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Abstract 

We have devised a Cartesian combination operator and coding scheme  for improving the performance of genetic 
algorithms applied to the protein folding problem. The genetic coding consists of the C" Cartesian coordinates of the 
protein chain. The recombination of the genes of the parents is accomplished by: (1) a rigid superposition of one parent 
chain on the other, to make the relation of Cartesian coordinates meaningful, then, (2) the chains of the children are 
formed through a linear combination of the coordinates of their parents. The children produced with this  Cartesian 
combination operator scheme have similar topology and retain the long-range contacts of their parents. The new scheme 
is significantly more efficient than the standard genetic algorithm methods for locating low-energy conformations of 
proteins. The considerable superiority of genetic algorithms over Monte Carlo optimization methods is also demon- 
strated. We have also devised a new dynamic programming lattice fitting procedure for use with the  Cartesian  com- 
bination operator method. The procedure finds excellent fits of real-space chains to the lattice while satisfying bond- 
length, bond-angle, and overlap constraints. 

Keywords: conformational search; dynamic programming; genetic algorithms; lattice fitting; Monte Carlo 
optimization; protein folding; protein structure prediction 

Genetic algorithms and other evolutionary algorithms have been 
shown to be efficient and robust optimizers when applied to a 
variety of difficult optimization problems (Goldberg, 1989). The 
genetic algorithm optimization method was devised as an analogy 
to biological evolution (Holland, 1975). In the genetic algorithm 
scheme, an optimization problem is mapped to a computer simu- 
lation of the biological process of evolution. The cost function for 
the optimization process (e.g., an energy function) is identified 
with evolutionary fitness. The simulation consists of the biologi- 
cally analogous events of mating, mutation, reproduction, and sur- 
vival of the fittest. Through the evolutionary computer simulation, 
the fitness of the population increases. Hence, the quality of the 
solutions to the optimization task, which has been mapped to the 
biological process, also improves. 

The key feature of the genetic algorithm method is its ability to 
use the information about the cost landscape that is contained in 
the genes of the various members of the population to create new 
low-cost candidates. This is achieved through the reproduction 
process, in which the genes (attributes) of the parents are combined 
and passed on to their children. The children undergo survival of 
the fittest, and then the surviving members become parents for the 
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succeeding generation. Through this process, the fitness of the 
overall population and, hence, the quality of the solutions to the 
optimization task, is optimized. Thus, the crucial question for ap- 
plying a genetic algorithm is how the attributes of the parents are 
passed on to the children to produce an efficient optimization 
method. 

A number of applications of the genetic algorithm method have 
been made to the protein folding problem (Sun, 1993; Unger & 
Moult, 1993; Dandekar & Argos, 1994; Le Grand & Merz, 1994; 
Pedersen & Moult, 1995; Sun et al., 1995). To implement a genetic 
algorithm, it is necessary to encode  the variables of the optimiza- 
tion problem into the genes. The genes of the parents are then 
operated on through recombination and mutation to produce the 
genes of the children. All of the above methods use a local direc- 
tion measure as the genetic code: dihedral angles (Sun, 1993; 
Dandekar & Argos, 1994; Le Grand & Merz, 1994; Pedersen & 
Moult, 1995; Sun  et al., 1995) or bond vectors (Unger & Moult, 
1993). The encoding of the protein structure yields a genetic code 
of the form ((+l,$l), (42,$2), (43,$3), . . .) for the dihedral 
angles or { V ', V 2 ,  V 3 ,  . . . ] for bond vectors. The mode of repro- 
duction in those methods is a crossover operator (a swapping of a 
subset of the genetic code of each parent, designated as  Swap V) 
(see Fig. 1).  This combination is suboptimal. What is passed on to 
the children through this encoding and recombination operator is 
local information. Specifically, the children retain the dihedral an- 
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Implementation of the Cartesian combination operator scheme in- 
volves two steps: (1) transforming the coordinates of the two par- 
ents  into  a mutually meaningful space and (2) producing the 
conformations of the children that retain and combine the attributes 
of the parents. Let us consider the relation between two confor- 
mations of a protein that will be serving as the parent chains. The 
Cartesian coordinates of these parent chains, in general, will have 
an arbitrary relation with respect to each other. A chain can be 
translated or rigidly rotated while keeping its conformation the 
same, but changing the values of its  Cartesian coordinates, i.e., 
changing the location and orientation of the origin. To combine the 
Cartesian coordinates of the two parents, it is necessary to choose 
a meaningful origin, that is, a relative relation between the two 
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Fig. 1. A schematic drawing showing the action of a crossover (swapping) 
operator on the genes of the parents. The two-point crossover produces the 
conformations of the children. The Vs represent the coordinates of  the 
chains  (bond vectors or dihedral angles). The Arabic numbers refer to 
parent (A)  and the Roman numerals refer to parent (B). The children 
contain a subset of the coordinates of each parent. The crossover was 
carried out after coordinates 4 and 7 in the parent chains. 
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gles or bond vectors of their parents, and  the long-range contacts 
that do not span a crossover point. In general, varying the local 
direction for a residue will have a drastic effect on the protein 
structure altering its topology and long-range contacts (Fig. 2). We 
propose a different encoding scheme (superimposed Cartesian co- 
ordinates) and  a different reproduction operator (a linear combi- 
nation operator), designated as a “Cartesian linear Combination 
operator (Linco).” With this scheme, the topology and long-range 
contacts that both parents possess are retained in the children, 
although the local angles and  bond lengths are not preserved. The 
locations where the chains of the parents differ are modified in the 
children by the recombination event (see Figs. 2, 3). In this way, 
the genetic algorithm can search the space of compact protein-like 
structures, and the children faithfully inherit the attributes of their 
parents. 

3 
Swap V Children 

Fig. 2. Two-dimensional example of the action of two different combina- 
tion operators that combine the genes (attributes) of the parents to produce 
the genes of their children. The children are created through the action of 
either the swapping crossover operator (Swap V, shown at the bottom under 
the down arrow) or the Cartesian linear combination operator  (to the right). 
Even though the parents have similar topology and long-range contacts 
(e.g., I . . . 7), the children generated with the Swap V operator have very 
different conformations from their parents. The same behavior would be 
found if dihedral angles were used as the genetic encoding. In contrast, the 
child produced through the action of the Cartesian linear combination 
operator (Linco) retains some of its parents’ attributes. The topology and 
long-range contacts that the parents have in common are passed to the 
child. The parts of their chains where the parents differ (e&. at residues 4 
and I O )  are altered to the greatest extent. It should be noted that the Linco 
operator can produce distorted bond lengths in the children (e.g., the 9-10 
bond in the Linco child of this figure). For details of the method, see 
“Cartesian combination operator” in the text. 
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Fig. 3. Stereo  diagram of two  typical  parents  (on  the  outside  in  red  and  blue)  and  the six children  (between  the  parents,  colored  with 
the visible light  spectrum).  The  colors of the  children  change  from  red  to  blue  in  proportion  to  the A value of the  child.  The  coordinates 
of one of the  parents  have  been  optimally  superimposed  on  the  other.  The  children are then  generated  with  the  linear  combination 
operator  using  the  wide A parameter set A E (0.1, 0.2, 0.35, 0.65, 0.8, 0.9 ] as described  in  “Cartesian  combination  operator.” 

chains.  There  is  some  degree of  freedom  regarding  the  means  of 
achieving this aim. The  choice used in this paper is to  superimpose 
the  parent  chains  (A  and  B)  rigidly to minimize  the  RMS  deviation 
(RMSD) between  them,  where: 

RMS = - x [(xi” - xi”)’ + (yi” - yS)2 + (zi” - zS)2,} , (1) K i 112 

with x, y, and z being  their  Cartesian  coordinates,  which,  in  this 
way, are  made  mutually  meaningful  (Le.,  the  Cartesian  coordinates 
of  both  chains  now reflect  the  relation  between  them).  The  first 
step in  production  of  the children  from  the  parents is to super- 
impose  the  two  parent  chains to minimize  the  RMSD  (Fig.  4A). 

In  the  Cartesian  combination  operator  scheme,  the  conforma- 
tions of  the  children are then  produced  from  a  blending  of  the  two 
parent  chains.  Again,  there  is  much  freedom  in  the  method  of 
achieving this aim. The  simplest  choice,  and  the  one  used  in  this 
paper, is the  linear  combination  of  the  coordinates  of  the  two 
parents,  which  is  defined as follows.  Let q” be  the  Cartesian  co- 
ordinates of parent A and q” be the  Cartesian  coordinates of  parent 
B with its origin  and  orientation  found  through  the  rigid  super- 
position  onto A. The  coordinates  of  the  child  are: 

qChild(A, ParentA,  ParentB) = A(qB - qA) + e, 
where 0 5 A 5 1 

If A = 0, parent A is recovered; if A = 1, parent  B is recovered.  As 
A increases  from 0 to 1,  the  conformation  of  the  child  acquires  pro- 

gressively  more  of  the  attributes of  parent B  (see Fig. 3). In this pa- 
per,  we  have  examined  two A sets:  narrow,  where A € (0.05,0.10, 
0.15,0.85,0.90,0.95); and  wide,  where A E {O.l, 0.2,0.35,0.65, 
0.8,0.9). The narrow set  examines the space  close to each  parent, 
whereas  the  wide set  examines  more  of  the  area  between  the  two 
parents. For these A sets,  each  pair  of  parents  produces six children 
with  varying  contributions  from  each  parent.  A  complete  descrip- 
tion  of  the  Cartesian  combination  operator  genetic  algorithm  is  shown 
in  the  flowchart of  Figure 5 (also see Fig.  6A,B,C as another ex- 
ample,  but  one  with  a  large  RMSD  between  the  parent  chains). 

In the current  work,  the  space of  protein  conformations  is  a 
three-dimensional  lattice.  Because  the  linear  combination  operator 
will create  off-lattice  chains, and  because  it  can  produce  distorted 
geometry,  it is necessary  to  fit  the  children  onto  proper  lattice 
chains  (see  Fig.  4B for an off-lattice  child and  Fig. 4C for the  child 
fit to the  lattice).  A  valid  lattice  chain  has to occupy  lattice  sites  and 
meet  virtual  bond  length,  virtual  bond  angle,  and  overlap  con- 
straints. Two alternative  lattice  procedures  were  developed to fit 
real-space  chains to the  proper  lattice  chains.  For  the  complete 
description  of  the  lattice  fitting  procedures, see “Lattice  fitting by 
dynamic  programming,”  below.  For  further  details  of  the  lattice 
used, see “Model  system,”  below. 

Although  the  method  has  been  implemented  here  for  the  lattice 
space,  it is readily  adaptable to real  space,  e.g.,  for  use  with  the 
Empirical  Conformational  Energy Program for  Peptides  (ECEPPl3) 
algorithm  (Nemethy et al.,  1992)  in  real  space  with  futed  bond 
lengths  and  bond  angles.  The  scheme  to  produce  the  children  would 
then be as  follows: 
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qChi/d(A.  ParenrA.  ParenrB) e= AIlqA - qch’”l l  

where qA and qB are the real-space Cartesian  coordinates of the 
parents with B superimposed onto A, and the coordinates of the 
child are the set of dihedral angles 4, $, o, and x on the manifold 
of fixed bond lengths and bond angles that minimize an expanded 
definition of RMSD: 

Fig.4. Stereo  diagrams of typical parent 
and child conformations. The  amino termi- 
nus is mark with an “N.” A: Parent A is 
shown as the alternating black and grey 
chain. Parent B is shown as the grey chain. 
The  two parents were su rimposed with a 
resulting RMSD of 4.7 r B :  The  two par- 
ents  and an off-lattice  child  generated 
through the Cartesian linear combination 
operator with the parameter A = 0.35. The 
child is shown in black and the parents are 
shown as in Figure 4A. The child is be- 
tween its parents, proportionately closer to 
parent A, as seen, for example, at the C 
terminus. C: Parent A and the fitted proper 
lattice conformation for the A = 0.35 child 
are shown. The relative conformations of 
the loops found in the child have been mod- 
ified from parent A under the influence of 
parent B, as seen in the loops at the C 
terminus. 
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Fig. 5. Flowchart of the genetic algorithm methods. An initial population 
set (IPS) was created with Monte Carlo minimization of the energies of 
random starting conformations. An initial population set (IPSI) of ten 
conformations (Npyp = 10) was generated in this manner. The energies of 
the conformations In this set were ( -  190, - 117, - 102, -99, -88, -72, 
-40, -39, -39, - 3 6 )  in arbitrary units. This set is used throughout this 
article unless otherwise noted. In the recombination event, NChildren = 6 
children were produced for  each of the (1/2)N,,0p(Np0p - 1) parent pairs. 
For the linear combination operator (Linco), each of the children has a 
different value for A (see "Cartesian combination operator" in the text). For 
the bond vector swapping method (Swap V )  and the Cartesian swapping 
method (Swap X), a two-point crossover was performed, yielding two 
children. This procedure was repeated three times to produce the six chil- 
dren per parent pair. To serve as the new parent set, Npop individuals must 
be chosen from the set of all children. During the generation of the chil- 
dren, the N,,,,F, conformations are saved. The value of N,,,,,, was typi- 
cally 50. Of these conformations, Np<+, lowest-energy conformations were 
chosen with the proviso that their RMSD with respect to all other chosen 
children was greater than a tolerance (rmstol). The value for rmstol was 
3.4 A. If not enough conformations under rmstol were found, then rmstol 
was reduced by 67% and the process repeated. The selected children were 
subjected to  a longer Monte Carlo minimization, resulting in the Optimized 
Children set. These children served as the new parents for the next gener- 
ation. The overall procedure was halted if the population converged (the 
average RMSD among all the children was less than 0.2 A) or if the 
procedure had  run through a prespecified number of generations. 

However, in this paper, we have investigated only the lattice as the 
conformational space. The children are produced by using the 
linear combination operator in real-space, and then fitting to proper 
lattice chains. 

