Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1997 Oct;6(10):2203–2217. doi: 10.1002/pro.5560061015

Human recombinant [C22A] FK506-binding protein amide hydrogen exchange rates from mass spectrometry match and extend those from NMR.

Z Zhang 1, W Li 1, T M Logan 1, M Li 1, A G Marshall 1
PMCID: PMC2143553  PMID: 9336843

Abstract

Hydrogen/deuterium exchange behavior of human recombinant [C22A] FK506 binding protein (C22A FKBP) has been determined by protein fragmentation, combined with electrospray Fourier transform ion cyclotron resonance mass spectrometry (MS). After a specified period of H/D exchange in solution, C22A FKBP was digested by pepsin under slow exchange conditions (pH 2.4, 0 degree C), and then subjected to on-line HPLC/MS for deuterium analysis of each proteolytic peptide. The hydrogen exchange rate of each individual amide hydrogen was then determined independently by heteronuclear two-dimensional NMR on 15N-enriched C22A FKBP. A maximum entropy method (MEM) algorithm makes it possible to derive the distributions of hydrogen exchange rate constants from the MS-determined deuterium exchange-in curves in either the holoprotein or its proteolytic segments. The MEM-derived rate constant distributions of C22A FKBP and different segments of C22A FKBP are compared to the rate constants determined by NMR for individual amide protons. The rate constant distributions determined by both methods are consistent and complementary, thereby validating protein fragmentation/mass spectrometry as a reliable measure of hydrogen exchange in proteins.

