.0 
22.1 
22.1 
22.1 
22.1 

____ _ _ ~  

All sequences  were  aligned  individually  to 45 putative  structures in which  two  of  these  structures  contained  the  corresponding  PROSITE sig- 
nature.  In  all  cases,  the  lowest  energy  structure was a  protein  with  the  appropriate  PROSITE  signature. 

units is incorrect.  Of the 14 structurally analogous scaffolds used 
for lREI(A), only  one was  a  single subunit  protein. Also, all of 
the  subunit  proteins  have  two  domains,  whereas lREI(A) is a 
single-domain  protein.  This  creates  differences in chemical prop- 
erties between the  analogues  and lREI(A), which affects  the 
alignment.  One way to  improve  the  profile  term  in  the energy 
function  would  be  to  redefine  the  surface accessibility for all the 
scaffolds  that  are  subunits. 

The  compatibility of a sequence with a structure was evalu- 
ated with the  total  energy  of  the  final  alignment.  The results of 

aligning known  structure sequences to various scaffolds showed 
that  the present energy function assigns self-recognition with the 
lowest  energy and its structurally  analogous  scaffold with the 
second lowest energy. The alignments  of these sequences to their 
structural analogues are similar to ones produced  from NW with 
a few exceptions. One is the alignment of 256B(A) to 2CCY. For 
256B(A), most  standard  alignment  programs do  not assign 
2CCY as a homologue.  Our energy function  not  only  chooses 
this  as  the  second  most  stable  structure,  but  also  produces  an 
alignment with considerable  structural  overlap. 
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Table 4. Constraints used in the alignment of the copper A 
domain of the subunit II  of cytochrome  c oxidase 

Stability la:  30.0 
Stability 2h: 15.0 
Penalty': -40.0 

Residue 1 Residue 2 Experimental  distanced 

HI81 
H181 
C216 
HI81 
HI81 
C216 
C216 
c220 
c220 
H224 

C216 
M227 
M227 
c220 
H224 
c220 
H224 
M227 
H224 
M227 

6.30 A 
5.10 A 
5.15 A 
8.50 Ae 
8.50 

5.50 Ae 
5.50 k 
5.50 2 

5.50 Ae 

5.50 Ae 

a The energy  contribution  to  stabilize  a  desired  interaction  within 
range 1. 

The energy  contribution  to  stabilize  a  desired  interaction  within 
range 2. 

'The coefficient of the energy  contribution to destabilize  an  un- 
favorable  interaction. 

'The  experimental  distance  assigned  to  each  interaction was based 
on  the  largest  distance of the  corresponding  interaction between ligand 
binding  residues  found in the  blue  copper  structures. 

'These  constraints  were  applied  to  the  second  distance  range  only. 

Alignments produced  from  the mean-field dynamic  program- 
ming can be sometimes be  improved by using experimental con- 
straints.  Adding  experimental  constraints  to  the  alignment  can 
help  guide  an  alignment  to  its  correct  fold by forcing it out  of 
any local minima in which it  might be caught.  This  may  imitate 
Nature in that it is very likely that  chain  topology in metallo- 
proteins is partially fixed by interactions with the metal ion,  not 
solely by the  interactions in the  simple  alignment energy func- 
tion. For illustration,  this  technique was  used to  improve  the 
prediction of the  soluble  copper A domain of subunit I1 of  cy- 
tochrome c oxidase.  The  constraints guided the  alignment so 
that  the  copper  ligand  binding  residues were appropriately 
configured. 

There is an on-going  survey  of a subset of sequences from  the 
Swiss-Prot database.  This representative  subset  includes the 349 
sequences  from  the Escherichia coli gene-protein  database ref- 
erenced in the  Swiss-Prot  database.  These sequences are being 
aligned to  a minimal  representative set of unrelated  scaffolds. 
The results  of this survey will be  published in a future  article. 

It is currently not  computationally efficient to  run  a sequence 
against  the  complete  PDB  using  this  method.  However,  this is 
not necessary because the energy function is based on structural 
compatibility,  and  the  alignments  are only performed  against 
a  minimal  representative set  of unrelated  folds. If the  scaffold 
with the lowest energy has  structural analogues, a further refine- 
ment  can  be  performed by aligning  the  target  sequence  against 
the  complete set of  analogues  to  obtain  the  most energetically 
favorable  structure. 

