Abstract
A bond between the N delta of the imidazole ring of His 392 and the C beta of the essential Tyr 415 has been found in the refined crystal structure at 1.9 A resolution of catalase HPII of Escherichia coli. This novel type of covalent linkage is clearly defined in the electron density map of HPII and is confirmed by matrix-assisted laser desorption/ionization mass spectrometry analysis of tryptic digest mixtures. The geometry of the bond is compatible with both the sp3 hybridization of the C beta atom and the planarity of the imidazole ring. Two mutated variants of HPII active site residues, H128N and N201H, do not contain the His 392-Tyr 415 bond, and their crystal structures show that the imidazole ring of His 392 was rotated, in both cases, by 80 degrees relative to its position in HPII. These mutant forms of HPII are catalytically inactive and do not convert heme b to heme d, suggesting a relationship between the self-catalyzed heme conversion reaction and the formation of the His-Tyr linkage. A model coupling the two processes and involving the reaction of one molecule of H2O2 on the proximal side of the heme with compound 1 is proposed.
Full Text
The Full Text of this article is available as a PDF (3.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bravo J., Verdaguer N., Tormo J., Betzel C., Switala J., Loewen P. C., Fita I. Crystal structure of catalase HPII from Escherichia coli. Structure. 1995 May 15;3(5):491–502. doi: 10.1016/s0969-2126(01)00182-4. [DOI] [PubMed] [Google Scholar]
- Cubitt A. B., Heim R., Adams S. R., Boyd A. E., Gross L. A., Tsien R. Y. Understanding, improving and using green fluorescent proteins. Trends Biochem Sci. 1995 Nov;20(11):448–455. doi: 10.1016/s0968-0004(00)89099-4. [DOI] [PubMed] [Google Scholar]
- Gouet P., Jouve H. M., Dideberg O. Crystal structure of Proteus mirabilis PR catalase with and without bound NADPH. J Mol Biol. 1995 Jun 23;249(5):933–954. doi: 10.1006/jmbi.1995.0350. [DOI] [PubMed] [Google Scholar]
- Gouet P., Jouve H. M., Williams P. A., Andersson I., Andreoletti P., Nussaume L., Hajdu J. Ferryl intermediates of catalase captured by time-resolved Weissenberg crystallography and UV-VIS spectroscopy. Nat Struct Biol. 1996 Nov;3(11):951–956. doi: 10.1038/nsb1196-951. [DOI] [PubMed] [Google Scholar]
- Heim R., Prasher D. C., Tsien R. Y. Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12501–12504. doi: 10.1073/pnas.91.26.12501. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jones T. A., Zou J. Y., Cowan S. W., Kjeldgaard M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A. 1991 Mar 1;47(Pt 2):110–119. doi: 10.1107/s0108767390010224. [DOI] [PubMed] [Google Scholar]
- Loewen P. C., Switala J. Purification and characterization of catalase HPII from Escherichia coli K12. Biochem Cell Biol. 1986 Jul;64(7):638–646. doi: 10.1139/o86-088. [DOI] [PubMed] [Google Scholar]
- Loewen P. C., Switala J., von Ossowski I., Hillar A., Christie A., Tattrie B., Nicholls P. Catalase HPII of Escherichia coli catalyzes the conversion of protoheme to cis-heme d. Biochemistry. 1993 Sep 28;32(38):10159–10164. doi: 10.1021/bi00089a035. [DOI] [PubMed] [Google Scholar]
- Mulvey M. R., Sorby P. A., Triggs-Raine B. L., Loewen P. C. Cloning and physical characterization of katE and katF required for catalase HPII expression in Escherichia coli. Gene. 1988 Dec 20;73(2):337–345. doi: 10.1016/0378-1119(88)90498-2. [DOI] [PubMed] [Google Scholar]
- Murshudov G. N., Grebenko A. I., Barynin V., Dauter Z., Wilson K. S., Vainshtein B. K., Melik-Adamyan W., Bravo J., Ferrán J. M., Ferrer J. C. Structure of the heme d of Penicillium vitale and Escherichia coli catalases. J Biol Chem. 1996 Apr 12;271(15):8863–8868. doi: 10.1074/jbc.271.15.8863. [DOI] [PubMed] [Google Scholar]
- Murshudov G. N., Melik-Adamyan W. R., Grebenko A. I., Barynin V. V., Vagin A. A., Vainshtein B. K., Dauter Z., Wilson K. S. Three-dimensional structure of catalase from Micrococcus lysodeikticus at 1.5 A resolution. FEBS Lett. 1992 Nov 9;312(2-3):127–131. doi: 10.1016/0014-5793(92)80919-8. [DOI] [PubMed] [Google Scholar]
- Murthy M. R., Reid T. J., 3rd, Sicignano A., Tanaka N., Rossmann M. G. Structure of beef liver catalase. J Mol Biol. 1981 Oct 25;152(2):465–499. doi: 10.1016/0022-2836(81)90254-0. [DOI] [PubMed] [Google Scholar]
- Stehle T., Ahmed S. A., Claiborne A., Schulz G. E. Structure of NADH peroxidase from Streptococcus faecalis 10C1 refined at 2.16 A resolution. J Mol Biol. 1991 Oct 20;221(4):1325–1344. [PubMed] [Google Scholar]
- Vainshtein B. K., Melik-Adamyan W. R., Barynin V. V., Vagin A. A., Grebenko A. I. Three-dimensional structure of the enzyme catalase. Nature. 1981 Oct 1;293(5831):411–412. doi: 10.1038/293411a0. [DOI] [PubMed] [Google Scholar]
- von Ossowski I., Mulvey M. R., Leco P. A., Borys A., Loewen P. C. Nucleotide sequence of Escherichia coli katE, which encodes catalase HPII. J Bacteriol. 1991 Jan;173(2):514–520. doi: 10.1128/jb.173.2.514-520.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]