Full Text

The Full Text of this article is available as a PDF (5.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Afeyan N. B., Gordon N. F., Mazsaroff I., Varady L., Fulton S. P., Yang Y. B., Regnier F. E. Flow-through particles for the high-performance liquid chromatographic separation of biomolecules: perfusion chromatography. J Chromatogr. 1990 Oct 19;519(1):1–29. doi: 10.1016/0021-9673(90)85132-f. [DOI] [PubMed] [Google Scholar]
  2. Barettino D., Feigenbutz M., Valcárcel R., Stunnenberg H. G. Improved method for PCR-mediated site-directed mutagenesis. Nucleic Acids Res. 1994 Feb 11;22(3):541–542. doi: 10.1093/nar/22.3.541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Buchanan M. V., Hettich R. L. Fourier transform mass spectrometry of high-mass biomolecules. Anal Chem. 1993 Mar 1;65(5):245A–259A. doi: 10.1021/ac00053a001. [DOI] [PubMed] [Google Scholar]
  4. Dharmasiri K., Smith D. L. Mass spectrometric determination of isotopic exchange rates of amide hydrogens located on the surfaces of proteins. Anal Chem. 1996 Jul 15;68(14):2340–2344. doi: 10.1021/ac9601526. [DOI] [PubMed] [Google Scholar]
  5. Englander J. J., Rogero J. R., Englander S. W. Protein hydrogen exchange studied by the fragment separation method. Anal Biochem. 1985 May 15;147(1):234–244. doi: 10.1016/0003-2697(85)90033-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Englander S. W., Englander J. J., McKinnie R. E., Ackers G. K., Turner G. J., Westrick J. A., Gill S. J. Hydrogen exchange measurement of the free energy of structural and allosteric change in hemoglobin. Science. 1992 Jun 19;256(5064):1684–1687. doi: 10.1126/science.256.5064.1684. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Englander S. W., Kallenbach N. R. Hydrogen exchange and structural dynamics of proteins and nucleic acids. Q Rev Biophys. 1983 Nov;16(4):521–655. doi: 10.1017/s0033583500005217. [DOI] [PubMed] [Google Scholar]
  8. Englander S. W., Sosnick T. R., Englander J. J., Mayne L. Mechanisms and uses of hydrogen exchange. Curr Opin Struct Biol. 1996 Feb;6(1):18–23. doi: 10.1016/s0959-440x(96)80090-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fruman D. A., Burakoff S. J., Bierer B. E. Immunophilins in protein folding and immunosuppression. FASEB J. 1994 Apr 1;8(6):391–400. doi: 10.1096/fasebj.8.6.7513288. [DOI] [PubMed] [Google Scholar]
  10. Gregory R. B., Rosenberg A. Protein conformational dynamics measured by hydrogen isotope exchange techniques. Methods Enzymol. 1986;131:448–508. doi: 10.1016/0076-6879(86)31052-8. [DOI] [PubMed] [Google Scholar]
  11. Johnson R. S., Walsh K. A. Mass spectrometric measurement of protein amide hydrogen exchange rates of apo- and holo-myoglobin. Protein Sci. 1994 Dec;3(12):2411–2418. doi: 10.1002/pro.5560031224. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Knox D. G., Rosenberg A. Fluctuations of protein structure as expressed in the distribution of hydrogen exchange rate constants. Biopolymers. 1980 May;19(5):1049–1068. doi: 10.1002/bip.1980.360190509. [DOI] [PubMed] [Google Scholar]
  13. Little D. P., Speir J. P., Senko M. W., O'Connor P. B., McLafferty F. W. Infrared multiphoton dissociation of large multiply charged ions for biomolecule sequencing. Anal Chem. 1994 Sep 15;66(18):2809–2815. doi: 10.1021/ac00090a004. [DOI] [PubMed] [Google Scholar]
  14. Miranker A., Robinson C. V., Radford S. E., Aplin R. T., Dobson C. M. Detection of transient protein folding populations by mass spectrometry. Science. 1993 Nov 5;262(5135):896–900. doi: 10.1126/science.8235611. [DOI] [PubMed] [Google Scholar]
  15. Park S. T., Aldape R. A., Futer O., DeCenzo M. T., Livingston D. J. PPIase catalysis by human FK506-binding protein proceeds through a conformational twist mechanism. J Biol Chem. 1992 Feb 15;267(5):3316–3324. [PubMed] [Google Scholar]
  16. Pilot-Matias T. J., Pratt S. D., Lane B. C. High-level synthesis of the 12-kDa human FK506-binding protein in Escherichia coli using translational coupling. Gene. 1993 Jun 30;128(2):219–225. doi: 10.1016/0378-1119(93)90566-l. [DOI] [PubMed] [Google Scholar]
  17. Powers J. C., Harley A. D., Myers D. V. Subsite specificity of porcine pepsin. Adv Exp Med Biol. 1977;95:141–157. doi: 10.1007/978-1-4757-0719-9_9. [DOI] [PubMed] [Google Scholar]
  18. Rosa J. J., Richards F. M. An experimental procedure for increasing the structural resolution of chemical hydrogen-exchange measurements on proteins: application to ribonuclease S peptide. J Mol Biol. 1979 Sep 25;133(3):399–416. doi: 10.1016/0022-2836(79)90400-5. [DOI] [PubMed] [Google Scholar]
  19. Senko M. W., Hendrickson C. L., Pasa-Tolić L., Marto J. A., White F. M., Guan S., Marshall A. G. Electrospray ionization Fourier transform ion cyclotron resonance at 9.4 T. Rapid Commun Mass Spectrom. 1996;10(14):1824–1828. doi: 10.1002/(SICI)1097-0231(199611)10:14<1824::AID-RCM695>3.0.CO;2-E. [DOI] [PubMed] [Google Scholar]
  20. Smith D. L., Deng Y., Zhang Z. Probing the non-covalent structure of proteins by amide hydrogen exchange and mass spectrometry. J Mass Spectrom. 1997 Feb;32(2):135–146. doi: 10.1002/(SICI)1096-9888(199702)32:2<135::AID-JMS486>3.0.CO;2-M. [DOI] [PubMed] [Google Scholar]
  21. Van Duyne G. D., Standaert R. F., Karplus P. A., Schreiber S. L., Clardy J. Atomic structure of FKBP-FK506, an immunophilin-immunosuppressant complex. Science. 1991 May 10;252(5007):839–842. doi: 10.1126/science.1709302. [DOI] [PubMed] [Google Scholar]
  22. Wu Q., Van Orden S., Cheng X., Bakhtiar R., Smith R. D. Characterization of cytochrome c variants with high-resolution FTICR mass spectrometry: correlation of fragmentation and structure. Anal Chem. 1995 Jul 15;67(14):2498–2509. doi: 10.1021/ac00110a027. [DOI] [PubMed] [Google Scholar]
  23. Zhang Z., Post C. B., Smith D. L. Amide hydrogen exchange determined by mass spectrometry: application to rabbit muscle aldolase. Biochemistry. 1996 Jan 23;35(3):779–791. doi: 10.1021/bi952227q. [DOI] [PubMed] [Google Scholar]
  24. Zhang Z., Smith D. L. Thermal-induced unfolding domains in aldolase identified by amide hydrogen exchange and mass spectrometry. Protein Sci. 1996 Jul;5(7):1282–1289. doi: 10.1002/pro.5560050707. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES