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Abstract 

Previously, we introduced a neural  network system predicting  locations of transmembrane helices (HTMs)  based 
on evolutionary  profiles  (PHDhtm,  Rost B, Casadio  R, Fariselli P, Sander  C, 1995, Protein Sci 4:521-533). Here, 
we describe an  improvement  and  an  extension of that system. The  improvement is achieved by a dynamic 
programming-like  algorithm  that  optimizes helices compatible with the  neural  network  output.  The  extension is 
the  prediction of topology  (orientation of first  loop  region with respect to membrane) by applying  to  the  refined 
prediction  the  observation  that positively charged residues are  more  abundant in extra-cytoplasmic  regions.  Fur- 
thermore, we introduce a method  to reduce the  number of  false  positives,  i.e., proteins falsely predicted with mem- 
brane helices. The  evaluation of prediction  accuracy is based on a cross-validation  and a double-blind test set (in 
total 131 proteins).  The  final  method  appears  to  be  more  accurate  than  other  methods  published: (1) For almost 
89% (+.3%) of the test proteins, all HTMs  are predicted  correctly. (2) For more  than 86% (*3%) of the  proteins, 
topology is predicted  correctly. (3) We define reliability indices  that  correlate with prediction  accuracy:  for  one 
half of  the  proteins, segment accuracy raises to  98%;  and  for  two-thirds,  accuracy  of  topology  prediction is 95%. 
(4) The  rate  of  proteins  for which HTMs  are  predicted falsely is below 2% (k 1070). Finally,  the  method is applied 
to 1,616  sequences of Haemophilus  influenzae. We predict  19%  of  the  genome  sequences to  contain  one or more 
HTMs.  This  appears  to  be lower than  what we predicted previously for  the yeast VI11 chromosome  (about  25%). 

Keywords: .dynamic  programming;  genome analysis; Haemophilus influenzae; postprocessing  neural  network out- 
put;  secondary  structure  prediction;  structure  prediction  for  integral  membrane  proteins;  topology  prediction  for 
helical transmembrane  proteins 

Integral membrane  proteins  comprise  an  important class of pro- 
teins  for which experimental  techniques  for 3D structure  deter- 
mination  are  often  not  applicable.  Fortunately,  theoretical 
prediction  of structural aspects is simpler for membrane proteins 
than for globular  proteins because the lipid  bilayer imposes 
strong  constraints  on  the  degrees of freedom  for  the 3D struc- 

Reprint  requests  to:  Burkhard  Rost,  EMBL, 69012 Heidelberg,  Ger- 
many;  e-mail: rost@embl-heidelberg.de. 

Abbreviations: ID,  one-dimensional; 3D, three-dimensional; HTM, 
transmembrane helix (in figures and  tables  also  abbreviated with the sym- 
bol  H; L is used  to  describe  nontransmembrane  regions);  PHDhtm, 
profile-based  neural  network  prediction of helical  transmembrane  re- 
gions;  PHDhtm-fil,  empirical  filter  postprocessing  the  output from 
PHDhtm;  PHDhtm-ref,  refinement  procedure  postprocessing  the 
output  from  PHDhtm  described  here. 
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ture  (von  Heijne, 1981, 1989, 1992; Eisenberg  et al., 1984; En- 
gelman et al., 1986; von Heijne & Gavel, 1988; Taylor et al., 
1994; Rost et al., 1995). 

Prediction of HTMs 

3D  structures  are  determined  experimentally  for  two types of 
membrane  proteins: (1)  helical proteins  consisting of typically 
apolar helices of  about 20 residues that  cross  the  membrane per- 
pendicular  to  its  surface  [photo-reaction  center  (Deisenhofer 
et al., 1985); bacteriorhodopsin  (Henderson  et  al., 1990); light 
harvesting  complex 11 (Wang, 1994)1, cytochrome c oxidase 
(Iwata et al., 1995); and (2) 0 proteins consisting of 16-stranded 
&barrels  [porin (Weiss & Schulz, 1992; Cowan & Rosenbusch, 
1994; Kreusch & Schulz, 1994)]. Methods  for  the  prediction o f  
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protein B 

Fig. 1. Topology  for  helical  transmembrane  proteins.  In  one  class  of 
membrane  proteins,  typically  apolar  helical  segments  are  embedded  in 
the lipid bilayer oriented  perpendicular to  the  surface of the  membrane. 
The helices  can  be  regarded as  more or less rigid cylinders.  The  orien- 
tation  of  the  helical  axes,  i.e.,  the  topology of the  transmembrane  pro- 
tein,  can  be  defined by the  orientation  of  the  first  N-terminal  residues 
with  respect to  the cell. The  topology is defined  as out when  the  pro- 
tein  N-term  starts  on  extracytoplasmic  region  (protein A) and  as in i f  
the  N-term  starts  on  the  intracytoplasmic  side  (proteins B and C). 

transmembrane  segments  usually  focus  on helical transmem- 
brane  proteins,  for which more  experimental  data is available. 
Prediction  methods were  designed to  predict  the  locations of 
HTMs (von Heijne, 1981,  1986a, 1986b, 1992; Argos et al., 
1982; Kyte & Doolittle, 1982; Engelman et al., 1986; Cornette 
et al., 1987; von  Heijne & Gavel, 1988; Degli Esposti et al., 1990; 
von  Heijne & Manoil, 1990; Landolt-Marticorena et al., 1992; 
Donnelly et al., 1993; Edelman, 1993; O’Hara et al., 1993; Sipos 
& von Heijne, 1993; Jones et al., 1994; Persson & Argos, 1994; 
Donnelly & Findlay, 1995; Casadio et al., 1996) and  the  orien- 
tation of HTMs with respect to  the cell (dubbed topology, Fig. 1; 
von  Heijne & Gavel, 1988;  von Heijne, 1989,  1992;  Nilsson & 
von Heijne, 1990; Sipos & von Heijne, 1993; Jones et al., 1994; 
Casadio & Fariselli, 1996). If the locations  of the  HTMs  and  the 
topology  are  known with sufficient  accuracy,  3D  structure  can 
be predicted successfully for  the  membrane  spanning  segments 
by an  exhaustive  search of the  entire possible structure  space 
(Taylor et al., 1994). 

Accuracy of prediction methods 

One of the  problems in predicting structure  for helical transmem- 
brane  proteins is the lack of  accurate experimental information. 
Most  prediction  methods designed for  globular  water-soluble 
proteins  are typically based on  more  than 100 proteins  (Rost & 
Sander, 1994, 1995) of known 3D structure as stored in the  Pro- 
tein Data  Bank  (PDB)  (Bernstein et al., 1977). To obtain  suffi- 
ciently  large  data  sets,  prediction  methods  for  membrane 
proteins use data  from  experimental sources other  than crystal- 
lography or spectroscopy (Manoil & Beckwith, 1986; Park et al., 
1992; Hennessey & Broome-Smith, 1993). There  are  numerous 
examples for  proteins  for which “reliable  experimental informa- 
tion”  obtained  from  different  groups is contradictory. To list a 
few controversial cases: ( I )  nicotinic acetylcholine receptor chan- 
nel:  four  a-helices  versus  two  a-helices  and  two  P-strands 
(Hucho et al., 1994); (2) P-type  ATPases: 8 versus  10 a-helices 
(Stokes et al., 1994); (3) a-subunit of the FO channel Escheri- 
chia coli: topology our (Lewis et al., 1990)  versus topology in 
(Bjorbaek et al., 1990); (4) mitochondrial  cytochrome b: 7-9 
a-helices  (Degli  Esposti et al., 1993). One  consequence  of  this 
is that  prediction  methods  are likely t o  become  more  accurate 
as  reliable  experimental  information  about  integral  membrane 
proteins is being added  to  the  databases.  Another  consequence, 

however, is the  problem  to  adequately  estimate  prediction  ac- 
curacy.  Thus,  estimates  for expected accuracy  have  to be taken 
with caution. 

Are further improvements of prediction 
accuracy necessary? 