For comparison with the Linco method and, as an analogy to the 
dihedral or bond vector swapping method (Swap V)  described in 
the Introduction, a scheme for the direct combination of the su- 
perimposed Cartesian coordinates was also investigated. A two- 
point crossover is made at random locations in the parent chains, 
producing two children that have a subset of the  Cartesian coor- 
dinates of each parent. This method will be referred to as  Swap X 
(for more details of the algorithm, see Fig. 5) .  

Model  system 

The system used to analyze the Cartesian combination operator 
method consisted of a protein chain on  a lattice and  a knowledge- 
based potential. The conformation of the protein chain was spec- 
ified by its C" coordinates on the lattice; side chains were not 
included in the computations in this paper. However, the amino 
acid sequence information is contained in the interaction centers 
located at the C" coordinates of the protein chain. The lattice used 
here is identical to that of Kolinski and Skolnick (1994). It is  a 
cubic lattice with 1.7-A lattice spacing. The virtual bond vectors 
for the C" coordinates are constrained by the virtual bond distance 
and virtual bond angle. The allowed bond vectors are the cyclic 
permutations (and negations) of the canonical bond vectors ( 2 ,  I ,  
l), ( 2 ,  1, 0), and ( 1 ,  I ,  l), resulting in a set of 56 vectors. The 
virtual bond angles are restricted to the values between 78.5 de- 
grees and 141.1 degrees. In this article, protein chains are repre- 
sented only by their C" coordinates. There  is  a hard-core repulsion 
between the C" coordinates of non-neighbor residues; they must be 
separated by at least three lattice units (5.1 A). 

The knowledge-based potential consisted of four terms: a radius 
of gyration penalty, a disulfide-bond penalty, a contact profile 
term, and a pairwise contact energy term. The radius of gyration 
and disulfide-bond penalty terms were formulated as Gaussian 
functions that have a value of 0 at the conformation of the native 
protein and a value of 1 far from the conformation of the native 
protein. 

The contact profile is the number of residues within a sphere 
around the residue that is being considered (Nishikawa & Ooi, 
1986). The radii examined by Nishikawa and Ooi ranged from 8 to 
18 A. A sphere of radius 10 8, was used for this article. The term 
used for the energy function is the correlation coefficient between 
the native conformation and the conformation for which the energy 
is being calculated. Therefore, it ranges from 1 (complete agree- 
ment with the native conformation) to - 1 (complete disagree- 
ment). It  would have an average value of 0 for randomly distributed 
contact numbers. 

The above three terms have the virtue of having their minimum 
value at the native conformation. At the native conformation, the 
penalty terms would have a value of 0 and the contact profile 
coefficient would equal 1 .  This is helpful in the analysis of opti- 
mization methods because it identifies the global minimum energy. 
For a more difficult optimization test of the methods, a  painvise 
contact energy term was also included. The contact energy term 
used is that of Kolinski et al. (1993). It is  a  painvise energy term 
based on the relative contact frequencies of two amino acids found 
in a subset of published protein conformations. It should be noted 
that the simple potential described above was created to test the 
Cartesian combination genetic algorithm method. It was designed 
as  a reasonable approximation for  a protein folding energy func- 
tion and as  a representation of a typical knowledge-based potential. 
Ultimately, a more complete potential, especially one that includes 
explicit side chains, would be needed to attempt to predict the 
native structures of proteins. For further details of the energy func- 
tion used in this article, see the Test potential appendix. 

Monte Carlo minimization was performed as part of the genetic 
algorithm methods for local minimization. For comparison with 
the genetic algorithms, longer Monte Carlo simulations were also 
conducted as  a global minimization method. Details of the Monte 
Carlo scheme were the same throughout. The Monte Carlo method 
used is identical to that of Kolinski and Skolnick (1994). The move 
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Fig. 6. A: Stereo diagrams of parent A (alternat- 
ing black and grey) and parent B (grey) for two 
typical conformations. It should be noted the par- 
ent chains are different conformations from those 
of Figure 4A.  The parents in this figure have very 
different topology from each other. with the result- 
ing large RMSD of 8.9 A. The  amino terminus is 
mark with an " N  and the carboxyl end is marked 
with a "C." The Conformations are similar at the 
carboxyl end, diverging at the residue marked with 
a + symbol. At this point, the topologies diverge. 
Parent A (alternating black and grey)  comes for- 
ward and. at the point denoted by a  circle, the 
chain has gone back so that the N-terminal region 
has crossed behind its chain. Conversely, at the 
point marked with the + symbol, the chain of 
parent B (grey) goes back and, at the circled res- 
idue. the N-terminal region passes in front of its 
chain. R: The child (black) formed in  real space by 
the Cartesian linear combination operator method 
with A = 0.35. Its conformation is in  between its 
parents. C: Parent A (alternating black and grey) 
and the fitted proper lattice conformation for the 
A = 0.35 child (black).  The conformation of the 
child is relatively similar to parent A from the C 
terminus until it reaches the turn proceeding the 
circled residue. Under the influence of parent B, 
the child forms a different topology. At the circled 
residue, the N-terminal region of the child passes 
in  front of its chain, whereas the N-terminal region 
of parent A passes behind. The linear combination 
operator method has made a dramatic change in 
the topology of the child while retaining the over- 
all contacts and compactness of its parent. 

set consisted of two-bond moves, four-bond moves, eight-bond 
moves, end moves, and a rigid-chain rotation. 

The model protein used  in all the simulations was crambin (1 cm), 
which is an a + p protein with 46 residues and 3  disulfide bonds. 

Results and discussion 

Linco  versus  Monte Carlo 

Several computer experiments were conducted to test and analyze 
the performance of the Cartesian combination operator genetic 
algorithm. The  Cartesian combination operator method was com- 
pared with the standard Metropolis Monte Carlo algorithm. All 

implementations of the genetic algorithms proved far superior to 
Monte Carlo minimization. Figure 7 shows  a plot of the Cartesian 
combination operator and of Monte Carlo minimization where 
both methods used the same CPU time. Of the 240 conformations 
generated and minimized with Monte Carlo, the lowest energy 
conformation found was -232, whereas the Cartesian combina- 
tion operator method, after only one generation, found a confor- 
mation  with  an energy of -263, and eventually found conformations 
with energy less than -360. Furthermore, for use as  starting  con- 
formations in other simulations, it was necessary to generate more 
than 500 conformations. Each conformation was minimized with 
2,000 Monte Carlo steps (2.58 X I O 5  elemental steps). The lowest 
energy found by the Monte Carlo method for this additional set 
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Fig. 7. Comparison of the results obtained from the Cartesian combination 
operator and from the standard Metropolis Monte Carlo minimization 
method. Each method used the same CPU time. The Monte Carlo scheme 
consisted of generating a starting conformation at random, then minimizing 
with 2,000 Monte Carlo steps (2.58 X 10' attempted elemental moves). At 
each generation, 12 independent conformations were Monte Carlo mini- 
mized and the two lowest found are plotted (+). The Cartesian combina- 
tion method used the linear Combination operator with the narrow A set 
(Linco Narrow) as described in Figure 5 and had a population size (N,,,,,) 
of IO. At each generation, the energy for the N,,  optimized children are 
plotted (0) with a line connecting the lowest energy conformation. 

was only -258. Any variant of the Cartesian combination operator 
genetic algorithm found conformations of energy below that value 
in only one or two generations. 

Linco versus Swap V 

The  Cartesian combination operator was compared with the vector 
swapping operator for use in genetic algorithm optimization. The 
Cartesian combination operator scheme demonstrated a large im- 
provement in efficiency over the traditional vector swapping method. 
The Cartesian combination operator scheme achieved a rapid ex- 
ponential type of decrease in energy, whereas the vector swapping 
method shows  a more gradual decline (Fig. 8A). This is illustrated 
further by a plot of the difference in energy between the two 
schemes at each generation (Fig. 8B). The same behavior of the 
two methods was found for all variants of the two methods and 
different energy potentials examined; thus, it appears to be a gen- 
eral property of the two methods. 

Linco versus Swap X 

The direct exchange of the superimposed Cartesian coordinates 
was also investigated. This method is analogous to the bond vector 
swapping method, but Cartesian variables are used as  the infor- 
mation stored in the genes of the parents. To serve as an acceptable 
site  for the recombination cross, a cut-off distance between the 
corresponding residues of the two parents was used so that the 
geometry of the conformation of the child would not be too dis- 
torted.  A complete description of the algorithm is found in Fig- 
ure 5,  and the method is referred to as Swap X. 
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Fig. 8. A: Comparison of the results obtained from the Cartesian combi- 
nation operator (Linco Narrow) and from the standard vector swapping 
method (Swap V).  Each method used the same initial population set IPSI, 
which consisted of  ten conformations (N,,,,  = IO) with an average energy 
of -82.3, and - 190 as the lowest-energy conformer. This data set is used 
throughout the computations of this article and is the initial population set 
used  unless otherwise noted, The initial population set was generated through 
Monte Carlo minimization from random starting conformations. Each method 
(Linco Narrow and Swap V )  generated six children for each parent pair, as 
descrihed in Figure 5. The lowest-energy conformation for each generation 
I S  plotted. The narrow A set was used in the Cartesian combination scheme. 
B: Comparison of the energy difference found between Cartesian combi- 
nation and the vector swapping operator method at each generation. The 
vector swapping method (Swap V )  linearly approaches the energy found 
with  the Cartesian combination (Linco narrow) method. 

The behavior of the Swap X method is a rapid decrease in 
energy comparable to the Linco method in the first few iterations 
(-7). I n  the subsequent generations, there is a very noisy oscilla- 
tion around the -330 energy value (Fig.  9A). This behavior has 
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Fig. 9. A: Comparison of the linear combination operator (Linco) and the 
direct Cartesian swap operator (Swap X). The lowest  energy conformation 
found at a given generation is plotted for both methods. In the Swap X 
method for each parent pair, three random two-point swaps of the super- 
imposed Cartesian  coordinates were performed. This creates six children 
per  parent  pair. The maximum allowed deviation at a splice  point was 4 A. 
Various  cut-off distances were tested, all showing similar behavior.  The 
Linco narrow method is as described in Figure 7. B: The same plot shown 
above except that the Swap X method now retains the lowest energy 
structures even if they  were from the parent  set. It also uses a value of 
N,,,, = 20. These parameter  changes serve to lessen the perturbation 
from the parent chains. 

not been investigated fully, but is consistent with a large pertur- 
bation from the parental conformation that leads to a rapid lower- 
ing of the high-energy starting conformations, but that fails to 
improve good low-energy structures further. By adjustment of pa- 
rameters to restrict the perturbation in the parent structure, the 
Swap X method can be made to reach the lower energy levels 

(- -360)  (Fig. 9B). This restricted search is slow, however, per- 
haps because it now more resembles a local search procedure than 
that of a genetic algorithm. 

Divers& experiments 

An attempt was made to characterize and investigate the behavior 
of the Cartesian combination method. The efficiency of the method 
with varying A parameter sets was investigated. The  two  sets ex- 
amined were: narrow, where A € (0.05, 0.10, 0.15, 0.85, 0.90, 
0.95); and wide, where A E (0.10, 0.20, 0.35, 0.65, 0.80, 0.90). 
Overall, the behaviors of the two sets were similar (Fig. 10A). In 
the initial generations, the narrow set decreases the energy more 
rapidly than the wide set. After 20 iterations, the wide set has 
found conformations with lower energy (Fig. 10B). This behavior 
can be probed by switching from the narrow parameter set to the 
wide set at generation 15 and vice versa in the runs that produced 
the aforementioned results. The results show an interesting dichot- 
omy. If an evolution started with the narrow set and is switched to 
the  wide  set,  no  more  improvement in the  energy  is  found 
(Fig. 11).  Conversely, if the evolution is started with the wide set, 
and then is switched to the narrow A set,  a marked improvement is 
seen (Fig. 11). Between generation 16 and generation 21, the 
energy decreases 22 units to -372.  This is lower than the run with 
Linco Wide used throughout, although it is certainly within the 
variability between runs with different initial populations or ran- 
dom seeds (see following sections). It seems that the narrow set 
can  carry out the optimization task more efficiently, but loses 
genetic diversity, whereas the wide set still retains enough diver- 
sity to improve the conformations in subsequent generations. For 
genetic algorithms, the term “diversity” refers to the differences 
contained in the genetic code of the members of the population. In 
the specific protein folding context, it relates to the conformational 
space covered by the protein chains and will be measured by the 
average RMSD among all the parent chains. 

The difference between the two A sets can also be seen by 
examining how the average RMSD within the population changes 
as the run proceeds (Fig. I O C ) .  The narrow set shows a rapid 
decrease in RMSD in the first few generations and then a slow 
decrease to a value of -2 A. The wide set shows a much more 
gradual decrease until it levels off at a value of -3.5 A. At this 
stage of evolution, the wide set still retains enough diversity in the 
population pool to improve the conformations further, lowering 
their energy by 5.4 units from generation 23 to the end of the 
evolution run. 

The effect of population diversity on the ability of the genetic 
algorithm to improve the fitness of the population was investigated 
further. A scheme has been developed to reintroduce diversity into 
the population as the diversity is lost through the evolution. The 
method consists of replacing a fraction of the population with 
independent low-energy conformations if the average RMSD within 
the population decreases below a threshold. It should be noted that, 
in general genetic algorithm methods, some diversity is maintained 
by mutation operators, which randomly introduce genetic diver- 
sity. In this study, a mutation operator was not included to make the 
examination of the Cartesian combination operator method more 
understandable, i.e., foregoing the introduction of another random 
noise factor to the method. In a full-blown Cartesian combination 
operator genetic algorithm, inclusion of  an appropriate mutation 
operator might be worthwhile. 
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The re-introduction of diversity was observed to improve the 
solutions to a small extent, consistent with what was observed with 
the A parameter above. In the re-introduction scheme, half  of the 
population was replaced with independent low-energy conforma- 
tions (- -75) if the average RMSD among the set of optimized 
children was below 2.55 A. The effect was small, but the intro- 
duction of diversity improved the lowest energy conformer found 
by - 3 units to -373.8 (Fig. 12A). The plot of the average RMSD 
shows that, although half  of the population was replaced repeat- 
ably, the genes of the higher energy-independent conformations (of 
energy - -75) were quickly overwhelmed by the low-energy 
conformers (Fig. 12B). Hence, the RMSD of the population (after 
recombining and selecting for fitness) remained close to the value 
before the introduction of the random independent conformations 
at -2.5 A. 