The alignment  procedure using the self-consistent energy func- 
tion is not  as trivial as  standard sequence-sequence alignments. 
Our  method  of alignment uses only  structural  information  from 
the  scaffold  and  not  the  identity of its  residues. Therefore, it is 

possible for  a sequence to be threaded  to its native structure  and 
not be perfectly  aligned.  This self-consistent  energy function is 
most  efficient in  recognizing sequence-structure  compatibility 
when the  sequence  identity between two sequences is low (less 
than 21 9'0). The energy function is, dependent  upon  the  struc- 
tural  information learned from  known proteins. The greater the 
diversity of folds used  in the  training  set,  the  better  the energy 
function  should be at recognizing distant  sequence-structure 
compatibility.  The  quality of the  sequence-structure  alignment 
is dependent  upon  the  availability of known  scaffolds or struc- 
tures.  The  predicted  structure is only  as  good as the  structural 
similarity  between it and  the  available  scaffolds. 

Materials and methods 

Pairwise contact energy term 

The  multiple-body  term in the  contact energy E,, (Equation 3) 
monitors  the cysteine-cysteine interactions  during  an alignment 
and  prevents  multiple  bonds  to  any single  cysteine. At the  start 
of  an  alignment,  the y;"(Cys,Cys) parameter is set to 0.0,  the 
C, distances between the  various cysteines calculated,  and  the 
pair with the minimum  distance found.  The  optimal yr'(Cys,Cys) 
value is assigned for  the  interaction between  this minimal  pair. 
The next shortest cysteine-cysteine distance is then found. I f  the 
two cysteines  in  this interaction  are  not  one of the cysteines in- 
volved in the  previous  interaction,  the  optimal  y;"(Cys,Cys) 
value is assigned to this interaction.  This process is continued 
until all  cysteine pair  interactions  have been evaluated.  The 
cysteine-cysteine monitoring is performed  for  each successive 
refinement of alignment. 

Hydrogen bonding energy term 

The hydrogen bonding energy Ehh (Equation 4) allows for  two 
types of backbone  hydrogen  bonds,  a-helix  and  0-sheet.  An 
a-helix Ehb energy contribution is assigned to residues A ,  and 
A, when j = i + 4  and  both residues are in an  a-helix,  as  de- 
fined previously by DSSP  algorithm  (Kabsch & Sander, 1983). 
The  assignment of 0-sheet  hydrogen  bonds is made  through  a 
complex  algorithm  based on oxygen distance  and  physiochem- 
ical information  that  can distinguish between parallel and  anti- 
parallel sheets  (Fig. 11). The residues A, and A, are given one 
&sheet E,,,) energy contribution when  assigned in  a parallel 
sheet formation  and  two 0-sheet Ehh energy contributions when 
assigned  in an  antiparallel sheet formation. 

Experimental constraint energy term 

The  mean-field  threading  program uses the  experimental  con- 
straint energy  term (&,) to stabilize an alignment whenever the 
constraint is met in the  scaffold  and  to destabilize the alignment 
whenever the  constraint is not  met.  The stabilization parameter, 
cvalue, and penalty, pvalue, are determined  empirically. For ex- 
perimental  constraints involving a  distance between two resi- 
dues, A ,  and A, ,  the  experimental  distance  between  two 
characteristic atoms (usually C,) rTpt must be known.  To avoid 
conflicts with the  cut-off values  in the  contact  term, we consid- 
ered  two possible distance tolerances: range 1, ArfOn and  range 
2, Ar;'On. The  first  range, ArfOn, spans rrp' - 2 A to r y p l ,  
and  the  second  range, A,?" spans rrp' - 2 A to ryp' + 2 A .  
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o=c 