Advanced  methods  for  the  prediction of HTMs  (Jones et al., 
1994; Persson & Argos, 1994; Rost et al., 1995) reach levels of 
about  90%  accuracy (correctly  predicted HTMs).  Thus, predic- 
tions of HTMs  are significantly more  accurate  than  are two-state 
secondary  structure predictions of,  for  example, helix, nonhelix 
for  globular  proteins  (Rost & Sander, 1993b). Is there  any need 
for  further  improvement of 1D  predictions  for  transmembrane 
proteins?  Indeed,  two  methods  that  start  from  1D  predictions 
of HTMs  to  predict  further  aspects  of  3D  structure  would  pre- 
sumably  benefit  from  better  1D  predictions. (1) Taylor  et  al. 
(1994) achieve to  predict  3D  structure  for  the  membrane  span- 
ning helices using the  knowledge of the  exact  locations  of  the 
helices as  the  starting  point. In general,  current  1D  predictions 
are  not  accurate  enough  to  provide  the  demanded precision  in 
locating  the helices. (2) A  simple and successful technique to pre- 
dict  topology is the positive-inside rule  (von  Heijne & Gavel, 
1988; Hartmann et al., 1989; von  Heijne, 1989, 1992; Boyd & 
Beckwith, 1990; Dalbey, 1990;  Nilsson & von  Heijne, 1990; 
Sipos & von  Heijne, 1993): positively charged residues occur 
more  often in intra-cytoplasmic  than in extra-cytoplasmic re- 
gions.  Applying  this  rule  for  the  prediction  of  topology relies 
crucially on a correct  prediction  of  the  nontransmembrane re- 
gions. We shall  show  that relatively small  improvements in ID 
predictions of HTMs  can result in significantly better  predictions 

An  improvement  and extension  of a technique described pre- 
viously to  predict  locations  of  HTMs  (Rost  et  al., 1995) is pre- 
sented  here.  The  initial  method  (PHDhtm) used information 
derived from  multiple  sequence  alignments  as  input  for a sys- 
tem of neural  networks  (Fig.  2,  step 1). The  neural  network 
preferences were  used  in two ways. (1) A  region of 18 adjacent 
residues  was searched  that  had  the highest propensity in the 
protein to  be in a transmembrane helix (Fig.  2,  step 2). Then 
two  thresholds were applied  (Equation 5 )  to  decide  whether 
the  protein was predicted  to  contain  at least one  HTM. (2) The 
preferences  for  HTM  and  not-HTM were input  to a dynamic 
programming  algorithm  that  produced a model  (locations  and 
number of HTMs)  that was optimally  compatible with the neu- 
ral network  preferences and  the  assumption  that  the protein  con- 
tains  HTMs  of lengths 18-25 residues (Fig.  2,  step 3; Figs. 6,7). 
By working on  the preferences for  the  entire  protein,  the refine- 
ment  procedure  introduced  an  aspect  global in sequence,  i.e., 
the resulting model was not  as  constrained  to signals  local  in 
sequence (17 adjacent  residues used as  input  to  the  neural  net- 
works)  as  the  previous  network  prediction.  Finally,  the  refine- 
ment  model  was used to  predict  topology  (Fig.  1) by applying 
the positive-inside rule  (Fig. 2,  step  4; Fig. 6). The main elements 
of the  method  are  described in mathematical  details elsewhere 
(Rost et al., 1996). Here, we focused on  the new aspects (reduc- 
tion  of  false positives; definition  of reliability indices for  the pre- 
diction)  and  present a thorough  analysis  of  the  performance 
of  the novel method.  Finally,  the  tool was applied to  the  first 
entirely  sequenced genome of Haemophilus infruenzae (Fleisch- 
mann et al., 1995) and  particular aspects  of the results were com- 
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pared with an analysis of  the yeast VI11 chromosome  (Rost et al., 
1995). 

Results and discussion 

Correct prediction of all HTMs 
for  almost 90% of the  proteins 

Refinement procedure significantly better than 
original neural network 
The  refinement  algorithm  (PHDhtm-ref) used here system- 

atically  optimized the  transmembrane segments compatible with 
the  output of the  neural  network system PHDhtm.  The success 
was that  the  number  of  proteins  for which all  HTMs were pre- 
dicted  correctly  almost  doubled  (Table I ) .  More  than 98% of 
all observed HTMs were predicted  correctly by PHDhtm-ref 
(337 of 341 observed;  Table 1). Tendency was  a marginal  over- 
prediction (341 observed, 354 predicted;  Table 1). Prediction ac- 
curacy was higher  for  proteins  that were observed to  contain 
more  than  one  HTM  (data  not  shown). 

Refinement procedure better at predicting segments 
than empirical filter 
HTMs  predicted by PHDhtm  alone were too  long (266  pre- 

dicted versus 341 observed;  Table I ) .  The  reason is that  loop 
regions  between two  transmembrane  segments  are  often very 
hydrophobic. Because the  neural  network only "sees" biochem- 
ical properties  of  amino  acids,  the  second level of  neural  net- 
works  introduced  to  account  for  correlations between adjacent 
residues (Rost et al., 1995; Rost, 1996a) frequently  predicted 
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helices extending to  more  than  40 residues. Thus,  the  network 
system could not learn external constraints imposed on  the struc- 
ture.  Previously, we have  corrected  this  shortcoming by intro- 
ducing an empirical filter that  simply  chopped  too-long helices 
into several shorter  ones  (Rost  et  al., 1995); PHDhtm-fil: 340 
HTMs  predicted versus 341 observed;  Table 1). The  refinement 
algorithm  pursued systematically a similar goal.  PHDhtm-ref 
predicted residues slightly less correctly than  PHDhtm-fil, but 
was  slightly better  at  correctly  predicting  HTMs  (Table I ) .  

Expected accuracy verified by double-blind test 
After we had  completed all  tests with the cross-validation set 

of 83  membrane  proteins, we tested all methods  on  the  double- 
blind set of 48 proteins.  The results corrected our previous es- 
timates  for  prediction  accuracy  to higher  values. In particular, 
PHDhtm-ref  performed even better when applied to  a set of 
proteins that  had never been used before  (Table 1). (Note: Most 
results presented in the  following  hold  for  the  entire set of 13 1 
proteins,  i.e.,  cross-validation  plus  double-blind  set.) 

Reliability index guide for  expert-driven 
improvement of accuracy 
The reliability  index defined  for  the  final best refined  model 

(Equation 3) correlated well with prediction  accuracy  (Fig. 3). 
In  practice,  this allows focus on  the subset  of proteins  that were 
predicted more reliably. For example, 66 proteins were predicted 
at levels of Ri, 2 3; for 65 of these  66  proteins,  all  predicted 
HTMs were correct  (Fig.  3;  outlier:  mypo-human  for which 
the signal  peptide was predicted  as HTM; see the Electronic  Ap- 
pendix or Rost, 1996b). 

Method 

PHDhtm-nof 
PHDhtm-fil 
PHDhtm-ref 
Jones et  al., 1994' 
PHDhtm-fil 
PHDhtm-ref 

Set 
N,,,, 

83 
83 
83 
83 
48 
48 

Number of 
transmembrane helices 

~~ ~ ~~~ 

I98 195 194 
198  198 I96 

Per  residue 
accuracy 

Q2 

91.9 
94.5 
93.6 

~~ ~" 

94.2 
94.4 

Per  segment 
accuracy 

QM 
~~~ " 

45.8 f 6.0 
86.7 k 3.6 
88.0 f 3.6 
79.5 * 3.1 
89.6 k 6.2 
91.7 i 4.2 

Accuracy  for 
topology  prediction 

QTh 
~~ 

44.6 k 6.0 
80.7 f 4.8 
85.5 i 4.8 
77.1 f 3.8 
85.4 k 6.2 
87.5 k 6.2 

Eukaryotesd 99 334 331 332 95.8 93.5 i 3.2 90.3 f 3.2 
Prokaryotesd 33 200 208 196 85.6 75.8 i 9.1 12.7 f 9.1 

PHDhtm-fil 131 539 535 521 94.4 88.5 f 3.1 82.4 k 3.8 
PHDhtm-ref 131 539 552 533 93.8  89.3 f 3.1 86.3 f 3.1 

~~ 