In the scheme described in Figure 5, each new generation re- 
placed the old population. No parents were retained even if they 
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Fig. 10. A: Performance of the Cartesian linear combination genetic al- 
gorithm with two different A parameter sets: Linco narrow (solid) and 
Linco wide (dotted). B: The energy difference between the two Linco 
methods. In early generations, Linco narrow generates lower energy con- 
formations than Linco wide (the zero value is shown with a dotted line). By 
the end of the simulation, the wide set has found lower energy conforma- 
tions. C: In the first few generations, Linco narrow (solid) shows a rapid 
decrease in the average RMSD among the members of its population. The 
RMSD of the wide set decreases more gradually and always remains - 1.5 8, above the narrow A parameter set and, hence, retains a more 
diverse population. 

possessed very low energy. The effect of retaining the Npc,p lowest 
energy conformers regardless of whether they were children or 
parents was investigated. The results show a somewhat faster de- 
crease in energy, but a premature convergence to higher energy 
clusters  (Fig. 13A,B show the typical behavior). 

We also investigated the effect of the population size on the 
quality of optimization. The experiments  were  repeated with 
Npop E (5, 10, 15, 20, 25, 30). A set of 30 independent confor- 
mations was generated from many Monte Carlo runs with energies 
less than - 100 with an average of - - 150 units. The results show 
the expected behavior: an increase in the population size allows 
more of the space to be searched and, hence, a more rapid decrease 
in the energy (Fig. 14A). 

In this case, each of the initial populations was a subset of the 
larger group. This couples the effect of a particular set of initial 
conformations to that of population size. To probe the effect of 
different sets of initial populations, three new initial population 
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Fig. 11. Evolutionary runs for Linco narrow and Linco wide were identical 
to that of Figure 10 for generations 1-15. Starting from the next generation 
(16) until the end of the runs, the populations were evolved using the other 
A parameter set. 

sets were constructed and the above experiments repeated. Two 
new initial populations, which include an especially low-energy 
conformation, were constructed for Npop = 5. These are desig- 
nated as 5L1 and  5L2, respectively. The first (5L1) was a subset of 
the population (for the 30) described above, and it contained an 
initial conformer with energy -246.  The other new set (5L2) was 
the same as the Npc,p = 5 set above, except for replacing the 
highest-energy conformer (- 100) with the lowest-energy con- 
former found through Monte Carlo with a value of -258.  The third 
new initial population set was made for N p + ,  = 10 (10H).  The 
10 highest conformers were chosen from the set of 30 initial con- 
formations described above (their energies ranged from - 124 
to - 100). These experiments show that there are variations caused 
by the initial population; however, a lower starting energy does not 
dictate a lower final energy (Fig. 14B). One of the low-energy 
initial populations led to a low-energy solution (5L2), whereas the 
other low-energy set (5L1) did not. Even though the initial popu- 
lation of 10H was a high-energy set, it behaved in much the same 
manner as the other Npop = 10 set. 

One final attempt was made to elucidate the behavior of the 
Cartesian combination genetic algorithm method and the charac- 
teristics of the energy landscape. Five runs with independent 
low-energy (- -150) initial populations sets were performed 
(Fig. 15A). The results obtained for all the sets were similar to 
each other, as were the Npop = 10 sets described above. For each 
set, the lowest-energy conformation found at generation 40 was 
pooled for use as the starting population for an NP,,,, = 5 run. The 
energy increases initially, then slowly decreases back to its level 
for the initial population after 20 generations (Fig. 15A,B). At 
generations -44 and - 123, the lowest-energy conformation found 
jumps rapidly to a lower energy level (Fig. 15B). The behavior of 
the method after the first -30 generations is reminiscent of local 
minimization. The RMSD never converges, but remains around 
4 A, and the energy jumps from a plateau to a new plateau at a 
lower energy. Through this phase, the energy is reduced by  10 
units to the presumed global minimum level of  -386.5 units. 
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Fig. 12. A: Plot based on the re-introduction of diversity. The simulation 
was as outlined in the flow chart of Figure 5, except that it contained an 
additional procedure to reintroduce diversity if the average RMSD of the 
optimized children set fell below a set threshold parameter. In the evolution 
shown in this figure, this occurred after the 16th generation (vertical dotted 
line). At this point, half the population was replaced with the (1/2)NPop 
lowest-energy conformations from a set of 3 X Npop random conformations 
that were minimized with 2,000 steps of Monte Carlo minimization (en- 
ergies average - -75). This replacement occurred whenever the Rh4SD 
was lower than the threshold throughout the rest of the evolution. All of the 
Np,,p conformations are plotted at each generation (0). A solid line con- 
nects the lowest-energy conformation at each generation. The narrow A set 
was used as the Linco operator. B: The RMSD oscillates as half the pop- 
ulation is replaced with the independent Monte Carlo generated conforma- 
tions, and the RMSD repeatedly decreases below the threshold. 

The above diversity results help to characterize the require- 
ments of the Cartesian combination operator method. We have 
found that the optimal parameters consist of the wide A set, a 
population size of NP," - 20, and the replacement of the par- 
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Fig. 13. A: Scheme that retains the lowest-energy conformations, regard- 
less of their status  as parents or children, decreased in energy more rapidly 
in early evolution, but converges prematurely to  a higher energy level. The 
Linco wide method was used for both schemes. B: Premature convergence 
when retaining the lowest-energy conformers (dotted line) can be seen by 
examination of the average RMSD among the population. After generation 
13, the Replacing Parents scheme converges rapidly to a single structure at 
generation 30 (-1.0 A). 

ents at each generation. These parameters will be useful in de- 
signing a full-blown genetic algorithm, which may include all 
the recombination types (Linco,  Swap V, and  Swap X), a mu- 
tation operator, and other genetic algorithm procedures. This op- 
timized genetic algorithm would then be used to locate low- 
energy conformations with a more complete knowledge-based 
potential and, hence, would be used to predict the native struc- 
ture of proteins. 
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Fig. 14. A: Plot showing the effect of increasing population size (NP,,J. 
The Linco wide operator was used. The lattice fitting procedure was the 
hybrid ith vector/dynamic programming method (see "Lattice fitting by 
dynamic programming"). B: Plot using the identical scheme but with in- 
clusion of different initial population sets. Sets SL1 and 5L2  are sets that 
contain a very low-energy initial conformer. The 10H initial population 
was a high energy set made from the highest initial energy conformers in 
the Npop = 30 set for A. The energies are [ - 124, - 123, - 112, ~ 11 1, 
-105, -104, -103, -101, -100) in arbitrary units. 

Lattice fitting by dynamic  programming 

The fitting of a chain in real space to a discrete set of points is an 
important topic in polymer science in general; for example, fitting 
an X-ray structure to a lattice. Here, as part of the Cartesian  com- 
bination operator genetic algorithms, it is necessary to convert the 
children produced by recombination to proper lattice chains. A 
proper lattice chain must meet three requirements: it must contain 
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Fig. 15. A: Five independent  initial  population sets were  generated  with 
Monte  Carlo minimization. Many  Monte  Carlo runs were conducted to 
generate conformations with energies less than - 1 0 0 .  The five populations 
were evolved by  the Linco wide operator,  with a population size Npop, = 
10, and  used  the  hybrid ith vector/dynamic  programming lattice fitting 
procedure (see text). All the sets showed similar  behavior. The lowest- 
energy  conformer  found at generation 30 for each run was pooled to  form 
an Np,p = 5 initial  population  with energies of (-374,  -369,  -358, 
-352,  -345) in  arbitrary units. Starting  with this initial population, the 
first 40 generations of its evolution under  the  same  Cartesian combination 
method  are shown (dotted line). B: Full evolutionary run of the very low 
energy N p , p  = 5 initial  set shown in A. The energy jumps up  to -350 after 
the  first  generation,  and  then decreases back  to -374 at generation 20. The 
energy  then decreases in two steep jumps at generations -44 and -123, 
finally reaching  the  presumed global minimum level of -386.5 units. It 
should be noted that  the scale of the  plot is greatly expended over plot A, 
making  the changes appear magnified. 

proper virtual bond lengths and virtual bond angles, and it must 
not contain overlaps. Specifically, it should meet the following 
constraints. 

181 1 

Let Qi be the coordinates of the ith residue of the lattice chain. 

Virtual bond constraint: 

2.94 A 5 IlQ, - Ql+,Il 5 4.16 A for i  = 1,n - 1. (5) 

Let y(Q,- ,, Q ,  Qi+ ,) be the virtual bond angle. 

Virtual bond angle constraint: 

78.5” 5 y 5  141.1” for i  = 2,n - 1. (6)  

Overlap constraint: 

IlQ, - 4 1 1  2 5.1 A for I i  - j l  > 1 i , j  = 1,n. (7) 

The specific values used for the constraint terms above are taken 
from the paper of Kolinski and Skolnick (1994). 

The requirement for the lattice fitting procedure is that it be fast 
and accurate. It needs to be fast because every child chain that is 
generated needs to be fitted to the lattice. It must be accurate so 
that the attributes of the parents are transmitted faithfully to the 
children. It should be noted that the lattice fitting needed for the 
Cartesian combination method is a more demanding task than 
fitting the X-ray structure of a protein to the lattice. The children 
produced by the linear Cartesian combination operator may have 
very distorted geometry; the chains may have distorted virtual 
bond lengths and virtual bond angles, and may contain many over- 
laps. 

For clarity throughout the remainder of this section, we will use 
the terminology “ith city” for the real-space C” coordinates for 
residue i, and “satellite” for the lattice site chosen to correspond to 
that city. The term “ith stage” refers to a consideration of which 
lattice site will be chosen for  the ith city. 

A few algorithms for fitting real chains to the lattice have been 
published (Godzik et al., 1993; Rykunov et al., 1995). In the work 
of Godzik et al., three methods were used. The first was the simple 
procedure: start  at one end of the chain and choose the proper 
lattice site that minimizes the local deviation between the lattice-fit 
chain and the real-space chain, and then proceed in this fashion to 
the other end. At each stage, one satellite is chosen and then is 
fixed for the succeeding stages. In the Cartesian combination op- 
erator method, we have used this procedure, and it will be referred 
to as the “ith vector” method. It is very fast, but can yield large 
deviations from the real chain. Hence, it is useful, in the Cartesian 
combination operator method, to follow this by a more accurate 
fitting procedure described below. The other two methods in the 
paper of Godzik et al. use Monte Carlo simulated annealing to 
improve an initial lattice conformation. These two methods gen- 
erate  a random initial conformation, then use simulated annealing 
to bring the lattice chain closer to the real chain according to either 
the interrcsidue distances or RMSD criteria. These methods are too 
slow for use with the Cartesian combination method. For example, 
for Npop = 10 and NChird = 6, for 30 generations the lattice fitting 
procedure would have to be used 8,100 (i.e., 45 X 6 X 30) times. 

The procedure of Rykunov et al. (1995) uses the dynamic pro- 
gramming algorithm to fit the real chain to the lattice. It is unsuit- 
able for use here because it does not include virtual bond angle 
constraints, and it uses an approximate overlap penalty function 
that does not guarantee that the fitted chain will not contain over- 
laps, and hence violates the overlap constraint. We have devised a 
different dynamic programming lattice fitting procedure that guar- 
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antees that the lattice chain will meet all of the proper lattice 
constraints described above. 

The objective for lattice fitting is to minimize the cost function: 

where qi refers to the coordinates of residue i in the real chain 
(cities) and Qi refers to the coordinates of the lattice site chosen for 
the ith residue in the lattice chain (satellites). 

For  the moment, for simplicity, let us examine the properties of 
the global minimum fit (e,* for  i = 1 ,  n) of the cost function if we 
exclude the virtual bond angle and overlap constraints. If  we choose 
an arbitrary city i, then the  part of the globally optimal chain from 
the first lattice point Q ;  to the lattice point Q: is also the optimal 
chain for the first i cities among all those on-lattice chains that start 
in Q; and end in Q:. It should be noted, however, that there may 
be lattice chains from 1 to i that have a lower cost, but they will not 
pass through lattice point Q: and will have a higher total cost as 
they are extended to the end. Hence, the dynamic programming 
algorithm (which guarantees the optimal fit) proceeds from residue 
1 to n at each stage, storing only the optimal paths to each satellite 
around the city under consideration. To proceed from city i to city 
i + 1, one calculates the cost of extending the optimal paths from 
each of the satellites of i to all the satellites of i + I ,  storing only 
the optimal paths (one per satellite) of i + 1 (Fig. 16). It should be 
noted that any connections that violate the virtual bond length 
constraint are excluded. These optimal paths to the satellites of city 
i + 1 serve as the basis to extend the chain to city i + 2 and so on 
until the end of the chain. 

We have extended the dynamic programming algorithm to in- 
clude the virtual bond angle constraint in the lattice fitting proce- 

Fig. 16. Schematic diagram of the dynamic programming algorithm for 
only virtual bond length constraints. Solid lines indicate the optimal paths 
to arrive at each of the lattice sites (solid circles) in the neighborhood of 
city i (open circle). The neighborhood is denoted by the large circle en- 
closing the lattice satellites for each city. Dashed lines are the considered 
paths to satellite j around city i + 1. An X through the dashed lines denotes 
that the proposed path violates the virtual bond length constraint. An as- 
terisk denotes the hypothetical optimal path to satellite j around city i + I .  
The  figure below the arrow indicates the continuation of the method to city 
i + 2. It should be noted that at most only one optimal path arrives at each 
satellite for the city being extended. 

dure. Now what is needed to be stored is not the optimal path to 
each satellite of city i, but the optimal path for each satellite and 
the arriving direction (see Fig. 17). The analogous logical state- 
ment about optimally fit chains mentioned above holds here: if we 
choose an arbitrary city i, then the part of the globally optimal 
chain from the first lattice point Q ;  to the lattice point Qr is also 
the optimal chain for the first i cities among all those on-lattice 
chains that start  at Q; and reach lattice point Qr arriving at that 
direction (Qt - e,*-,). 

In contrast to the virtual bond constraint, the overlap constraint 
is nonlocal. With the inclusion of the overlap constraint, the sub- 
chains of the global minimum chain need not be optimal paths. An 
optimal path from the first lattice point Q; to satellite Qr may be 
excluded from the global minimum path by an overlap even though 
the global minimum path passes though satellite Qr. Hence, the 
dynamic programming algorithm (an algorithm that stores the lo- 
cally optimal paths) cannot be used. The algorithm that we use 
guarantees that the chain will not have any overlaps, but at the loss 
of guaranteeing that the global minimum cost chain is attained. 
The global minimum will be missed only if a particular set of 
circumstances occurs. These circumstances, and the specific algo- 
rithm for  our dynamic programming method, which finds the op- 
timal valid lattice chain, can be found in the Lattice fitting appendix. 

The quality of our dynamic programming procedure was com- 
pared with the simple ith vector method. The ith vector method is 
the greedy algorithm that chooses the best local vector for each 
residue, proceeding from one end of the chain to the other (as 
described above).  The dynamic programming method finds much 
better fits than the ith vector method (Fig. 18). In cases where the 

Fig. 17. Schematic diagram of the dynamic programming algorithm in- 
cluding both the virtual bond length and virtual bond angle constraints. 
Solid lines indicates the optimal paths to arrive at the lattice sites in the 
neighborhood of city i from various directions. Dashed lines are the con- 
sidered paths to satellite j around city i + 1. An X through the dashed lines 
denotes that the proposed path violates the virtual bond length constraint. 
An X through the angle indicators denotes that the proposed path violates 
the virtual bond angle constraint and, hence, that path is rejected. The 
asterisks denote the optimal paths to satellite j around city i + 1 coming 
from the indicated directions. The figure below the arrow indicates the 
continuation of the method to city i + 2. It should be- noted that multiple 
optimal paths arrive at each satellite (Le., from different directions) for the 
current city ( I  + I )  being extended, but at most only one path arrives at 
each satellite for the previous city (i). 
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Fig. 18. Plot of the errors in fitting found with the dynamic programming 
and the ith vector methods. The dynamic programming algorithm finds 
fitted lattice chains superior to the ith vector method (all the points fall 
below the y = x diagonal). The values on the axes are the total square errors 
for each respective method in A’. The three points above the diagonal are 
the cases where the dynamic programming method fails to find a solution 
as a result of choosing the size of the neighborhood around the cities that 
was too small. Those points are arbitrarily placed at 1,000 8,’ on the 
dynamic programming axis for this plot. The conformations were gener- 
ated with the Cartesian combination operator method using the wide A data 
set. 

ith vector method gives very large deviations (total square error 
greater than 800 A’), the  dynamic programming algorithm finds 
good fits  (less than 200 A’). 

In three cases, for the data plotted in Figure 18, the dynamic 
programming method found no solution because the lattice satel- 
lite neighborhood around the cities was chosen to be too small. 
This illustrates a feature of the method. Choosing the neighbor- 
hood size (Le., the number of lattice sites) around a city sets a 
maximum deviation around that city. This forces the lattice fit to be 
within a prescribed distance from each city. This allows the fit to 
be faithful to all parts of the chain even if it degrades the overall 
fit. This is desirable for use  with the Cartesian combination oper- 
ator genetic algorithm because it allows faithful inheritance of the 
attributes of the parents. Of course, the neighborhood size can be 
increased sufficiently to guarantee the overall best fit. It should be 
noted that the computer time for the dynamic programming method 
is very dependent on the  size of the neighborhoods. For the neigh- 
borhood size chosen for the data in Figure 18, the dynamic pro- 
gramming method was -300 times slower than the ith vector 
method. 

As expected, the fitting by either method was found to be best 
for A at the ends of the interval [O, 11 and worst for the middle 
values (Fig. 19). This is especially true for the ith vector method. 
The  dynamic programming method still finds good solutions even 
for A = 0.35  and  0.65. 

The use of dynamic programming fitting improves the effi- 
ciency of the Cartesian combination operator genetic algorithm 
(Fig. 20).  The price, however, is very slow execution time. The 
lattice fitting now takes as much CPU time as all the rest of the 
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Fig. 19. Total square error (A’) for fitting the real chains generated with 
the Cartesian combination operator method to the lattice with A E (0. IO, 
0.20, 0.35, 0.65, 0.80, 0.90). For clarity, the data shown on the plot have 
been shifted slightly to the left (0, ith vector) or to the right (+, dynamic 
programming). Three cases in which the dynamic programming method 
fails  to find a solution have been assigned arbitrarily a value of 1 ,OOO 8,’ 
and appear as a single + symbol at A = 0.65. 

steps (Monte  Carlo minimization, etc.). To take advantage of the 
improvement to the Cartesian combination operator method with 
use of dynamic programming, a dual approach is used. The fitting 
first uses the ith vector method and then, if the deviation with the 
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Fig. 20. The dynamic programming method markedly improves the effi- 
ciency of the Cartesian linear combination genetic algorithm. The initial 
population set was a subset of the conformations in the set IPS 1 ,  with 
Nrop = 5.  The  Linco wide operator was used. For the dynamic program- 
mlng method, a neighborhood radius of 3.75 8, was used. The dynamic 
programming fitting CPU time was -700 times slower than the ith vector 
method. 
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off-lattice chain is too large, the dynamic programming algorithm 
is used, 

Conclusion 

The results presented here demonstrate that the Cartesian  combi- 
nation operator genetic algorithm can efficiently generate low- 
energy children that retain the topology and pairwise contacts of 
their parents. This illustrates the advantage that the Cartesian com- 
bination operator method has over traditional bond-swapping genetic 
algorithms. Traditional crossover operators retain only the local 
bond vectors or dihedral angles, disrupting some of the long-range 
contacts and the topology of the parent chains. Algorithms, such as 
Monte Carlo methods, can optimize local angles efficiently. The 
major problem in protein folding has been the global optimization 
of the long-range contacts. The potential used in this article con- 
sists of long-range contacts and topology constraints. The  Carte- 
sian combination operator method was devised to optimize the 
global folds of proteins, and the results demonstrate its ability to 
locate low-energy structures that retain native-like topology. 