Fig. 11. A description  of  the  &sheet  hydrogen  bond  assignment.  Two 
general requirements for fl-sheet hydrogen  bond  assignment  are:  the ox- 
ygen distance  between  residues i and j must  be less than 4.0 A and  both 
residues  must  have  been  defined  previously to be in a P-sheet by the 
DSSP algorithm. A: One  hydrogen  bond  energy  contribution will be as- 
signed to the  interaction  between  residues i and j for parallel  sheet for- 
mation  when  both  of  the  general  requirements  are met for  the i, j pair 
and  either i + 2, j + 2 or i - 2 ,  j - 2 interactions  also  meei  the  two re- 
quirements. B: Method by which two  hydrogen  bond  energy  contribu- 
tions will be assigned to  the  interaction of residues i and j for  antiparallel 
sheet formation when both  general  requirements  are met for  the i, j pair, 
the C,, distance between residues i and j is  less than  the  distance between 
i, j - 2 and i, j + 2, and  neither i + 2, j + 2 or i - 2 ,  j - 2 interactions 
meet  the  general  requirements. We do  not assign  different  energies  for 
parallel or antiparallel  sheets  here,  but  this  definition will allow  such  a 
distinction  to  be  made. 

These  two  constraints  are  applied  during  the  alignment  algo- 
rithm when the  alignment  score is calculated  for  residue A ,  to 
be at  various  positions in the  scaffold Ai, (Goldstein et al., 
1994, 1995). The  program  calculates  the C, distance between 
residues  in the  scaffold r,?, in  which A ;  and A, are  pinned. If  
this  distance is within range  1,  the  score  for A ,  to be pinned  at 
Ai. is given an  added  energy  stability  of cuulue( I ) .  I f  not,  the 
score is given  a penalty  that is a linear  function  of  distance de- 
termined by: 

penalty = pualue(  l)lr,,,, - rron 1 ,  (14) 

where 

Next,  the ri,,, distance is checked  to see if it falls within  range 
2. If it does,  the  alignment  score  for Ai to be pinned to  Ai, is 
given an  added energy stability  of cvulue(2). If not,  the  penalty 
is applied  (Equation 14). For  experimental  constraints  that  in- 
volve fixing segments  of  secondary  structure, a  similar  stabiliz- 
ing and  destabilizing  scheme is applied. 

Self-consistent optimization 

The  zeroth-order  approximation  of  the energy parameters, yo 
was calculated in a similar fashion to  the previous  work  of Gold- 
stein et al. (1994, 1995). There  the  optimization  of  the energy 
parameters was  a two-step process. The first step was to  evalu- 
ate  the energy function  without  the  gap energy parameters  and 
with the full  ensemble of misfolded structures modeled by trans- 
lating  the set of training  proteins'  sequences  over  various  un- 
related  scaffolds  (Fig. 2). Once these  energy parameters were 
calculated,  the  gap energy parameters were estimated. 

To begin the  work  on  self-consistency, a set of training  pro- 
teins was chosen.  The main  requirement for  the  training set was 
that each one  of  the chosen  proteins  must have at least one struc- 
tural  analogue in the  PDB  (Bernstein et al., 1977; Abola et al., 
1987). The  alignments  of  the  structural  analogues  to  the  train- 
ing proteins were generated using  a modified  Dayhoff  similar- 
ity score  matrix  (Gribskov & Burgess, 1986) in  a modified 
Needleman-Wunsch  algorithm  (Needleman & Wunsch, 1970), 
which did  not allow for  gaps in a scaffold within a-helices or 
&sheets nor which allow gaps with a C, distance  greater  than 
7.5 A. We refer to  alignments  produced  from this algorithm  as 
physically constrained Needleman-Wunsch (P-NW) alignments. 
If  an  alignment  had a q-score of 0.40 or greater, it was consid- 
ered a structural  analogue. A training set of 29 proteins consist- 
ing of 9 a-helical  proteins, 9 0-sheet  proteins,  and 11  proteins 
with different percentages of both a /p  and a+P  folds was cho- 
sen (Table 1). The  training  proteins  represent  the  following 
classes: lambda repressor-like DNA  binding  domains,  Trp re- 
pressor,  cytochrome c, 4 helix up-and-down  bundle, globin-like, 
EF-hand, cupredoxin, immunoglobin-like /3 sandwiches, P-trefoil, 
viral coat  proteins, acid protease,  ferredoxin-like, lysozyme-like, 
ribonuclease A-like, OB-fold,  dihydrofolate  reductase, cysteine 
protease,  subtilases,  phosphofructokinase,  NAD(P)-binding 
Rossmann fold  domain,  and periplasmic  receptors.  These train- 
ing proteins were aligned to a set of 86 scaffolds with unrelated 
folds using the yo energy parameters in  a mean-field  program- 
ming technique  for  sequence-structure  alignment  (Goldstein 
et al., 1994, 1995). 