~~~~~~ . . . ~~ 

.."~ ~ ~~~ 
~~~~~ ~. .~ .~ 

a Results given for  cross-validation set [83 proteins;  see  the  Electronic  Appendix or Rost (1996b) # I  1521, double-blind set 
[48 proteins; see the  Electronic  Appendix or Rost (1996b) #1152], and  for  the  sum  of  these  two.  Methods:  PHDhtm-nof, neu- 
ral  network  results (no filter);  PHDhtm-fil,  neural  network  with  empirical  filter  (Rost  et  al., 1995); PHDhtm-ref, refined 
version  of  PHDhtm  described  here;  Jones  et  al., 1994, prediction  method  of  Jones  et  al. (1994). Scores  and  numbers: N,,,,, 
number  of  proteins; Nabs, number of HTMs  observed; Nprd,  number of HTMs  predicted; N,.,,, number  of  HTMs  correctly 
predicted; Qz, percentage  of  residues  predicted  correctly in either of the  two  states,  HTM or not-HTM; Q M ,  percentage of pro- 
teins  for which all  HTMs  were  predicted  correctly; QT, percentage of proteins for which the  topology  and  all  HTMs  were  pre- 
dicted  correctly.  Note: As a  rule of thumb,  for  an  evaluation set of 131 proteins  and 2 SDs of 2 x 3.1%, an  improvement of 
>0.6% would  be  significant. 

Estimated  error: f x, where x was 1 SD  for  a  binomial  distribution. 
Results  compiled  from  literature  (Jones  et  al., 1994). 
Subsets  with  all  eukaryotic  and  all  prokaryotic  proteins. 
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sequences  in 

BLAST 

protein U 
protein A 

protein M 

MaxHom PHDhtm 
(neural network system) 

Step 2: predict  proteins 
without HTM's 

N preference  for  each  residue 
>UT: number  of HTM >O or = 0 

> 

find  maximal  area AH for 18 
adjacent  residues 

0 ' r n H  1 
I residue  number I 
compile  average  overall  score 
<P18>  (eq.  1)  for  the  18  residues 

-Step 3: predict HTM location 
by dynamic  programming 

IN: preferences for HTM 
OUT.  locations  and  numbers of 

HTM's  predicted 

find  segments  with  maximal 
preference  for HTM 
successively  add  highest  scoring 
segments  to  model 

* terminate  if  overall score (sum 
over  preferences  for  H  and L) 
decreases 

1 

Step 4: pndid topology IN: locations  of m s  
OUT: intra- and extracytoplasmic regions 

compile  sums  over  positive  charges (R and K) for  all  non-HTM  regions 
compile  difference  between  charges in all odd  and all even  non-HTM  regions 

AC< 0 -> N-term intra-cytoplasmic 

Fig. 2. From  sequence  to  topology  prediction.  Step I :  Sequences  similar  to  the  input  were  found in SWISS-PROT  (Bairoch 
& Boeckmann, 1994) using  BLAST  (Altschul  et  al., 1990; Karlin & Altschul, 1990); likely homologues  were  picked  realigned 
by MAXHOM  (Sander & Schneider, 1991,  1994) and  the  alignment  was  fed  into  the  neural  network  system  PHDhtm  (Rost 
et  al., 1995). The  network  preferences  for  each  residue to be in a  transmembrane helix (H)  or to be  outside  of  the  lipid  bilayer 
(L)  were used as  for  the  postprocessing  methods  described  here.  Step 2: The region  of 18 adjacent  residues  with  maximal  pref- 
erence  for  H  was  picked,  normalized by the  preferences  for L, and a  decision-threshold  was  applied  to  manage  the  distinction 
between  proteins  with  and  without  HTMs.  Step 3: The  network  preferences  were used as  input to a  dynamic  programming  al- 
gorithm  that  found  the  model  (number  and  locations of HTMs)  representing  the  best  path  through all possible  models  consist- 
ing of  HTMs between 18 and 25 residues  by  optimizing  the  compatibility of the  model  with  the  neural  network  outputs.  Step 4: 
The final  refined  model output  from  the  dynamic  programming  was used to apply  the  positive-inside  rule  (von  Heijne & Gavel, 
1988; von  Heijne, 1992). 

Second-best  model  occasionally  correct occasionally  better: 5 of  the 14 proteins (of 13 1) predicted with 
errors  (cox2_parde,  iglr-human,  il2b_human,  myp0-human, 

The  dynamic  programming-like  algorithm yielded a list of  rfpb-salty; see the  Electronic  Appendix or Rost, 1996b) were 
possible models. Results reported  refer  to  the best model  (best predicted  correctly by the second-best  model. For another seven 
according to  Equation 1). However,  the second-best model was (of the 14), the  second-best  model  was  more  accurate  than  the 
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n x Proteins for which all segments werepredictedcarectly 
n 0 Proteins for which some helices werepredicted falsely 

1 2  

I , , , , ,  

: : : : : :  
. . . . . .  . . . . . .  . . . . . .  . . . . . .  . . . . . .  . . . .  . . . .  E m x i  i i ; 
w : : : :  

x *  kmi i 
* %  * % x *  : 
i x q  t ** ; 
I X f W i  

; x :  i 4 
7 Y W l  

. . .  . . . .  . . . .  

. . . :  : .  
3 4 5 6 7 8 9 10  11 12 13 14 15 

B Number of transmembrane helices observed 

b () a 20 40 60 80 100 
Cumulative percentage of proteins  predicted 

Fig. 3. Reliability of predicting  correct  model. A: Reliability of model  versus  number of HTMs observed.  Note: To separate 
the  points  on  the  horizontal  axis, we added  a  random  number  between 0 and I to the  number of HTMs, i.e., all  entries  between 
two grey vertical lines represent  the  same  number of helices.  Crosses  mark  proteins for which  all  segments  were  predicted  cor- 
rectly;  open  circles  proteins for which some helices were predicted falsely. For example,  the highest index for a falsely predicted 
protein was 5 (mypO-human). B: Percentage of proteins for which all HTMs were predicted  correctly  versus  the  cumulative 
percentage of proteins  predicted  with  a  reliability  index Ri ,  2 n, n = 0 (low), 1 , .  . . .  8 (high). Ri, 2 0 is the  rightmost  point 
representing 100% of the  proteins. For example,  more  than 60% of all proteins were predicted with RiM 2 2; for 95% of  these, 
all HTMs were  predicted  correctly. 

best. Thus,  additional expert information may have had reduced 
the  error  from I 1  9'0 to  7% or even to  2%. Expert decisions could 
have been based  on  the reliability  index that was >2  for  only 
1 of the 14 proteins  (myp0-human;  for  comparison:  average 
reliability for all correctly  predicted  proteins = 3.4; Fig. 3; for 
details, see the  Electronic  Appendix or Rost, 1996b). 

Correct topology prediction for more 
fhan 85 % of the proteins 

Refinement  most successful in predicting topology 
The  empirical filter  was  slightly superior  to  the  refinement in 

predicting residues, and slightly inferior in predicting  segments. 
Which  of  these  models (i.e., predictions of all HTMs) was more 
crucial for predicting topology? Using the refinement procedure 
as  the basis for  the positive-inside rule, we predicted  topology 
correctly  (and all HTMs) for 86%  of  all  proteins (versus 82% 
for  PHDhtm-fil;  Table 1). Thus,  PHDhtm-ref was  signifi- 
cantly  more  useful  as  input  for  topology  prediction  than 
PHDhtm-fil.  Furthermore,  for  more  than  90%  of  the  proteins 
the  orientation of the  first  nonmembrane region  was predicted 
correctly  (data  not  shown; Note: A random  prediction  would 
be correct in about 52% of all  cases). 

Positive-inside rule not the limiting factor 
For 117 proteins, all HTMs were predicted correctly;  for 113 

of  these,  the  topology was predicted  correctly. For three  of  the 
four  proteins  for which the  predicted  topology was not in  ac- 
cordance  with  the  SWISS-PROT  entries  (4f2Lhuman,  lh4- 
rhoac,  and ssrg-rat), the  application of the positive-inside rule 
yielded the  wrong  topology even when starting  from  HTM lo- 
cations  annotated in SWISS-PROT.  The  simple positive-inside 
rule yielded the correct  topology for  almost  97% of the  proteins 
given HTM  locations  annotated  in  SWISS-PROT.  Thus,  the 
simplicity of  the positive-inside rule was not  the limiting factor 
for  prediction  accuracy. 

Reliability index corre/ates with prediction accuracy 
The value of  the  charge  difference between extra-  and  intra- 

cytoplasmic  nontransmembrane regions correlated with  predic- 
tion  accuracy  (Fig. 4). The reliability index Rir (Equation 4) 
was >5  for only  three falsely predicted  proteins  (myp0-hu- 
man,  iggbhstrsp,  and  gaa4-bovin). For all three,  some  HTMs 
were predicted falsely (see the  Electronic  Appendix or Rost, 
1996b). For only  one  of  these  three  (mypo-human),  the  pre- 
dicted  model also  had a high reliability, and  thus could not have 
been suspected  as a wrong  prediction by an  expert.  For  two 
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x Topologyandmodelpredictedcorrectlv 
V Topology false; model correc t 
o Topology and  model pre Y 

1 0 0 l r r l l l l l l l l l l l l l l l l l l  

. ........... ............ 

0 20 40 60 80 100 

11 Cumulativepercentageofproteins 

1 2 3 4 5 6 7 8  
Number of HTM’s observed Reliability index for topology prediction 

Fig. 4. Reliability  of  topology  prediction. A: Charge  difference versus number of HTMs observed.  Note: To separate  the  points 
on  the  horizontal  axis, we added a  random  number  between 0 and 1 to  the  number of HTMs,  i.e.,  all  entries  between  two  grey 
vertical  lines  represent  the  same  number  of  helices.  Crosses  mark  proteins for which all  segments  and  the  topology  were  pre- 
dicted  correctly;  filled  triangles  mark  proteins for which  the  topology  prediction  was  wrong  although  all  helices were correctly 
predicted;  open  circles  mark  proteins for which  some helices and  the  topology  were  predicted  falsely.  High  values  for  false  to- 
pology  predictions  occurred  only  for  proteins  for which the  model  was  also  predicted  falsely (circles). B: Accuracy of topology 
prediction  versus  the  cumulative  percentage  of  proteins  predicted  with  a  reliability  index RiT 2 n ,  n = 0 (low), 1,. . . , 9 (high). 
RiT 2 0 is the  rightmost  point  representing 100% of  the  proteins. For example,  more  than 60% of all  proteins  were  predicted 
with RiT 2 5 ;  for 95% of these,  the  topology  and  model  were  predicted  correctly. C: The  number of proteins  predicted  with 
a  certain  reliability  index is shown  to  indicate  that  the  drop of accuracy  for RiT 2 6 (B) is partly  due  to low count  rates. 

chains  from  the  cytochrome c oxidase (coxl-parde  and 
~0x3-parde; see the Electronic  Appendix or  Rost, 1996b), we 
trusted our prediction more  than  the SWISS-PROT annotations 
for a  homologue.  The X-ray determination of the  structure for 
cytochrome c oxidase (Iwata et al., 1995) revealed the correct- 
ness of the prediction (and consequently the mistake in SWISS- 
PROT; see details in the Electronic  Appendix  or Rost, 1996b). 

Eukaryotic proteins predicted at higher accuracy 
Separating the results for eukaryotic,  prokaryotic, and viral 

proteins revealed three results. (1) Topology and all HTMs were 
predicted better than average for eukaryotic proteins (Table 1). 
(2) The positive-inside rule was about equally successful for both 
classes, Le., given a  correct prediction of all HTMs,  the topol- 
ogy prediction was correct for 96.6% of the  eukaryotic and  for 
96.0% of the prokaryotic  proteins (Table 1). (3) The five viral 
proteins in our set were predicted correctly,  although they all 
had single membrane  spanning (expected accuracy below aver- 
age; data not shown). However, five proteins are too few to jus- 
tify any conclusion from this evidence. Why was prediction 
accuracy significantly higher for eukaryotes than  for  prokary- 
otes? We failed to find a satisfying answer. Several factors may 
have contributed to the higher accuracy for eukaryotes. (1) The 
multiple sequence alignments were more informative for the eu- 
karyotes (20% of the alignments for eukaryotes had less than 4; 
30% less than 10 sequences aligned; the respective numbers for 

prokaryotes: 40% and 70%!). (2) Eukaryotic  HTMs are longer 
(on average 23 residues,  versus 21 for prokaryotes; longer HTMs 
are predicted more reliably). (3) There are marginally more hy- 
drophobic residues  in eukaryotic HTMs (subclass  of  residues for 
which prediction  accuracy was highest) and slightly more 
charged residues in eukaryotic non-HTM regions (second best 
predicted class of residues). 

Reliable discrimination between proteins 
with and without HTMs 

Significant reduction of false positives 
by evaluating strongest HTM 
The usefulness of transmembrane predictions for the  analy- 

sis of entire genomes depends crucially on the rate of false pos- 
itives (Le.,  proteins falsely predicted to contain  HTMs).  Here, 
we introduced  a  method  tailored to reduce false positives. The 
method based on  the hypothesis that proteins with and without 
HTMs separate most clearly  when comparing a single  region pre- 
dicted with highest average propensity for  HTM. Applying a 
strict decision threshold (Equation 5 ) ,  the percentage of false 
positives  was reduced below 2% (Table 2, note  that  the low rate 
of false positives was obtained at  the expense of a higher false 
negative rate). False classifications occurred for proteins with 
very hydrophobic patches (for two of the falsely predicted seven 
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Table 2. Accuracy of distinguishing proteins with and without transmembrane helicesa 

Method Nglob  Eglobb  Nmemb  Ememb 

PHDhtm, OS""' = 0.8 435 1.6% * 0.7% 131 2.3% f 1.5% 
PHDhtm, GIoose = 0.7 435 3.7% * 0.9% 131 0.0% * 0.8% 
PHDhtm-fil 435 5.7% k 1.1% 131 0.0% * 0.8% 
PHDhtm-fil' 278 4.3% f 1.4% 69 0.0% * 1.4% 
Jones et al., 1994c 155 3.2% f 1.9% 83 1.2% f 1.2% 
Edelman, 1993' 14 21.4% f 14.3% ? 

a Methods: PHDhtm, 19~""' = 0.8: strict  decision threshold applied to PHDhtm output (designed to reduce  false  positives; 
Equation 5); PHDhtm, GIoose = 0.7, loose  decision  threshold  (designed to include  all  possible  helical  membrane  proteins; Equa- 
tion  5); PHDhtm-fil, PHDhtm plus  empirical filter; Jones et al., 1994, statistics-based  method for predicting  HTMs (Jones 
et al., 1994);  Edelman,  1993,  statistics-based  prediction  method (Edelman, 1993);  question  mark  indicates that published  re- 
sults for predicting  membrane  proteins  are  not  based on cross-validation  tests  and thus are not  comparable.  Scores: Nglob, num- 
ber  of globular proteins, i.e., proteins without HTMs; Exlob, percentage of proteins without  HTMs for which  HTMs  were 
predicted  falsely; Nmemb, number  of proteins with  HTMs; Ememb, percentage  of proteins with HTMs for which  no  HTMs  were 
predicted.  The  following  proteins  without  HTMs were  predicted to contain HTMs by the strict threshold: lbmdA, oxidoreduc- 
tase; IpfiA, viral  coat  protein; IribA, reductase; lspf, lipoprotein; lytbA, TATA-box  binding protein; Zmnr,  racemase;  ZohxA, 
oxidoreductase. 

Estimated error: x,  where x was 1 SD for a binomial distribution. 
Results  taken from literature (Edelman, 1993; Jones et al., 1994;  Rost  et al., 1995). 

proteins, HTMs were predicted for observed strands: TATA-box 
binding  protein,  lytbA;  and  the  racemase,  2mnr). 

Will the estimate for false classifications 
hold for entire genomes? 
The investigated set of 435 globular  proteins resulted  in more 

conservative  estimates  for  the  error  rate  than  did  smaller  sets 
used previously  (sets  with  278, resp. 155 proteins;  Table 2). The 
difference between the  error  rate  for  the maximal unique  data set 
of 18 months  ago  and  the  maximal set  used now  (PHDhtm- 
fil for 238 versus 435 proteins,  Table 2) indicates  that  the esti- 
