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Abstract 

Statistical potentials based on pairwise interactions between C" atoms are commonly used in protein threadindfold- 
recognition attempts. Inclusion of higher order interaction is a possible means of improving the specificity of these 
potentials. Delaunay tessellation of the C"-atom representation of protein structure has been suggested as a means of 
defining multi-body interactions. 

A large number of parameters are required to define all four-body interactions of 20 amino acid types (204 = 
160,000). Assuming that residue order within a four-body contact is irrelevant reduces this to a manageable 8,855 
parameters, using a nonredundant dataset of 608 protein structures. 

Three  lines of evidence support the significance and utility of the four-body potential for sequence-structure matching. 
First, compared to the four-body model, all lower-order interaction models (three-body, two-body, one-body) are found 
statistically inadequate to explain the frequency distribution of residue contacts. 

Second, coherent patterns of interaction are seen in a graphic presentation of the four-body potential. Many patterns 
have plausible biophysical explanations and are consistent across sets of residues sharing certain properties (e.g., size, 
hydrophobicity, or charge). 

Third,  the utility of the multi-body potential is tested on a test set of 12 same-length pairs of proteins of known 
structure for  two protocols: Sequence-recognizes-structure, where a query sequence is threaded (without gap) through 
the native and a non-native structure;  and structure-recognizes-sequence, where a query structure is threaded by its 
native and  another non-native sequence. Using cross-validated training, protein sequences correctly recognized their 
native structure in  all 24 cases. Conversely, structures recognized the native sequence in 23 of 24 cases. Further, the 
score differences between correct and decoy structures increased significantly using the three- or four-body potential 
compared to potentials of lower order. 

Keywords: Delaunay tessellation; fold-recognition; high-order interactions; multi-body potential; protein folding; 
threading potential 

Increasing attention has been paid to developing empirical poten- 
tials for use in de novo  folding of a protein sequence and recog- 
nition of its correct fold in a library of folds. With a few exceptions, 
these efforts seek to measure the suitability of the three-dimensional 
(3D) environment of each residue or  to evaluate contributions of 
pairwise interactions between residues based on their fixed back- 
bone positions. Using such potentials, it  is possible to scan a large 
database of folds with an amino-acid sequence and generate rea- 
sonable predictions of the 3D structure for that sequence. The 
ability of these threading methods to accurately distinguish the 

Reprint requests to: Peter J. Munson, NIH, Bldg. 12A,  Room  2041, 
Bethesda, Maryland 20892-5626; e-mail: munson@helix.nih.gov. 

correct, folded structure from moderately distorted (misfolded) 
structures is limited (Sippl, 1995). A similar limitation affects the 
quality of alignments produced by threading methods that are per- 
haps no better in accuracy than about one turn of an alpha helix, 
or about three to four residues, on average (Bryant & Lawrence, 
1993). 

In an attempt to enhance these potential-based methods, we 
investigate the contributions not just from one-body (hydrophobic) 
and two-body (pairwise) terms, but from three- and four-body 
interactions, as well. One group (Godzik et al., 1992; Godzik & 
Skolnick, 1992) identified certain three-body interactions but did 
not find significant four-body interactions. However, this  group 
used an alternative definition of multi-body contact and did not 
apply explicit statistical hypothesis tests. 
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Using a geometric accounting based on the Delaunay tessella- 
tion for three- and four-body interactions, Singh  et  al. (1996) sug- 
gested that four-body interactions may indeed be important. Such 
multi-body contributions to protein potentials are reasonable from 
a geometric point of view, if we approximate each residue as a 
sphere centered on  its C“ location. It is possible for three or even 
four closely packed spheres to make mutual contact, thus giving 
rise to three- or four-way interactions. Three-way interactions are 
clearly evident as a result of the formation of disulfide bridges 
joining a pair of cysteines. A third cysteine is not allowed covalent 
attachment to the other two, and hence there appears to be repul- 
sive interaction among  such triples. Close packing of hydrophobic 
side chains, thought to differentiate the molten globule state from 
the native folded protein (Ptitsyn, 1995), are largely volumetric in 
character. Replacing a valine by an isoleucine (addition of a single 
methyl group)  in the protein core would not alter statistical pair- 
wise potentials greatly (most hydrophobic pairs display similarly 
favorable energies), yet this would have a measurable effect on the 
total volume and stability of the protein (Lim & Sauer, 1991; Lee, 
1993). Volumetric constraints implied by side-chain packing would 
thus be expected to produce multi-body interactions in the orga- 
nization of residue types within the protein interior. 

Here, we define a contact potential embodying higher-order terms 
(those involving sets of three or four residues), and test the sig- 
nificance of those terms. We decompose the potential into one- 
body, two-body, three-body, and four-body components and show 
that the multi-body components are indeed statistically significant. 
We provide a means to visualize the many terms of the potential, 
and show that the  sign and magnitude of the estimated multi-body 
terms are organized in a rational way. Finally, we demonstrate the 
improved ability of multi-body potentials to discriminate the cor- 
rect fold by using these higher order terms. 

A major difficulty in defining multi-body contact potentials is 
finding a good definition of the multi-body contacts themselves. In 
the case of pairwise contacts, most investigators have simply used 
a distance cutoff (such as  less than 10 A) to define a putative 
contact between two residues. While apparently adequate for such 
purposes, such a simple definition is sometimes confounded by the 
effect of “shielding,” where a third residue lies more or less be- 
tween two residues declared to be in contact. This problem is 
magnified if we wish to deal with sets of three or four residues. 
Using a simple definition of contact will produce far too many 
potential multi-body contacts. Consider five mutually close resi- 
dues. A combinatorial approach potentially would give five different 
four-way interactions, but, geometrically, at most two four-body 
contacts would actually occur. 