Once  the initial alignments were produced  for  both  the  struc- 
tural  analogues  and  the 86 unrelated scaffolds, a  first iterate  op- 
timization of the y values  was calculated.  The yf parameter 
(Equation 5 )  was set equal  to 0.0 in the  optimization because 
it caused the B" matrix to be ill-conditioned due  to lack of  sta- 
tistical information.  The  thermally  occupied  minima  of mis- 
folded  structures were obtained by using the  alignments of  the 
training  proteins  to  the 86 unrelated  protein  scaffolds, exclud- 
ing the  training  protein  and  any  structural  analogues  that might 
have  been  in the set of 86  proteins  (Fig. 2). Therefore,  at  most, 
there were only 86 misfolded structures per training protein. Be- 
cause  these  alignments had  gaps, residues in  a training sequence 
that were not aligned to  any  scaffold position  were given an  en- 
ergy contribution of zero.  Once these y n , = l  values  were ob- 
tained,  they  were  linearly  combined  with  the yo values to  
produce  the  final y n Z l  values. The 29 training  proteins were re- 
aligned to  the  same 86 unrelated  protein  scaffolds using the 
y n = l  values for  the energy parameters,  creating a new set of 
minima  (Fig. 2) that were then used for a second  iterate  opti- 
mization  according  to  Equations 6-9. The set of  training  pro- 
teins was not re-aligned to their structural  analogues because the 
P-NW alignments were considered to be the  optimal alignments. 
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This  procedure  of  aligning  the  training  proteins to the 86 un- 
related scaffolds  and  then re-optimizing to get another  iteration 
of y values was repeated  until a maximum  degree of discrimi- 
nation D, averaged  over  the  training set  was achieved. 

Alignment procedure 

The  alignments  presented in  this paper were produced using the 
current  energy  function with a  mean-field  dynamic  program- 
ming  algorithm  described previously (Goldstein et al., 1994, 
1995). Two  different scoring  matrices were used to generate two 
sets  of  initial alignments.  The first set of initial alignments were 
generated by “frozen  approximation,” which constructs  an ini- 
tial  scoring  matrix S o  based on the  current  energy  function in 
which the  identity A:, of  the  amino  acids in the  scaffold  struc- 
ture were used in  evaluating the energy contributions of the  con- 
tact  term: 

j ’  k 

Here S,$ is the  initial  scoring  matrix  for residue i of the  target 
sequence to  be  pinned  to  residue i’of the  scaffold.  The  contact 
between  residues i and j ’  are  based  on  the  identity of residue i 
of the  target  sequence  and  residue j ‘  of the  scaffold  sequence. 
The  second set  of initial  alignments were generated using the 
P-NW program in which the scoring matrix is based on  the  mod- 
ified Dayhoff  similarity  matrix  (Gribskov & Burgess, 1986). 
Once  initial  alignments were produced,  further  refinements  of 
the alignments were made with a mean-field  iterated procedure. 
The alignments used to generate the thermally  occupied minima 
of  misfolded  structures were  based on  only  the first choice of 
initial  alignments with three  iterations of refinement. All other 
alignments were produced  both  with  the self-consistently opti- 
mized  energy function  initial  alignments  and five iterations  of 
refinement,  and with the P-NW initial  alignments  followed by 
five iterations  of  refinement using the present energy  function. 
The results of the  two  different  types  of  alignments were com- 
pared,  and  the  one  with  the  most  stable energy  was considered 
the  more  stable  fold.  The  initial  alignment is the  most  difficult 
part of the  threading  program. Allowing for  two  different types 
of  initial  alignments helps prevent  choosing  an  alignment  that 
might  have been trapped in a local minima. 