mated  rate  of  false positives should  be viewed with skepticism. 
Improved  experimental  techniques may  determine  structures  for 
proteins with very hydrophobic regions that  could  be predicted 
falsely as HTMs.  Furthermore,  the analysis is based on  proteins 
contained in PDB  that  do  not  contain signal peptides,  i.e.,  the 
problem  that  the  refined  prediction  frequently  confused  HTMs 
and signal  peptides is not  taken  into  account.  Thus,  an expected 
rate  of less than  2%  false positives (Table 2) may  prove  to  be 
too  optimistic. 

Total number of false classifications 
lower for  strict threshold 
The  two decision thresholds  introduced allow focus either on 

predicting  as  many helical transmembrane  proteins  as possible 
(loose threshold,  Equation 5 )  or on minimizing the  rate of false 
positives (strict threshold,  Equation 5) .  The strict threshold was 
better in classifying proteins  without  HTMs (lower rate of  false 
positives; higher  rate of false negatives); the  loose  threshold in 
classifying proteins  with  HTMs (lower rate  of  false negatives; 
higher  rate of false positives; Table 2). The  strict  threshold 
yielded a higher  total  error  rate  (false positives + false nega- 
tives = 3.9%) than  the loose  threshold (3.7%). However, for an- 
alyzing  a large  number  of  proteins by an  automatic  prediction 
service (Rost  et  al., 1994a; Rost, 1996a),  (e.g., entire  genomes) 
the  total  number  of falsely  classified proteins  would  be lower 
for  the  strict  than for the  loose  threshold because the  number 
of  proteins  without  HTMs is supposedly below 30%. 

Refined version of PHDhtm compared favorably 
with other methods 

Better prediction of topology 
The  final  topology  predictions were more  than eight percent- 

age  points  superior  to  the best alternative  method for prediction 
of  topology  published when evaluated  on  an  identical  data set 
of 83 proteins  (Jones  et  al., 1994; Table 1). An  empirically de- 
rived method was evaluated on 24 bacterial  inner membrane  pro- 
teins by von  Heijne (1992). A crucial  idea of that  method  was 
to  choose  the  predicted  HTMs  such  that  the  charge  difference 
became  maximal. In our hands, a similar  algorithm  resulted  in 
significantly  worse  predictions than  those  obtained by the  meth- 
ods  described  here.  The  result  published by von  Heijne (1992) 
suggests a prediction accuracy of 96%  for  the correct  prediction 
of all HTMs  and topology. Omitting  the  three proteins for which 
the  assignments of HTMs  published by von  Heijne  did  not  cor- 
respond to  the  SWISS-PROT  assignments (cyoa-ecoli,  cyoe- 
ecoli,  uhpt-ecoli), we achieved the  same  accuracy  on  this  spe- 
cially  selected data  set. 

Lower rate of false  positives 
Judging  from  the results published, the  method of Jones et  al. 

(1994) is the best  in distinguishing between proteins with and 
without  HTMs. Our method  tailored  to  manage  this  distinction 
yielded  a  lower error  rate  although  based  on a larger  and  more 
conservative  data set (Table 2). 

Analyzing the entire H. in fluenzae genome 

Most predictions based on single sequence information 
Prediction  accuracy is significantly higher if the  evolutionary 

information  contained  in  multiple  alignments is  used as  input 
to  the  neural  network system PHDhtm  (Rost  et  al., 1995). For 
332 of 1,616 H .  influenzae proteins, we predicted at  least one 
HTM.  For 129 of  the 332 predicted HTM  proteins ( ~ O V O ) ,  the 
prediction was based on  alignments;  for  only 76 (23%!), pre- 



Topology prediction  at 86% accuracy 171 1 

dictions were based on multiple alignments containing at least 
four sequences (results for the 37 of these predicted to contain 
at least two HTMs in Table 3; for more details, see the Electronic 
Appendix or Rost, 1996b). About 80% of predicted membrane- 
bound proteins (238) were predicted to contain more than  a sin- 
gle HTM (see the Electronic Appendix or Rost, 1996~). 

Fewer helical membrane proteins in H. influenzae 
than in yeast VIII 
When subtracting  the expected error  rate  for false positives 

(1.6 f 0.7%; Table 2) and adding the expected underprediction 
of membrane proteins (2.3 * 1.5%; Table 2), the results sug- 

gested that  about 19% of all H .  influenzae proteins contain 
HTMs; and  about 16% more  than  one HTM. A similar analy- 
sis of the yeast VI11 chromosome with our previous prediction 
method (PHDhtm-fil) predicted HTMs  for  about 25% of the 
proteins; and  about 16% with more  than one HTM. Given the 
higher error rate  for false positives  of our previous method (Ta- 
ble 2), the results suggested that  there  are slightly more proteins 
with HTMs in yeast VI11 than in H. influenzae. 

More proteins predicted with topology “in” 
About 57% of the proteins predicted with HTMs were pre- 

dicted with topology “in” (Fig. 5 ) .  Significant exceptions were 

Table 3.  Proteins with transmembrane helices predicted for H. influenzae’ 
~ - 

Name 

HI 1586 

HI0772 

HI0883 

HI1154 

HI0687 

HI1241 
HI0359 
HI0392 
HI0407 
HI0825 
HI1248 
HI0188 
HI1122 
HI1 178 
HI1187 
HI 1307 
HI 1548 
HI1621 
HI1452 
HI1620 
HI0238 
HI03 18 
HI0489 
HI0976 
HI1006 
HI1602 
HI0237 
HI0832 
HI0886 
HllOOl 
HI1737 
HI0484 
HI0633 
HI1138 
HI1594 
HI1619 

TOP 
~ 

out 

in 

out 

in 

in 

in 
out 
in 

out 
out 
in 
in 
in 
in 
in 
in 
in 
in 

out 
out 
in 
in 
in 

out 
in 
in 

out 
in 
in 

out 
in 

out 
in 
in 

out 
out 

Nhrnl 

13 

12 

11 

11 

10 

8 
7 
7 
7 
7 
7 
6 
6 
6 
6 
6 
6 
6 
5 
5 
4 
4 
4 
4 
4 
4 
3 
3 
3 
3 
3 
2 
2 
2 
2 
2 

N-term 

MLSVLSINYR 

MISRVSRFMT 

MTIESILSAI 

MLLVNLAIFI 

MNNENMVRVF 

MSEQSSKYIA 
MFDWLLEPLQ 
VDIFFVISGF 
MFEILFPALL 
MLINFTQVLQ 
MKKYKTGLVL 
MSNVDESQPL 
MTDYRTQPIN 
MFSDFLSLMF 
MFKFVFKRIL 
VMLNLIIVHL 
MNTPFFISWR 
MHLSEGVLHT 
MEELLSAVll 
MKIHHLFQPH 
Ml9ISNYlH 
MLFINITFAC 
MDIFSFFSAD 
MLYQILALLI 
MSKKSGLSFL 
MKDCKMQGIG 
MLEMLKSWYS 
MVDQNPKRSG 
MNNLEKYRPY 
MDSRRSLLVL 
MTLIEQIITI 
METVITATII 
MLWDLSGGMV 
MKNKKLLVMA 
MLIIGLCVVS 
MMRCLFQAIG 

Segment  positions 

29-52, 57-74, 87-104, 132-149,  154-177, 182-201, 216-238, 269-286, 
31  1-330, 353-370, 390-408, 413-437,  493-51 1 

22-41, 56-76, 98-122, 136-153, 158-176, 191-212, 252-269, 274-298, 
314-331, 336-360, 381-405, 417-441 

14-35, 64-81, 86-106, 144-163, 180-203, 208-230, 235-259, 302-321, 
348-370, 387-411,416-433 

29-47, 64-87, 102-126, 179-196, 219-243, 250-274, 284-301, 339-360, 
365-389, 394-412, 417-434 

13-32, 37-57, 68-86, 93-116, 134-151, 163-180, 185-202, 228-245, 
254-272,277-294 

12-33, 38-61, 72-96, 101-125, 130-147, 159-183, 188-206, 226-250 
19-39, 52-76, 96-113, 137-155, 174-198, 203-227, 235-259 
2-19.35-59,64-88,95-119, 124-148, 161-182,207-231 
11-31, 42-66, 86-103, 128-148,  166-190, 195-218, 223-247 
19-40, 61-84, 96-120, 131-155, 160-178, 183-201, 206-230 
9-26, 56-76, 95-119, 135-153, 214-238, 250-270, 293-313 
24-42, 69-93, 110-134, 155-179, 190-207, 212-231 
48-67, 108-132, 152-176, 181-198, 224-248,  278-297 
15-36, 48-68, 86-104, 124-141, 146-165, 185-203 
11-28, 99-120, 134-158, 200-218, 257-281, 302-323 
1-23, 34-58, 63-86, 115-139, 144-168,  185-205 
28-52, 196-214, 270-292, 310-327, 332-354, 381-401 
11-30, 35-59, 64-88, 93-117, 125-149, 163-187 
26-49, 61-85, 90-108, 122-144, 162-186 
8-27, 32-56, 61-85, 92-116, 121-145 
15-39, 44-68, 73-92, 103-127 
4-22, 33-54, 74-91, 130-150 
14-38, 43-67, 91-109, 114-138 
22-46, 60-82, 87-105, 110-128 
9-26, 66-84, 95-113, 134-151 
12-29, 47-71, 76-95, 112-131 
22-41, 84-101, 157-177 
23-43, 54-71, 94-111 
17-34, 55-72, 98-116 
347-366, 420-437, 496-515 
6-23, 41-58, 68-89 
12-32, 50-74 
19-38, 43-63 
103-121,254-272 
20-37,  42-66 
17-34,  56-73 