Recently, a well-known geometric solution to this problem was 
proposed for  use in studying protein packing: Delaunay tessella- 
tion (Singh et al., 1996). To explain this  idea, we first describe a 
related geometric construct, the Voronoi diagram. In such a dia- 
gram, an entire 3D  volume is divided into non-overlapping re- 
gions, each region defined as a set of points closest to  one particular 
particle (the C” for  example) of the protein representation. The 
boundary points of the regions are thus equally distant from two or 
more particles. Particles whose  regions  share a boundary are said 
to interact. If we connect each pair of interacting particles with a 
line segment, we will have the Delaunay tessellation. Just as no 
more than four same-sized spheres  can be in mutual contact in  3D 
space, no more than four Voronoi regions would generally be 
expected to meet at a point. (There  is a possibility that five or more 
regions could intersect, but the probability is vanishingly small for 

a randomly distributed set of particles, and we neglect it here.) The 
point of intersection of four  such regions is known as the Voronoi 
point, the unique point that is equidistant from the  four defining 
particles. Each Voronoi point then, corresponds to a particular set 
of four interacting particles, which can be alternatively represented 
by a tetrahedron with the particles at  its vertices. The complete set 
of tetrahedra divides up the interior space of the protein into non- 
overlapping volumes and  is known as Delaunay tessellation. This 
tessellation uniquely defines all the internal multi-body contacts in 
the protein. 

Computational geometry researchers have made available e f i -  
cient computer code  for calculating the Delaunay tessellation (Bar- 
ber et al., 1995; Liang et al., 1996; QHULL v. 2.3, Geometry 
Center, U. Minn, 1996). However, the raw tessellation is not a 
satisfactory geometric representation of the protein. For one thing, 
the tessellation produces a geometrically convex object, while pro- 
teins have various surface irregularities, binding pockets, or other 
concave features. Also, particles connected in the tessellation may 
be too distant to have a realistic chance of side chain-to-side chain 
interaction. For these reasons, we have found it essential to filter 
the tessellation to produce a more realistic representation of the 
internal interactions within the protein. We have filtered on two 
geometric criteria. First, we require that the tetrahedral edges not 
be too long. Second, we eliminate many of the “surface” tetrahedra 
that are extremely distorted in shape (very flat, extremely long, 
etc.). After trying several approaches, the most satisfactory cri- 
terion was to require that the circumsphere of the tetrahedron 
have a radius of limited size. The qualitative effects of applying 
this criterion are displayed for a single protein in Figure 1 .  The 
unfiltered tessellation produces the convex hull of the C” parti- 
cles, and disguises the real surface of the protein. Overly strin- 
gent filtering produces gaps and holes within the protein, or in 
the extreme allows only neighboring particles in the main chain 
to be connected. We anticipate that the effect of underfiltering is 
to mask the real multi-body interactions by spurious interactions 
between distant residues on the protein surface. Ultimately, the 
goal of this work is to demonstrate the validity of the high-order 
interaction model and to improve the performance of sequence- 
structure recognition methods. We claim that most of the impor- 
tant known effects (such as hydrophobic burial, salt-bridges, etc.) 
are included in our current formulation. Further refinements of 
the geometric and graphical representation are possible and should 
be investigated. However, the limitation of the database size 
does not permit an exhaustive empirical investigation of all con- 
ceivable factors. For  example, we do not include a buried/ 
exposed indicator at each particle, as this effect is largely implicit 
in the coordination number (more tetrahedra include a buried 
residue than an exposed one). Although theoretical arguments 
regarding the necessity of multi-body interactions in the forma- 
tion of protein structure are cogent, the statistical evidence for 
this approach and the ability of the potential to recognize correct 
native protein folds will be the ultimate test of the utility of  our 
method. 

Results 

Statistical comparison of potentials 
The adequacy of these multi-body potentials and their associated 
log-linear models may be assessed by how well they explain the 
distribution of amino-acid four-tuples. We have fit the complete 
dataset with a hierarchy of five  models of increasing complexity 
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Fig. 1. A: Convex  hull of ferredoxin (lfdx), using C" representation.  Note  presence  of  large surface triangles  with  long edges 
representing  infeasible  residue  interactions. B: Filtered  Delaunay  tessellation,  using  cutoffs  described  in  Materials  and  methods,  has 
more  uniform tetrahedral face sizes. C: Over-filtered  tessellation  showing  internal  voids in molecule,  caused  by  overly  stringent  edge 
length (7.5 A) and  circumsphere  radius (8.0 A) cutoffs. D: Main-chain  backbone  only. 

(Table  1).  Successively  higher  order  models  produce  better fits to 
the  data, as indicated  by  the  decreasing  NegLogLikelihood  scores. 
These  scores  are  exactly  analogous to the  residual  sum-of-squares 
in  ordinary  linear  models;  lower  values  indicate  improved  fit. We 
also  apportioned  the  improvement of fit to each  successive  order of 
the  model.  These  improvements  can  be  interpreted as "informa- 
tion'' or  "variation"  explained  by  that level of  the  hierarchy. 

From  Table 1, we see that  49%  (18,401/37,388)  of  the  improve- 
ment is explained by the  one-body  terms.  Such  terms  include  the 
propensity  of  particular residue  types  to  appear  in  four-body  con- 
tacts, and are essentially  a  measure  of  the  propensity of  residues to 
be  buried in the  protein  compared to the  overall  abundance  of  that 
residue.  Not  surprisingly,  these  terms  are  highly  significant,  achiev- 
ing  approximate  Z-scores  of  5,967 ( p  < 0.001).  Adding  the two- 
body terms  explains an additional 35%  (12,978/37,388)  of  the 

variation,  which is also  highly  statistically  significant ( p  < 0.001). 
This result  coincides  with  well-known  observations  that amino 
acid  residues  interact  in  a  pairwise  specific  manner,  notably  show- 
ing  a  hydrophobic-hydrophobic  pair  preference. This test  clearly 
shows  that this pairwise-specific  interaction is not  simply  a  con- 
sequence  of  hydrophobic  burial, as the  burial  propensity is ac- 
counted  for  fully  in  the  one-body  model.  Rather,  pairwise  interactions 
exist  independently  of  burial  status. 