Structural data 

The 29 training  proteins  (shown in bold)  and their correspond- 
ing structural  analogues were selected from  the PDB (Bernstein 
et al., 1977; Abola  et  al., 1987). Their PDB codes  are: 2CRO: 
1R69; lWRP(R): 2WRP(R); ICCR: 3C2C,  5CYT(R); 
lHMQ(A): 2MHR; 1BP2: 1P2P; 2HHB(A): 2HHB(B), 2LHB, 
SMBN, IMBA,  lHDS(B), lHDS(A),  IFDH(G); 3CLN: 4TNC; 
lFDH(G): lHDS(A), lHDS(B),  IMBA, 2HHB(A), 2HHB(B), 
2LH4, 2LHB, SMBN; SMBN: 2LHB,  2HHB(B),  2HHB(A), 
IMBA, lHDS(B),  lHDS(A), IFDH(G);SPCY: IPAZ; lREI(A): 
2FB4(H),  2FB4(L),  2FBJ(H),  2FBJ(L),  2HFL(L),  2RHE, 
3HFM(H), 3HFM(L), 4FAB(H), 4FAB(L), IMCP(L), lMCP(H), 
1F19(L),  1F19(H); 2PAZ: IPAZ; 2IlB: 411B; 1F19(H): 
1F19(L), lMCP(H),  lMCP(L),  2FB4(H), 2FB4(L), 2FBJ(H), 
2HFL(L),  3HFM(H),  3HFM(L),  4FAB(H); 3HFM(H): 

4FAB(H),  2FBJ(H),  2FB4(H),  lMCP(H),  1F19(H); 2PLV(3): 
4RHV(3), 2MEV(3), lRlA(3); lRlA(2): 2MEV(2), 2PLV(2), 
4RHV(2); ICMS: 2APR,  3APP,  4PEP; 1FDX: 4FD1; 1ALC: 
ILZI,  2LYZ; lRBB(A): IRNS,  lSRN(A); ISNC: 2SNS; 
2DHF(A): 3DFR,  4DFR(B),  8DFR; 2ACT: 9PAP; 2PRK: 
ITEC(E), 1SBT; lPFK(A): 2PFK(A), 2PFK(D); 2LDX: 6LDH; 
3GPD(G): 4GPD(1); and 2LIV: 2LBP. All proteins  have a res- 
olution  of 2.5 A or better. 

The  following 86 protein  structures were  selected from  the 
PDB (Bernstein et al., 1977; Abola et al., 1987) for  the set of 
unrelated  scaffolds.  Their PDB codes are: IFDX,  2CR0, 3FXC, 
SPCY, IWRP(R), 3RNT,  256B(A), IREI(A), 2CDV, 2SS1, 
ITRX, SCPV, lCCR, 3C2C, IHMQ(A),  2RHE, lCY3, ZMHR, 
IALC,  2PAZ,  lBP2,  IRBB(A), 2CCY(A), 2AZA(A),  ILZ1, 
ISNC,  3FXN,  2HHB(A), ZSNS, 3CLN,  lFDH(G),  IFXI, 
2SOD(B), lTNF(A), SMBN, 2IIB, 2TMV(P), 4DFR(B), 4TNC, 
3LZM, 1CD4, IGCR,  2DHF(A), ZSTV, 3ADK, 3GAP(A), 
9PAP,  1F19(H),  3HFM(H),  2ACT,  lMCP(L), 4SBV(C), 
2PLV(3),  3CNA,  lRIA(3),  2CGA(A),  lYPI(A),  lRlA(2), 
2CAB,2PLV(2), 3HLA(A), ISBT, 2PRK, IRHD, SCPA, 2GBP, 
8ATC(A), 3TLN, IPFK(A), 2TBV(C), ICMS, 4PEP, SHMG(A), 
ZLDX, 4MDH(A),  3GPD(G),  9API(A), 2LIV, 2LBP, 8ADH, 
3X1A, IWSY(B), 3ICD, 3PGK,  ICTS, and 3GRS. All proteins 
have a resolution  of 2.5 A or better. 
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