a We listed all proteins  for  which we predicted  more  than  one HTM based on  multiple sequence  alignments  [information  for  all 332 proteins 
predicted is in  the  Electronic  Appendix or Rost (1996~) #1152]. Sequence  names  as  in  Fleischmann,  et  al. (1995); alignments  from  http://www. 
sander.embl-heidelberg.de/genequiz/haemophilus.htm 1. Nht rn ,  number of HTMs  predicted;  Top,  predicted  topology;  N-term,  first 10 residues of 
sequence;  Segment  positions,  positions of predicted  HTMs. 
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Fig. 5. Helical transmembrane  proteins  for H. influenzue. A: Cumulative percentage of helical transmembrane  proteins ver- 
sus  number of HTMs predicted (total  number of proteins 1,616). We separated between predictions based on multiple align- 
ments (expected accuracy higher; filled diamonds) and predictions based on single sequence information only (expected accuracy 
lower; open diamonds; sums over all proteins given as dotted line). For example, 10% of the 1,616 Huemophilus sequences were 
predicted with 2 5 HTMs. B: Number of proteins predicted versus number of predicted HTMs. Open bars give all proteins pre- 
dicted with topology in; filled grey bars all proteins predicted with topology our; dark bars give the sum over both. 

proteins predicted with  five and seven HTMs,  for which the  to- 
pology “out” dominated (Fig. 5). Interestingly, a higher  percent- 
age of the proteins predicted with topology “out” had both 
terminal nontransmembrane regions on  the outside (86 of 144) 
than proteins predicted with topology “in” (79 of 188). In other 
words, proteins predicted with topology “out” were more often 
predicted with an  odd number of HTMs. 

Discussion 

Significant improvement of prediction accuracy 
by refinement algorithm 

The segment optimizing refinement of the profile-based neural 
network system PHDhtm proved to be successful in four ways. 
(1) Prediction accuracy was significantly better than for the 
simple neural network prediction; for  about 89% (*3%, 1 SD) 

of the proteins, all HTMs were correctly predicted (Table 1). 
(2) The refined  version of PHDhtm was significantly more accu- 
rate  at predicting all HTMs correctly than was the previously 
implemented empirical filter (Table 1). (3) The refinement al- 
gorithm was less sensitive to  the choice of free  parameters 
(Equation 2) than the empirical filter because the results were 
better for  the double-blind set that was  used after the methods 
had been set up  (Table 1). (4) The reliability index defined for 
the final prediction (Equation 3) correlated well with prediction 
accuracy: for 65 of the 66 (98%) proteins predicted  with RiM 2 3 
all HTMs were predicted correctly (Fig. 3). 

Prediction of topology better than 86% by combining 
refinement and positive-inside rule 

The success of the refined version of PHDhtm showed most 
clearly for  the prediction of topology (Fig. 1). (1) For more than 
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86% (*3%, 1 SD) of the proteins, all HTMs and  the topology 
were predicted correctly (Table 1). (2) The limiting step for  to- 
pology prediction was not the simplicity of the positive-inside 
rule: for 97% of the proteins for which all transmembrane re- 
gions had been predicted  correctly, the positive-inside rule 
yielded the correct topology  (Table 1). (3) The predicted relia- 
bility correlated well with accuracy: 83 proteins were predicted 
with a reliability L 5 (Equation 4); for 79 of these the predic- 
tion was correct (Fig. 4). (4) Prediction accuracy was better than 
average for eukaryotic  proteins  (Table 1). (5) The final predic- 
tion of topology was significantly more  accurate than the best 
alternative  method published on a set of 83 eukaryotic and pro- 
karyotic proteins  (Jones et al., 1994).  (6) A minor improvement 
in  1D accuracy resulted in a  major improvement when  using the 
1D prediction to predict other aspects of protein structure. A 
similar effect,  although less marked, is observed for prediction- 
based threading (Rost, 1995). One  of  the reasons for this effect 
is that  the refinement algorithm successfully used information 
not local in sequence, i.e., extending over the windows  of 17 ad- 
jacent residues input to  the neural network system. 

Reduction of false  positives below 2% 
by evaluating strongest HTM 

The analysis of entire genomes requires an  accurate  distinction 
between proteins with and without HTMs. Here we introduced 
an algorithm that distinguished the two classes based on  a single 
helix for which PHDhtm predicted the highest average propen- 
sity (Equation 5). Less than  4% of the proteins were classified 
falsely by this procedure. In  particular, for only 1.6% (*0.7%, 
1 SD) from a large set of  unique  proteins (435) did we falsely 
predicted HTMs (false positives; Table 2). This was significantly 
better than our previous method and results published by others 
(Edelman, 1993; Jones et al., 1994).  Lower rates of false positives 
implied higher rates of false negatives (proteins with HTMs that 
were not detected). The balance between the two can be shifted 
by switching between a strict threshold  (1.6% false positives; 
2.3% false negatives) and  a loose threshold (3.7% false  positives; 
0% false negatives). 

Method available by automatic  prediction service 

The refinement of PHDhtm and  the topology prediction is avail- 
able via an  automatic prediction service (Rost et al., 1994a; 
Rost, 1996a); for  information send the word “help” to the in- 
ternet  address PredictProteinaEMBL-Heidelberg.DE, or use 
the World  Wide Web (WWW) site http://www.embl-heidelberg. 
de/predictprotein/. Alternative models are provided to enable 
expert users to focus on more reliably predicted HTMs. Note 
that it may lead to  errors in predicting topology if the sequence 
starts  or ends with HTM regions. 

H .  influenzae, an organism with few helical 
transmembrane proteins? 

Finally, we scanned the entire H. influenzae genome (Fleisch- 
mann et al., 1995) for helical membrane proteins (CPU time for 
prediction: several hours  on a SUN SPARCIO). Given the er- 
ror  rate in distinguishing between proteins with and without 
HTMs  (Table 2), the results suggested that  about 19% of the 
H.  influenzae proteins  contain HTMs,  and  about 16% more 

than  one  HTM. These numbers were clearly lower than those 
obtained previously (Rost et al., 1995) for  the entire yeast VI11 
chromosome (>25%). Will the difference in  the percentage of 
helical membrane proteins between  yeast and H. ihji‘uenzae hold 
up  for  the entire genomes? What  about  the percentage of heli- 
cal membrane proteins for  other organisms? The tool to answer 
by dissecting genomes as they are being sequenced is set up. 

Materials and methods 

Database and evaluation of method 

Selection of proteins 
We based our analyses on proteins for which experimental in- 

formation  about  the locations of HTMs is annotated in the 
SWISS-PROT database  (Manoil & Beckwith, 1986; von Heijne 
& Gavel, 1988; von Heijne, 1992; Sipos & von Heijne, 1993; 
Bairoch & Boeckmann, 1994; Jones et al., 1994). The  proteins 
were chosen to meet two criteria: (1) reliability: experimental in- 
formation should be  as reliable as  possible (Manoil & Beckwith, 
1986; von Heijne, 1992); and (2) comparability: the  data set 
should be similar to those used by others  (Jones et al., 1994). 
For the few known 3D structures, locations of HTMs were taken 
from DSSP (Kabsch & Sander, 1983). For all others, locations 
of HTMs  are  often  controversial. In order  to make the results 
easily reproducible for others, we decided to always  use the def- 
initions found in SWISS-PROT (Bairoch & Boeckmann, 1994). 
Locations and topology used are listed in the Electronic Appen- 