Next,  we consider  the  addition  of  the  remaining  multi-body 
terms (three- and  four-body  interactions).  Together,  these  account 
for 16%  (6,009/37,388)  of  the  available information and  are  highly 
significant ( p  < 0.001).  As  a  proportion  of  the  multi-body  infor- 
mation (two-, three-,  and  four-body),  the three- and  four-body 
terms  comprise  32%.  The  importance  of  the  multi-body  terms is 
thus  clearly  established. 

Table 1. Comparisons of hierarchical  loglinear  models of tetrahedra jiequencies 

Multi-body 
NegLog ALCJg informationb 

Model  DF'  likelihood  likelihood (I) AG2 ADF 2= P-value 

Baseline 

One-body 
One vs. baseline 

' h o  vs. one 

Four vs. two 
nvo-body 

Fo~r-body 

1 37,388 

20 18,987 

210 6,009 

8,855 0 

18,401 

12,978 

6,009 

- 
36,803 
- - - 

19 5,967 <0.001 
- 

25.956 190 1,322 <0.001 

12,017 <0.001 32 8,645 26 

100 

TWO-body 
Three vs. two 

Three-body 
Four vs. three 

Four-body 

210 6,009 
2,062 

3,947 

11 4,123 

7,894 

1,330 

7,315 

54 <0.001 

4.8 <0.001 
1,540 3,947 

21 
8,855 0 

32 

'Degrees of freedom or number of  parameters  in  model. 
bInformation,  expressed as percentage of One-body  NegLogLikelihood. 
%tandard n o d  deviate, Z = (AG2 - ADF)/sqrt(2 * ADF). 
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Finally,  we  attempt to dissect  out  the  three-  and  four-body  terms 
separately  (Table 1, last  rows).  While  the  three-body  terms  are 
clearly  significant (Z  = 54, p < 0.001), the  four-body  terms  alone 
produce  a  Z-score much closer  to  the  nominal  significance  thresh- 
old (3.08 for p = 0.001, one-tailed  test).  Nevertheless,  the  four- 
body  terms  explain  more  (21%) of the  multi-body  information  than 
do the  three-body  terms. One the other  hand,  four-body terms incur 
a  larger  number of parameters (7,315), compared to the  three-body 
terms (1,330). Given  the  large  number of parameters  and  the  ap- 
proximate  nature of the  statistical  test used here,  one  might  wish  to 
attach  only  provisional  significance  to  the  four-body  terms  at this 
point.  However,  many  of  the  three-  and  even  four-body  terms  have 
plausible  molecular  explanations,  adding  weight to the  overall  ar- 
gument for significance, as we  now demonstrate. 

Visualization of  the potentials 

To  look in detail into a  complex  potential  function is problematic 
when there are so many (8,855) distinct  energy  terms.  Extending 
the  work of  Miyazawa  and Jernigan (1983), we represent the en- 

ergy  terms as graphical  array,  extended  to  a  four-way  array  to 
represent  the  four-body  potential. 

Four-body potential 

Figure  2  plots of  the full  four-body  potential as a  “conditional 
plot”  or coplot. The major  configuration of the  potential is clear: 
The  upper  leftmost  window-panes of the  plot  indicate  the  favor- 
able  values  associated  with the hydrophobic  residues.  Although 
each  hydrophobic  residue  pair  shows  a  generally  favorable  poten- 
tial  value  overall,  there is an  even  more  favorable  potential  value 
attained if three  or  all four residues in the  tetrahedron  are  hydro- 
phobic  (upper left portion of individual  panes  in  upper left of  plot). 
In the  lower  right,  there is a  single,  intensely  colored  pane,  reflect- 
ing  the  strongly  favorable  energy  associated  with C-C pairs, mostly 
of disulfide  bridged  cysteins.  Like-charged  pairs (K-K, R-R) show 
an  unfavorable potential  value,  with  more  favorable  values  shown 
for oppositely  charged  pairs,  especially  if  the  third  and  fourth 
residues  are  hydrophobic. 

The  pattern  within  each  pane is highly  variable  as  we  scan 
across  the full plot. These variations  portray  the  higher-order in- 

Four Body Potential 

V I L A M F H W Y P T G S Q N D E R K C  

1.4 

0.2 

0 

Fig. 2. Four-body  potential  color  conditional  plot.  The  co-plot  is  organized as a 20 by 20 array  of  “window  panes”  each  containing 
a 20 by 20 pixel  image.  The  panes are indexed  by  the  first two amino acid  residue in the  tetrahedron,  and  the  pixels  within  each  pane 
are. inde.xd by  the third and  fourth  residue,  in  the  same  order.  Potential  values are. colored magenta  represents  favorable  interactions, 
cyan  represents  unfavorable  interactions.  The C-C pane is solid  magenta  indicating  a  strong  propensity  for C-C pairs  to form. 
Hydrophobic  interactions are favorable,  in  upper  left  panes. 
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teractions  and  can be dissected  from  the full potential by subtrac- 
tion of lower-order  potentials. 