The Cartesian combination operator genetic algorithm is ideally 
suited for testing and optimizing knowledge-based potentials. The 
method efficiently generates good solutions to the knowledge- 
based potentials by searching the space of compact protein-like 
structures. This  allows investigation of the effect of perturbing the 
knowledge-based potential or different parameterizations by gen- 
erating a set of conformations that are of low energy for the po- 
tential. The potential can be changed in an iterative process to yield 
a potential function optimized for locating the native conforma- 
tions of proteins. This task is being investigated currently. 

The Cartesian combination operator method is likewise suited to 
the general task of searching for the native structure. By their very 
nature, knowledge-based potentials are a "mean field" type of 
potential. That is, the potential assigns a low energy to structures 
that are similar to those found in the database on which the po- 
tential was parameterized. It is likely that no single knowledge- 
based potential will ever be able to identify the native structure 
accurately for all proteins, i.e., assigning the global minimum en- 
ergy to the native conformation and higher energies to all other 
alternate conformations. The best use of knowledge-based poten- 
tials may be to generate an ensemble of likely candidates for the 
native structure of a protein. A more physically based potential can 
then be applied to the search restricted to the neighborhood of the 
knowledge-based potential candidates. This hybrid approach may 
ultimately be the way to solve the protein folding problem. The 
Cartesian combination operator genetic algorithm is ideally suited 
to provide the initial candidates. 
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Appendix 1: Test potential appendix 

The potential used to test the  Cartesian  combination  operator  method  con- 
sists of four  terms: radius of gyration  and  disulfide-bond  topology  con- 
straints,  a  contact  profile  term,  and  a  pairwise  contact  energy  term. 

Radius of gyration 

(9) 

where G,G" are  the  radii of gyration (in A) for the test and native confor- 
mations.  The  constants a and b were  set  to  0.226  energy units and 3.0 A. 
respectively. 

Disulfide-bond  constraints 

where Di,DP are the squared  distances  between C" coordinates of each 
disulfide pair, i ,  for  the  test  and  native  conformations,  respectively.  The 
sum  runs  over all disulfide pairs. The  constants a and b were set to  3.99 X 

energy units and  170 , respectively. 

Contact  profile 

E,,l/i/, = P(P.P") ,  

where p is the  correlation  coefficient  for profiles: 
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where 6, = 1 if residue j is within I O  A of residue i, and 0 otherwise. Po 
refers to the native profile. 

Painvise  contact  energy 

1 ”  n 

6, = 1 if the distance between residues i and j is less than 7.6 A, and 0 
otherwise; ey is the pairwise interaction energy, the parameters being taken 
from Kolinski et  al. (1993). 

The total energy is a  sum of the terms above: 

EToro/ = EGyr + c2EDisu/ + C3EPr0ji/e + C4EPoinuzse. (14) 

The coefficients were each adjusted independently. Each coefficient, in 
turn (setting all  other coefficients to zero), was chosen so that the fraction 
of conformations accepted in the Monte  Carlo two-bond move was 15% at 
a temperature of 1.0. The coefficients obtained in this manner were cI ,  c2, 
c3, c4 = 6.00 X lo6, 1.50 X lo6,  -200, 3.75. For the Monte Carlo 
simulations conducted in this article,  a temperature of 0.4 (corresponding 
to a smaller fraction of accepted conformations) was found to be the best 
for minimization and was used throughout. It should be noted that for the 
native conformation of a protein the terms E,, and E,,,, equal 0, and the 
term EPmfire equals 1. For the native conformation of the protein crambin 
(lcrn), EPoiwlre was -10.1 units. Therefore, for the native conformation 
of crambin, the total energy equals -237.8 units [i.e., ~ ~ ( 0 . 0 )  + ~ ~ ( 0 . 0 )  + 

The  simple potential described above was devised to test the Cartesian 
combination operator method. A more complete potential, which includes 
explicit side  chains, would be needed to attempt to predict the native 
structure of proteins. The need for  a more complete potential to predict 
native structures can be seen from existence of non-native structures with 
lower energy than the native conformation. For example, the crambin 
conformations found with the Cartesian combination genetic algorithm in 
Figure 15Ahave energies of -374,  -369,  -358,  -352,  -345 units. These 
conformations have energies below the native value of -237.8 units, and 
their Rh4SDs were 8.9, 8.1,6.2, 8.7, and 8.4 A, respectively. This illustrates 
an  important use of efficient minimization methods, such as the Cartesian 
combination genetic algorithm; they can be used to test and optimize 
potentials to create energy functions that can then be used to predict the 
native structure of proteins. 

c3(1.0) + c4(-l0.l)]. 

Appendix 2: Lattice fitting appendix 

This appendix provides the details of our dynamic programming algorithm, 
which fits a real-space chain to a lattice, subject to bond length, bond angle, 
and  overlap constraints (see Equations 5-8). Our algorithm proceeds from 
one end of the chain to the other. At  each stage, only the optimal paths 
needed to reach each lattice site Q{ from direction vk for all necessary j s  
and vks are stored. More explicitly: l e t i lk  be the “global minimal” cost of 
arriving at lattice point Qi from direction uk when building the lattice chain 
from the first to the ith city (i.e., the ith real-space residue). In order  to 
proceed to the next city, the m a t r i x i t  I needs to be calculated for alljs and 
ks. The connections to the satellites of city i + 1 (i.e., the lattice sites in the 
neighborhood of residue i + 1) are explored. Let us consider the lattice site 
Q!+ I because it is connected to a lattice site of the previous city (Q!) that 
meets the virtual bond length constraint. This defines the direction of 
arrival uk. The algorithm proceeds through the sorted list (in order of 
increasing cost) of optimal paths fij”,f,f’*,5f3, . . .} until it finds the first 
direction vk’ (arriving at Q!’) that meets the virtual bond angle constraint. 
The satellite Qi+ is checked to see if it overlaps any of the satellites for 
that chosen path, and that path is rejected if violations are found. The path 
found in this manner is the “global minimal” path for arriving at lattice site 
Q/+ from direction uk. Then the additional cost I = ifk’ + 11 qi - 
Qj’Il’ is calculated. The algorithm proceeds in this manner for all satellites 
around city i + 1 connected to all satellites around city i. The vectors 
fiq I ,  Aj; . . .} are sorted in increasing order of cost. The algorithm 
can now proceed to the i + 2 stage. At the last city, all the optimal paths 
for arriving at each lattice satellite of city n are compared. Of these paths, 
the lowest cost path is chosen, and  it is the overall “global minimum” cost 
fitting. 

In the above algorithm, global minimum appears in quotes. This is 
because the inclusion of the overlap constraint prevents the guarantee of 
generating the optimal cost path. The optimal path may be missed only if: 
a path (A) arriving at satellite j from direction uk is not stored in favor of 
having saved a lower-cost path (B), arriving at the same satellitej from the 
same direction vk, and path (B) is eventually discarded because of an 
overlap at a later stage, and the global minimum solution contains path (A). 
The likelihood of this occurrence needs to be investigated. For the needs of 
the Cartesian combination operator method, it is sufficient that the “dy- 
namic programming” method generates very good fits without overlaps 
and ones that meet the virtual bond length and virtual bond angle constraints. 