dix and  on WWW (Rost, 1996b). 

Cross-validation test 
For the prediction of transmembrane propensities by the neu- 

ral network system (PHDhtm, Rost et al., 1995), the cross- 
validation set of 83 transmembrane  proteins was divided into 
66 proteins used for training and 17 for evaluating the results 
(test  set).  This  was repeated five  times  (fivefold cross-validation), 
until each protein had been in a test set once. The sets were sep- 
arated such that no  protein in the multiple alignments used for 
training  had  more than 25% pairwise sequence identity to any 
protein in the multiple alignments of the test proteins. The cross- 
validation  procedure yields estimates for prediction accuracy 
that  are likely to hold for proteins of  yet unknown topology 
(Rost & Sander, 1993a, 1995). 

Double-blind set 
Although rigorous cross-validation experiments may  yield suf- 

ficiently reliable estimates of prediction accuracy, prediction 
methods  should always be evaluated additionally in a double- 
blind experiment, which  proceeds  in the following manner. First, 
the prediction method is developed and evaluated in a cross- 
validation experiment. Second, all parameters are frozen and the 
method is tested on  a new set (double-blind set) of proteins that 
were not used before (ideally until the day the paper is submit- 
ted). We implemented this concept by: (1) optimizing free pa- 
rameters on a subset of 10 proteins (chosen at random from 
cross-validation set); (2) compiling prediction accuracy by the 
cross-validation experiment; (3) evaluating the method on  an  ad- 
ditional double-blind set that was not used before. The double- 
blind set  was  selected  by applying two criteria: (1) the entries for 
the locations of HTMs  and topology should be labeled as “prob- 
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able” by the  SWISS-PROT  notation;  and (2) for similar proteins 
of  different species, only  one  protein was taken.  The 48 proteins 
used as  double-blind set are listed  in the  Electronic  Appendix 
or Rost  (1996b);  all  taken  from  SWISS-PROT  release 32 
(Bairoch & Boeckmann, 1994) that  met  those  criteria  and were 
not  already  contained  in our cross-validation  set. 

Data for the H.  influenzae genome 
To illustrate  the  usefulness of our method, we report 332 

“blind  predictions” listing all  proteins likely to  contain  HTMs 
for  the  entire H. influenzae genome.  The  sequences  of  the H.  
influenzae genome were taken  from  the  TIGR  Internet server 
(Fleischmann  et al., 1995). The multiple sequence alignments for 
some  of  the  1,616  protein  sequences  of H. influenzae are  pub- 
licly available  (Casari  et  al., 1995). 

Measuring prediction accuracy 
In  contrast  to  globular  proteins  for which the  definition  of 

segment-based  scores  for  prediction  accuracy is problematic 
(Rost et al., 1994b), evaluating  methods predicting HTMs is rel- 
atively straightforward.  Here we regarded  an  HTM  to be pre- 
dicted  correctly if the  overlap between observed  and  predicted 
helix was at least  five  residues. 

Prediction methods 

The  dynamic  programming-like  algorithm  and  the prediction of 
topology  are  conceptually simple methods.  Here we focused  on 
describing the main  idea of  both  methods  and  attempted  to  pro- 
vide the  details  to  the  extent  to  make  the  work  reproducible. A 
mathematically more explicit description is given elsewhere (Rost 
et  al., 1996). The  elements of the  method  introduced  here were 
presented  in  more  detail.  These were the  definitions  of ernpiri- 
cal  reliability indices (1) for  the prediction  of the refined model, 
and (2) for  the  topology  prediction;  and (3) the new method  to 
distinguish  proteins  with  and  without  HTMs. 

Neural network  predictions 
of transmembrane preferences 
Input  for  the  refinement  algorithm  was  the  output  of  the 

profile-based  neural  network system PHDhtm  (Fig.  2;  Rost 
et al., 1995). The  output  of  the  networks  consists  of  two values 
for  each  residue, giving the  preferences  of  that  residue  to  be  in 
a transmembrane helix (H) or in  a  region outside  of  the lipid bi- 
layer  (L). 

Finding the optimal path through all predicted 
propensities  (dynamic  programming) 
The simplest way to derive  predictions for helix locations from 

network  preferences is to  predict  each  residue  to  be  in  the  state 
( H  or L) with  largest  preference (“winner-takes-all’’  decision). 
The  problem with this approach - that resulting HTMs were too 
long- was corrected by an empirical filter chopping  too long he- 
lices into several shorter  ones  (Rost  et  al., 1995). A less arbitrary 
alternative  for  generating  predictions  from  preferences is to 
find  the  optimal  positioning  of  HTMs  compatible with the  net- 
work  output  (a similar dynamic  programming  method  has been 
implemented  for  topology  prediction by Jones et  al., 1994). Be- 
cause HTMs  are observed to  extend over about 18-25 residues, 
all  possible  HTMs  can be enumerated.  The  dynamic  program- 
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ming-like algorithm was implemented by the  following  steps 
(Fig. 6). 

Convert  network  output  to  propensity.  The  preferences 
(from  PHDhtm) were normalized to  propensities to  yield 
preference H + preference L = 1 for  each  residue. 
Compile  pool  of possible HTMs.  The  average propensity per 
helix was computed  for all  possible HTMs.  Note  that  the 
number  of  possible helices is usually much  larger  than  the 
number  of residues (Fig. 7). 
Generate  models with increasing number of HTMs.  Starting 
from  the  assumption  that  the  protein  contained  no  HTM 
( p  = 0), we successively picked the best from  the  pool of all 
HTMs.  Thus,  models were generated with p = 1, 2 , .  . . , n 
HTMs  (Fig. 7). 
Select the best model.  The  final  prediction was the  model 
with  highest sum over all  propensities.  The  score P,, for  the 
model  with p helices was  defined by: 

with 6; = 1 - 6 f ,  and 6: = 
1, if residue k is in  a  helix, 
0, else 

where N,, was the  number of residues in the  protein; p: the 
propensities  of  residue k to be in a HTM,  and p i  the  pro- 
pensity not  to be in a HTM. 

The algorithm is described based on  three free parameters  that 
were chosen by optimizing  the  performance of the  method with 
respect to a subset of ten proteins. The parameters were the min- 
imal  and  maximal  length  of  HTMs,  and  the  minimal  length of 
a nontransmembrane region (dubbed  loop) inserted between two 
helices. We used: 

~ m i n  = 18, ~ m a x  = 25, ~ ‘ 0 0 ~  = 4. (2) 

Reliability index for  best model 
Instead  of  the reliability  index associated with the  network 

output  for  each  residue  (Rost, 1996a), here we introduced  an 
index  describing the reliability of  the  prediction  for  the  correct- 
ness of  the best model  obtained by the  refinement  algorithm, 
i.e., the prediction that  the  protein has p‘ helices. This index  was 
based on  the  difference between the  scores  (Equation 1) for  the 
best and  for  the  second best model. We empirically favored  the 
following  definition: 

RiM = INT(min(9, 100 x (P,,, - P p ” ) ) ) ,  (3) 

where ZNT(x) was the integer  value  of  variable x, min [x, y ] the 
minimum  of x and y ,  P,,, the  score  (Equation  1)  for  the best 
model  predicting p‘ HTMs,  and P,,. the  score  for  the  second 
best model  predicting p” HTMs.  Thus,  the reliability adopted 
values  between 0 (unreliable)  and 9  (reliable). 

Predicting topology based on the positive-inside rule 
von  Heijne  established that  membrane proteins  of  certain spe- 

cies contain  more positively charged residues (arginine  and ly- 
sine) on  the  intracytoplasmic side  of the  membrane  than  on  the 
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I R+K R+K R+K R+K 

p=o: o m  
pl: 1 HTM 
p22HTM 
p3: 3 HTM 

Loop lengths 
Charge: 
Number of R+K 
in loops 1-4 

final  prediction: 
A" 
(5+1) - (2+3)>0 
=> fmt loop out 

Fig. 6. Refinement of PHDhtm  and  prediction of topology.  Refinement:  the  dynamic  programming  algorithm  comprised  the 
following  three  steps. ( I )  Compilation of pool of possible  HTMs: for all possible  HTMs,  the  preferences  from  the  neural  net- 
work  output  were  summed  over 18-25 residues;  the  results  were  stored  (shown  for best eight  HTMs). (2) Generation  of  models 
with  increasing  number of HTMs:  all  possible  models  containing successively more helices, i.e., p = 0, I , .  . . , n ,  weregenerated 
by selecting  at  each  step p that helix from  the pool with  maximal  sum and  no  overlap to any  of  the helices added  at  previous 
steps p' < p .  (3) Selection of best model:  finally,  the  model p with  maximal  sum  over  the  network  preferences was selected as 
prediction  (here p = 3). Topology  prediction:  the  number of positively  charged  residues ( R ,  arginine; K ,  lysine) was summed 
separately  over  all  odd  (first, third,. . , ) and  over all even (second,  fourth,. . . ) nontransmembrane  regions of the  optimal model 
(highest  sum  over  neural  network  preferences,  here p = 3).  The final  prediction of topology  was  assigned  according to the sign 
of the  difference  between  the  number of charged  residues in odd  and even regions.  For  example,  for  a  positive  difference,  the 
first  residues of the  protein  N-term were predicted as  starting  on  the  extracytoplasmic  side. 

INPUT: 
A preferences prr- 

dicted lly PHDh/nr 

residue  number 
propensity for H: 9 9 9 5 2 2 8 8 8 2  
propensity for L 1 1 1 5 8 8 2 2 2 8  

1 . . . 5 . . . . 1 0  

Compile  pool oJ' 

(here = 15) 
B all possible H T M f  

0 ,  n o h e l i x  =>LLLLLLLLLL score=38 (1+1+1+5+8+8+2+2+2+8) 
~ = l , b e s t h e l i x A = > H H H L L L L L L L s c o r e = 6 2 ( 9 + 9 + 9 + 5 + 8 + 8 + 2 + 2 + 2 + 8 )  

Ti, 3 n d b e s t  M=>HHHLLLHHHL score=80 (9+9+9+5+8+8+8+8+8+8) 
= 3 ,  3rd best none l e f t !  

h i g h e s t  score = 80, for  model p=2, 
i .e .  final  prediction: HHHLLLHHHL 

Fig. 7. Explicit  example for the  refinement  algorithm.  For  simplicity,  the  following  unrealistic  parameters  were  used:  minimal 
length of HTM = 3 residues;  maximal  length  of  HTM = 4 residues (for  the real  implementation, we used 18 residues  for  the 
minimal  and 25 for  the  maximal  length;  Equation 2). A: Output  from  PHDhtm  for  a  sequence of I O  residues  converted  to  the 
propensities  for  each  residue to be in a  transmembrane helix (H)  or  not (L).  B: Pool of all  possible HTMs (A-0) of length 3 
and 4; given are  the  numbers  for  the N- and  C-term  and  the  average helix propensity  for  each  HTM. C: Starting  from  the  model 
with no  HTM ( p  = 0), successively the best HTMs  are  added; given the  number of helices, the  final  prediction  for all ten resi- 
dues  and  the  resulting  score  for  that  model  (Equation 1). D: Best model is the  one with p = 2 HTMs. 
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extracytoplasmic  side  (von  Heijne & Gavel, 1988; von  Heijne, 
1989, 1992; Nilsson & von  Heijne, 1990). Indeed,  the  rule was 
valid for  more  than 95% of  the  proteins  in  our  data  sets  (data 
not  shown).  The  application  of  this  rule to  the  models  obtained 
by PHDhtm  (no filter), PHDhtm-fil,  or  the refined  version  of 
PHDhtm-ref  required  three  steps  (Fig. 6). 

Compiling  the positive charges.  The positive charges C were 
compiled  as  percentages  of positively charged  residues  (R 
and K )  present  in  the  entire  sequence  alignment  of  the  pro- 
tein.  The  percentages were summed  separately  for even and 
odd  loop  regions.  (Note:  For  globular  regions  of  more  than 
60 residues, we included  only  the 25 residues  on  the  termi- 
nal sides.) 
Computing  the  charge difference. The  charge difference was 
compiled by subtracting positive  charges  of odd  loop regions 
from positive charges of  even regions (AC). 
Predicting  according  to sign of  charge  difference. If the 
charge  difference  was negative ( A C  5 0), the  first  loop was 
predicted  to be extracytoplasmic; if it was positive (AC > 0), 
to be intracytoplasmic. 

Reliability  index for  predicting topology 
The underlying hypothesis  for  defining a reliability  index for 

the predicted topology was that  the reliability  would be  propor- 
tional  to  the  charge  difference. We empirically  favored  the  fol- 
lowing definition: 

RiT = ZNT(min(9, 2 X M I ) ,  
where I N T ( x )  was the  integer value of x ,   m i n ( x , y )  the  mini- 
mum  of x and y ,  and I AC( the  absolute value of  the  charge  dif- 
ference. The  definition normalizes the reliability index to values 
between 0 (unreliable)  and 9 (reliable). 

Distinguishing proteins with  and  without HTMs 
based on strongest HTM 
Predictions of HTMs  could  be used to keep track  of  the flow 

of  genome  data (Oliver  et al., 1992; Johnston et al., 1994; 
Fleischmann  et  al., 1995) by quickly  scanning  entire  genomes 
for possible membrane associated  proteins. For this purpose, we 
need methods to  distinguish  between proteins with and  without 
HTMs.  Previously, we used  the  empirical filter to  accomplish 
the  distinction  (Rost et al., 1995; Rost, 1996a). The  segment- 
oriented  refinement  algorithm  provided an alternative  solution 
to  the  problem  that was applied to  PHDhtm  network  output by 
the  following  three  steps. 

1 .  Converting output  to propensities. For all residues, the neural 
network  output was converted to propensities (i.e., prefer- 
ence H + preference L = 1) .  

2. Compiling  propensity for best HTM. We scanned the protein 
for  the  segment of 18 (minimal  length  of  HTM,  Equation 2) 
consecutive residues  with the  maximal  HTM  propensity. 

3. Applying decision thresholds.  Finally, we predicted  the  pro- 
tein to be globular if the average  propensity for  the best HTM 
was below a decision  threshold 8. 

We introduced  two different  thresholds for  the decision to  ad- 
dress  two  different  possible  goals  of  the  user. (1) As  many  as 
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possible helical membrane  proteins  should be found with as few 
as possible  false positives (astrict). (2) All helical membrane  pro- 
teins  should  be  found  even  at  the  expense of including  many 
false positives  in the list (t9100se). The  following values  were 
used: 

astrict = 0.8, and t 9 1 ° 0 s e  = 0.7. ( 5 )  

Results will be given for  both  constants  (Table 2). 

Supplementary  material in Electronic  Appendix 

Folder  name:  rost-suppl.folder. File type: ASCII.  Content: rost- 
setCross.txt,  cross-validation set of 83 proteins,  observed  and 
predicted  HTM  locations  and  topology;  rost-setBlind.txt, 
double-blind set of 48 proteins,  observed  and  predicted  HTM 
locations  and  topology;  rost-hiAli.txt,  predictions  of  HTM  lo- 
cation  and  topology  for all 129 H. influenzae proteins  for which 
HTMs were predicted  based on alignments.  Note:  In  total,  for 
332 of the 1,616 H. influenzae proteins,  HTMs were predicted; 
rost-hiNoAli.txt, predictions  of HTM location and topology for 
all 203 H. influenzae proteins  for which HTMs were predicted 
based on single-sequences.  Note: In  total,  for 332 of  the 1,616 
H .  influenzae proteins,  HTMs were predicted. 
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