Zbo-body potential minus one-body potential 

We  may isolate just the pairwise  components of this potential by 
constraining  the  high  order  interaction  terms to be zero.  We  re- 
move  the  one-body  hydrophobic  burial  effect  by  subtracting the 
one-body  potential. The remainder  represents  the  contribution of 
purely  pairwise  interactions of  amino-acid residues,  not just the 
general  tendency for hydrophobic  burial. This portion  represents 
36% of  the total information  in  the full potential  and is shown  in 
Figure 3. The  dominant  effect is the  C-C  interaction  term  (lower 
right  pane),  resulting  largely  from  disulfide  bonded  cystine  pairs. 
The  purely  hydrophobic  residues (V, I, L, A) show  a  definite 
preference to form  contacts,  even  after  removing the burial  pro- 
pensity  of the individual  residues.  Oppositely-charged  residues  now 
show  a  strong  tendency  to  pair  up,  while  pairs  bearing  the  same 
charge  have an unfavorable  potential  value.  There is also a  ten- 
dency for the polar  residues to show  an  attraction, as reflected  in 
the  brightly  colored  central  panes of the plot.  From  the  last row of 
panes in Figure 3, we note  that, when  not  in a C-C  pair,  C  shows 
a  preference for other polar  residues,  and  an  antipathy for the 
hydrophobic  residues. 

Four-body potential minus two-body potential 
We  now turn to the higher-order  terms  in  our  potential.  By 

subtracting all terns up to pairwise, we  may  study  any  new fea- 
tures  arising  from just these  higher  order  interactions.  Together,  the 
three-  and  four-body  interactions  account for 17% of  the available 
information (32% of the  multi-body  information,  Table 1) and are 
clearly  statistically  significant  overall. 

The  potential  difference  (four-body minus two-body)  does  not 
show  any  obvious  patterns  when  visualized,  owing  to  statistical 
variability.  Some  four-body  combinations,  especially  those  involv- 
ing  the  rarer  residues,  show  greater  fluctuation in potential  value 
than  others. To remove this statistical  artifact, we calculate  the 
Freeman-Tukey  standardized  residual  described  in  Materials  and 
methods. This calculation  produces  a  number  which  has  nearly 
uniform  variance,  and  facilitates  finding  patterns in the multi-body 
component of the potential.  Selected  panes of the full co-plot are 
shown in Figures 4 and 5. Figure 4 demonstrates  the  existence of 
multi-body  interactions  involving  hydrophobic (VIL), small (AG) 
and  cystein (C) residues. It is clear that  a  strong  signal  appears  in 
the C-C  pane,  where  we  see  an  overall  propensity for C-C-polar- 
polar  tetrahedra  (lower  right  quarter of  C-C pane is  magenta). 
Conversely,  there is a  tendency for tetrahedra  involving  a  single  C 
to include  three  other  hydrophobics (e.g.,  C-L pane,  upper  right is 
magenta). There is also  a  notable  under-representation  (cyan  color) 

Two- minus One-Body POTENTIAL 

V I L A M F H W Y P T G S Q N D E R K C  

I 

0.8 

u.6 

0.4 

0.2 

- -1 

Fig. 3. Two-body  minus  one-body  potential  co-plot,  arranged as in  Fig. 2. The pure painvise component of the  potential  is  represented 
showing favorable pairwise  interactions  among  hydrophobics,  among polar residues  and  a very strong  pairwise  interaction  in C-C pairs. 
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v I L A G C 
Fig. 4. Normalized  residuals  based  on  two-body  potential.  Positive  values  (magenta)  represent  tetrahedra  which  are  significantly  more 
common  than  would be expected  from  two-body  interactions.  Negative  values  (cyan)  indicate  under-represented  tetrahedra.  Arrange- 
ment of pixels  within  each  pane is as in  Fig. 2. Only 36 of the 400 panes  are  shown,  emphasizing  the  interactions  among  hydrophobic 
(VIL), small (AG), and cystein (C) residues. 

of the  C-C-C-x  patterns,  compared  to  predictions  based  only  on  the 
two-body  potential. 

Several  very  interesting  patterns  can  also  be  found  in  the  hy- 
drophobic  panes of Figure 4. First, we  can  see  a  general  tendency 
to form  hydrophobic  quartets (e.g., upper left portion of the V-V 
pane is magenta). This is clearly an indication of the  formation of 
hydrophobic  clusters  beyond the prediction of the  pairwise  poten- 
tial.  Second,  there  are  some  remarkable  and  interesting  patterns 
even  within the associations of four hydrophobic  residues. We see 
a  stronger  propensity to form  hydrophobic  clusters  when  one of the 
four residues is the  small amino acid  A  or  G  (alanine  or  glycine). 
This is seen as the bright  magenta  upper-left  portion  of  Figure 4, 
panes A-V,  A-I,  A-L  G-V, G-I  and  G-L,  but  not in the A-A or G-G 
panes. 

Figure 5 demonstrates  the  presence of multi-body  interactions 
involving  the  charged  residues DERK and the  residues QN. Paired, 
oppositely  charged  residues  tend to avoid  other  polar or charged 
residues,  and  prefer  patterns  with  hydrophobic  residues  (e.g.,  in  the 
R-E pane,  the  upper left is magenta,  the  lower  right is predomi- 
nantly  cyan). 

Conversely,  clusters of three  hydrophobic  residues  tend  to  avoid 
charged  residues  (e.g.,  Fig. 4, pane V-L, upper  right comer is cyan). 
Thus, as previously  noted  by  Godzik  (Godzik et al., 1992), while 
charged  residues are generally  exposed  to  solvent  and  should  thereby 
avoid  hydrophobic  residues,  paired  charges of opposite  sign  show 
an increment in favorable  energy  toward  other  hydrophobics. 

Pure four-body components 

The  pure  four-body  interactions  were  inspected in co-plots  anal- 
ogous to Figures 4 and 5. However,  few  patterns  emerged.  One 
exception is the  pattern in the  C-C  pane,  where  a  stabilizing  term 
for the C-C-C-C  tetrahedron  and  destabilizing  terms for C-C-C- 
polar tetrahedra  could  be  found.  The  CCCC  term is based  on 93 
tetrahedra  occurring in 38 distinct  proteins,  which  suggests  that 
such  four-body  interactions  involving four cysteins  are  broadly 
based,  and  not  an  artifact  present in just a  few  proteins. 

Although  no  other  simple  patterns  were  evident  in  this  co-plot, 
we cannot  easily  discount  the  remaining  large  deviations.  For  ex- 
ample,  a  suggestive  pattern of  both strong  positive  and  negative 
components  appeared in tetrahedra  with the catalytically  active 
residues S-H (data  not  shown),  which  might be a  reflection of the 
tendency to organize  these  residues in specif~c patterns  around 
active  sites of the protein. 
In Table 2, we  have  ranked  all  pure  four-body  interactions 

according to statistical  significance.  One  four-body  component 
(CCCC)  stands  out  with  a  positive  residual  value of 5. Inspection 
of the top (positive residuals,  favorable  component)  and  bottom 
(negative  residuals,  unfavorable  component) of this list reveals 
other suggestive  patterns.  Several  entries are examples of the pat- 
terns  seen in Figures 4 and 5. For example, ADFK, ERW, and 
EIKV all  show  the  favorable  component  arising  from  packing  an 
oppositely  charged  pair  next  to  two  hydrophobic  residues.  For 
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Fig. 5. Normalized  residuals  based on two-body potential. Arranged as in Fig. 4, but for the  charged  and polar residues (QNDERK). 

these  three  tetrahedra,  there are 457 occurrences  where  only 358 
are  expected.  The  quartet EIMV is an example of the  propensity of 
an  unpaired charge (E) avoiding  a  hydrophobic  cluster (IMV). 
Only 34 such  tetrahedra  are  observed  where 56 would  be  expected 
based  on  pairwise  interactions.  Although the statistical  significance 
for many  of the  terms in this table is borderline,  these  residue 
combinations may still  reflect  important  packing  tendencies  whose 
importance may  emerge  with  detailed  analyses of their  molecular 
interactions. 

Sequence-structure  recognition 

To assess  the  true  utility of the four-body  potential as a  discrimi- 
nator of correctly  folded  structures, we  performed  two structure/ 
sequence  discrimination  tests.  These tests were  performed  in  a 
fully  cross-validated  manner, is., sequences  with  significant  ho- 
mology to the  test set proteins  were  removed  from  the  training  set. 
The test uses the  potential  function  to  first  recognize  the  correct 
structure  (sequence-recognizes-structure)  and  then  to  recognize 
the  correct  sequence for a  given  structure  (structure-recognizes- 
sequence). The first  problem is more  relevant for choosing the 
correct  threading  target  from  a  library of protein  folds. The second 
is useful for designing  sequences  which  have  unusual  stability in a 
particular  structure.  Twelve  pairs of same-length  proteins  were 
used,  with  no  sequence  or  structural  homology  evident  within 

The  four-body  potential  was  successful at recognizing  the  cor- 
rect  structure of the  two  presented  to it in all 24 cases  (Table 3). In 
recognizing  the  correct  sequence,  the  potential  failed  only  once. 

pairs. 

Do the  high-order  terms  contribute  significantly to the  success of 
the  multi-body  potential? To answer this, we  performed  the  struc- 
ture  recognition  test  using  the  two-body,  three-body,  and  four-body 
potentials  and  compared the score  difference of the  native  and 
decoy  structures. We observe  that  the  four-body  scores  generally 
decrease  with  sequence  length (Fig. 6), meaning  that the correct 
fold for larger  structures  should be more  easily  distinguished  than 
for smaller  structures. In fact, all the potentials  tested  (one-,  two-, 
three-,  and  four-body)  could  correctly  distinguish all pairs of struc- 
tures.  However, the higher-order  potentials  yielded  more  negative 
scores,  indicating  a  greater  discriminatory  power. By subtracting 
the score  differences  (four-body minus three-body,  three-body mi- 
nus  two-body)  we  measure  the  degree of  improvement. There is 
clearly  an  improvement due to the  inclusion of  three-body terms 
(Fig. 7) of about -3 units  averaged  over  proteins ( t  = 4.2, 23 dJ 
p < 0.001). A  smaller  improvement of an  additional -1.2 to - 1.9 
units is obtained  using  the  four-body  potential,  making  the  total 
improvement for the  multi-body  potential  about -4 to -6 units. 
While modest, this improvement still represents an additional 28% 
of the  improvement  obtained  using  the two-body potential  in  the 
same  circumstances. 

Discussion 

In summary, we  have  presented  three lines of evidence for the 
existence of  three-  and  four-body interactions  governing the pack- 
ing of residues  into  three-dimensional  protein  structures.  The sta- 
tistical  evidence  follows  from  the  formal  comparison  of  the adequacy 
of  higher-order log-linear  models to explain  the  observed  frequen- 

1.1.5 

I 
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Table 2. Most  important  pure  four-body  components charged pair  plus hydrophobic versus oppositely charged pair plus 
hydrophobic ought to be rationalizable in terms of electrostatics, 
but the origin of the attraction of charged pairs  for hydrophobics is 
still obscure. We have detected a clear hydrophobic clustering 

Standardized Observed Expected 
residual frequency frequency Obs./Exp. Identity 

8855 
8854 
8853 
8852 
885 1 
8850 
8849 
8848 
8846 
8847 
8845 
8844 
8843 
8842 
884 1 
8840 
8839 

15 
14 
13 
12 
I 1  
I O  
9 
8 
7 
6 
5 
4 
3 
2 
1 

5.04a 
3.62b 
3.28 
3.17 
3.01 
2.91 
2.83 
2.80 
2.79 
2.79 
2.72 
2.72 
2.70 
2.69 
2.69 
2.65 
2.63 

-2.97 
-2.97 
-2.99 
-3.00 
-3.03 
-3.08 
-3.14 
-3.24 
-3.28 
-3.30 
-3.30 
-3.43b 
-3.53b 
-3.5gb 
-3.67b 

Favorable interactions 
93 50.88 
33 15.58 
48 28.09 

145 109.5 
150 115.6 
30 16.3 
66 45.19 
59 39.61 

101 75.08 
111 83.73 
36 21.65 
44 27.96 
25 13.42 

20 1 164.9 
73  52 

163 131.1 
51  34.1 1 

Unfavorable interactions 
178 220.1 

5 14.41 
8 19.19 

22 38.75 
1 7.148 

44 67.15 
2 9.617 

34 55.89 
29 49.77 

5 15.67 
8 20.58 

10 24.28 
18 36.57 
18 36.82 
6 18.97 

1.828 
2.118 
1.709 
1.324 
1.297 
1.841 
1.46 
1.489 
1.345 
1.326 
1.662 
1.574 
1.862 
1.219 
1.404 
1.244 
1.495 

0.8088 
0.347 
0.4 169 
0.5677 
0.1399 
0.6553 
0.208 
0.6083 
0.5827 
0.319 
0.3886 
0.41  18 
0.4922 
0.4888 
0.3 163 

cccc 
MQRS 
GPWY 
ADFK 
ADEV 
AHSW 
AKKY 
DHLN 
DIKN 
ERVV 
ACDF 
EQSS 
DEMQ 
EIKV 
ADKM 
GLNS 
KLMN 

ADGV 
ACEH 
EEGG 
GMRV 
CPPR 
LLPR 
FPQQ 
EIMV 
EKQS 
HIQY 
CGNQ 
MSTY 
ANNP 
GLNW 
ETYY 

‘Indicates highly significant standardized residual. 
bIndicates  a residual with absolute value greater than expected in sample 

of 8855 normally distributed values. 

cies of four-body contacts in known protein structures. Visualiza- 
tion of these complex interactions leads to identification of specific 
interactions and groups of interactions for which plausible bio- 
physical explanations can be given. Finally, testing the potentials 
in a cross-validated setting shows that the high-order terms aug- 
ment the discriminatory power to a small but significant degree. 
This finding should be useful in protein-fold recognition. 

Among the significant multi-body interactions, many involve 
cystein pairs, triples, and quadruples. Almost certainly these sta- 
tistical interactions have a molecular basis in the formation of 
disulfide bridges. Since  such bridges do not form between triples, 
there  is  an apparent “repulsive” three-way interaction and a com- 
pensating “attractive” four-way interaction. The placement of cys- 
tein pairs within the protein is not uniform but appears to prefer 
polar rather than hydrophobic neighbors. We have found inter- 
actions involving charged and hydrophobic residues. That such 
residues interact strongly is easy to understand. That they interact 
statistically in a three-body and four-body manner is quite intrigu- 
ing.  The difference of the multi-body interaction between same- 

signal, beyond that accounted for by pairwise interactions. This 
feature is compatible with the observed hydrophobic character of 
the protein interior, but is clearly omitted from any potential which 
includes only pairwise terms. We also see evidence for a preferred 
alternation of hydrophobic side-chain size within the protein core, 
namely a multi-body potential preference for residue quadruples 
obeying the big-big-small rule, such as V-I-G-x or L-I-A-x. Al- 
though the evidence for this rule (Fig. 4) is preliminary, it could 
become important for engineering proteins which pack tightly into 
unique structures or for recognizing the correct packing arrange- 
ments in protein folding experiments. Finally, we have produced a 
list (Table 2) of over- and under-represented quartets of residue 
types. Molecular-based explanations for these propensities should 
be sought, as they may reveal some undisclosed aspects of the 
protein-folding code. 

Investigation of multi-body interactions requires careful atten- 
tion to the methodology. In our work, we have utilized a clear 
consistent geometric representation of the three-dimensional struc- 
ture of the protein. Our definition of contacts is largely insensitive 
to the choice of length cutoff, as the Delaunay tessellation is  es- 
sentially a nearest-neighbor approach. Use of the filtering has made 
the tessellation significantly more representative of important res- 
idue interactions, as sterically infeasible interactions are removed. 
Our definition of the four-body potential incorporates all lower- 
order interactions, and implicitly includes the very important hy- 
drophobic burial tendencies of certain residues. We have carefully 
partitioned the information attributable to each level of model 
complexity through use of a hierarchical statistical model. This 
partitioning facilitated the calculation of statistical significance 
and the visualization of the potential components. Lastly, we used 
a carefully cross-validated trainindtesting procedure to assure that 
the improvements is structure recognition for  the multi-body po- 
tential were not artifactual. 

There  are  more steps to be taken to refine and enhance this 
empirical potential, and further development of the underlying 
methodology is needed. Many of these topics are under active 
investigation in  our group. Our current protein representation is 
crude;  one particle per residue. Other atoms beyond the C“ could 
be included. Comparison of our filtered tessellation with the geo- 
metrically more elegant alpha complex approach (Liang  et al., 
1996) is needed to confirm the adequacy of our method. Other 
factors about the  3D environment of each residue could also be 
incorporated such  as  the local main-chain configuration, local 
hydrogen-bonding pattern, the secondary structure status, the side- 
chain orientation, and most importantly, the solvent-exposure sta- 
tus of each residue. Long-range (second-order contacts, third-order 
contacts, etc.) might also be investigated in the multi-body poten- 
tial. Judicious  choice  among  these factors is required due to the 
limited data set size but some combinations may pennit still better 
distinction between correctly and incorrectly folded structures. 

The statistical methodology also needs to be advanced in part 
to account for the  low frequencies in many of the categories. 
Suitable Bayesian priors may play an important role here. The 
underlying theory, which forms  the basis for estimating the po- 
tential, needs to be addressed. We are considering alternate es- 
timation strategies more suited to combining the various factors 
described above. 
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Table 3. Structure  and sequence recognition test for 12 pairs of same-length proteins 

Four-body  potential scores Two-body scores 

PDB id. Protein  name (class) Length Aa Bb  CC Dd 

lcbh 
1PPt 

1 fdx 
51x1 

2ci2 
2cro 

1 hip 
2b5c 

2cdv 
2ssi 

1 bp2 
2paz 

lP2P 
lm3 

2ilb 
llhl 

1 rei 
5pad 

1 rhd 
2CYP 

1 abe 
1 pmb 

2tmn 
2tsl 

Cellulase tail domain 
Avian  pancreatic polypeptide 

Ferredoxin (a + p class) 
Rubredoxin 

Chymotrypsin  inhibitor 
Cro repressor (a class) 

High-potential  iron  protein (p) 
Cytochrome b5 

Cytochrome c3(a class) 
Subtilisin inhibitor(a + p class) 

Phospholipase A2(a + p class) 
Pseudoazaurin (b class) 

Phospholipase A2(a + p class) 
Ribonuclease 

Leghaemoglobin (a class) 
Interleukin lb(a class) 

Bence-Jones protein ( p  class) 
Papain (multi-domain) 

Rhodanese (alp class) 
Cytochrome peroxidase (multi) 

Arabinose-binding protein(a/p) 
Myoglobin dimer(a class) 

Themolysin (multi-domain) 
Tyrosine-tRNA synthetase (alp) 

36 
36 

54 
54 

65 
65 

85 
85 

107 
107 

123 
123 

124 
124 

153 
153 

214' 
214 

293 
293 

306 
306 

317 
317 

-61 
0 

- 69 
-31 

- I9 
-9 

-6 
-4 

12 
- 34 

- 68 
- 63 

- 78 
- 54 

11 
- 46 

-21 
- 90 

- 46 
0 

- 86 
-10 

-31 
- 28 

2 
16 

-5  
30 

12 
13 

39 
42 

55 
16 

11 
48 

-21 
40 

67 
4 

50 
44 

85 
139 

55  
154 

59 
86 

- 63 
- 17 

-64 
-61 

-31 
- 22 

- 45 
- 46 

- 43 
-51  

- 80 
-111 

- 57 
- 95 

-56 
- 49 

-72 
- 134 

- I32 
-139 

- 141 
-164 

- 90 
-114 

- 77 
-2 

- 99 
- 26 

-32 
-21 

-48 
-43 

-4 
- 89 

-116 
- 74 

-118 
- 33 

7 
-113 

- 65 
- 140 

-185 
- 85 

- 240 
- 65 

-117 
- 87 

Ee 

-5 1 
-16 

- 64 
-56 

- 32 
- 23 

- 37 
- 42 

-41 
-47 

-70 
- 104 

-42 
- 87 

-53 
- 47 

- 83 
-130 

- 133 
- I36 

- 128 
- I68 

-75 
- 105 

~ 

'Potential  energy for protein sequence threaded  through  native structure. 
bPotential energy for sequence threaded  through  decoy structure. 
'Difference: D-E is negative if sequence recognizes structure. 
dDifference: D-decoy E,  native  compared  to  decoy  sequence  in  same structure, is  negative if structure recognizes  sequence. 
Wvo-body potential energy difference for sequence recognizes structure. 
'Protein actually has two identical chains of length  107. 

A fuller demonstration of the power of multi-body potentials 
also requires more computationally intense optimal alignment al- 
gorithms such as simulated annealing, branch-and-bound, or Gibbs 
sampler. It would  also require threading a larger test database of 
structures. Substantial headway has been made in these areas for 
painvise potentials, and many of those solutions should be directly 
applicable to the four-body case, as well. 

More immediately, we intend to explore  the details of the three- 
body interactions, in light of the classification of tetrahedra by 
edge-bonding pattern (Singh et al., 1996). We anticipate that much 
stronger multi-body interactions will be found as  the filtering cri- 
teria are further  optimized,  and  as  the interplay of interaction dis- 
tance and main-chain configuration are explored. Likewise, the 
reduction of the 20-letter amino acid alphabet to fewer letters will 
permit exploration of the  other  factors described above. A recent 
paper (Zheng et al., 1997)  and our  own preliminary work suggests 
this to be a promising idea. 

We conclude that the influence of the three- and four-body in- 
teractions on  fold recognition is clearly significant. Although this 
influence may currently  seem small, we anticipate that taken in 
combination with other structural features (secondary structural 

state, surface exposure, local vs. distant packing), multi-body rules 
will be found to be increasingly significant. The packing prefer- 
ences of side chains clearly involve  more than residue pairwise 
terms. In particular, volumetric constraints are essentially multi- 
body in character. Our approach provides a means to incorporate 
such higher-order interactions consistently into threading approaches. 

Multi-body potentials are also important for de novo protein 
folding (Godzik et al., 1993). Identification of the truly significant 
multi-body contacts might have a big influence upon attempts to 
fold proteins using hierarchical condensation (e.g., Srinivasan & 
Rose, 1995)  as the course of the dynamic simulation seems to be 
heavily determined by the early formation of clusters of mutually 
contacting residues. Understanding the interplay of multi-body, 
pairwise, and one-body potential energy terms may prove to be 
crucial to this important problem. 

Materials and methods 

There are many facets to this method for developing a useful and 
satisfactory potential function with multi-body terms. First, we 
need a particle representation of the protein structure, i.e.,  a finite 
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Fig. 6. Score difference (sequence threaded through native structure minus 
that through decoy structure) vs. sequence length for 24 pairs of protein 
structures using four-body potential (diamonds). Solid line is regression, 
showing increase of absolute difference with length of sequence. Dashed 
line is regression for two-body potential applied to same  24 pairs. Differ- 
ence between lines represents increased discriminatory power of four-body 
potential. 

list of labeled points in  space which define the protein. Second, we 
deal only with a contact potential, so that per se pairwise distances 
will not appear in the potential terms other than as a cutoff value. 
There  are several ways  in which distance is incorporated into 
high-order terms (namely as surrogates for area or volume), and 
we investigated some of them. Third, we need a consistent means 
of deciding which four-tuples of particles in fact most significantly 
interact within the structure. This is supplied by Delaunay tessel- 
lation and  its filtered version. Significant computational geometry 
difficulties must be surmounted here. Fourth, we need a means of 
estimating the potential function for each possible order of inter- 
action, from a database of proteins. Our approach here is to build 
a log-linear model (Bishop  et al., 1975) of the observed frequen- 
cies of each type of four-tuple (tetrahedron) of associated residues. 
The maximum likelihood estimates of the parameters of this model 
are related to the energy terms in the potential function. The log- 
linear model permits a hierarchical decomposition of the frequency 
variation into a constant term and first-order through fourth-order 
interaction terms. The first order terms of the log-linear model 
measure the propensity of particular amino acid residues to appear 
in four-tuples. Comparing  these propensities to the prevalence of 
residues in the overall database measures the tendency for certain 
residue types to be buried. 

After developing the new potential, we also justify  its complex- 
ity relative to the more commonly used pairwise potential. We do 
this formally in two ways. First, we compare the contribution of 
each level of the hierarchy in the log-linear model, either in terms 
of the information it provides, or equivalently, in  terms of the 
likelihood of observing  the data, given that level of description 
(singles, doubles, triples, etc.). For this comparison, an approxi- 
mate statistical test is applied. Second, we evaluate sensitivity of 
the potential for differentiating the fit of a native sequence to its 
native structure from its fit to an alternate structure (or conversely, 
to distinguish the fit of native-sequence to native structure from 

One6ody ~ r v o ~ o d y  rnrcn~od/ Four Body 

Fig. 7. Contribution to score difference between sequences threaded onto 
native and decoy structures, from  each  step of model complexity. Box plots 
show median (central line), middle SO% (box), and range (extent of vertical 
line) of values for  24 proteins given in Table 2. The discrimination is 
improved at  each step, as  the median values are all less than zero. Each 
contribution is statistically significant (r-test results: one-body, p < 0.001; 
two-body, p < 0.001; three-body, p < 0.001; four-body, p < 0.03 using the 
signed rank test). Mean ? standard errors are: one-body, -59 2 9; two- 
body, - 15 2 4, three-body, -3  ? 0.7, four-body, - 1.2 ? 0.99. One value 
in the four-body contribution is clearly an outlier (arising from threading 2 
half-length chains, IREI, onto full-length decoy structure, SPAD). Ignoring 
this value. the mean becomes -1.9 2 0.75. 

that of another sequence to the same structure). Again, we test 
whether the high-order terms  are warranted. In both tests, we are 
acutely aware of the problem of memorization of the database 
faced by machine-leaming tools. In the statistical literature, this is 
known as  the problem of over-parameterization. We deal with this 
problem by accounting for  the number of parameters estimated (in 
the  case of the log-linear model hierarchy) or by using a training- 
set/test-set approach (for the sequence-structure recognition) where 
the training set has been purged of proteins bearing significant 
homology to test-set proteins. 

Structure representation 

Following a now standard practice, we use a single particle to 
represent each  amino acid residue of the polypeptide chain, with 
the pseudo-atom placed at the C" position. Alternatively, we could 
have placed the particles at the Cp positions, or used a combination 
of such particles. These possibilities will be investigated in the 
future. Each particle is labeled by the residue type it represents, 
using the standard 20 letter  code. No distinction is  made between 
cross-linked cystines and  the  free  cysteine residue. The influence 
of metal ions, heme groups, etc. is  also omitted from this analysis. 

Contact  potential 

A contact potential measures the overall energy of a system, where 
the system is described by the presence or absence of contacts of 
specific types. Because we are considering four-way contacts, our 
potential energy for a specific protein of size M can be calculated 
as 
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where r i j k l  is an indicator of a four-way contact between residues 
i ,  j ,  k, and I ,  si is the amino acid type of the i" residue, and 
E(s,t,u,u) is the energy associated with the tetrahedron having 
amino acid types s, t, u, and u at  its vertices. The  sums may be 
reordered and terms collected to give 

20 20 20 zn 

where nik. is the  number  of four-body contacts observed among 
four residues ordered  along the backbone of the protein, of types 
i, j ,  k, and 1, respectively, where i, j ,  k,  and 1 are now one of the 
twenty naturally occurring  amino acids. Assuming symmetry in the 
energy over  all permutations of the four subscripts = Eijle = 
. . . = Elkji), we may write the full potential as a sum of not 160,000, 
but only 8,855 terms: 

zn 20 20 20 

where &,k/ = n&i jk r ) .  the sum  over all distinguishable permuta- 
tions o of the  four indices. 

Of course, high order contacts imply contacts of all lower or- 
ders, so by definition, a four-body contact potential implies at least 
the complexity of pairwise and three-body contact potentials. The 
division of variation at different levels is accomplished by the use 
of the hierarchical log-linear model described below. 

The contact potential is a relative energy, where the baseline is 
chosen to be a random protein with average composition corre- 
sponding to a database. However, the statistical expectation of the 
potential is not necessarily zero, although the expectation can be 
adjusted by simply adding a constant. 

Which four-tuples? 

Filtering the Delaunay tessellation 
Our formulation for a four-body contact potential requires a 

definition of r v k [  for each protein. As discussed above, simply 
requiring short pairwise distances  among a set of four particles is 
not sufficient to avoid the possibility of overlapping sets of four 
residues, i.e., the tetrahedron connecting one set of four particles 
might overlap the tetrahedron connecting another set of four. To 
avoid this geometric difficulty, illustrated in two-dimensions in 
Figure 8, we resort to the Delaunay tessellation to define a com- 
plete set  of  such  contacts r i j k l  for  each protein. This tessellation 
includes only the  closest sets of four particles in  the  sense that if 
a set of particles ijkZ is included, then the circumsphere defined by 
those four is guaranteed to be devoid of any other particles (i.e., no 
other particle is mutually closer to the  other three than the fourth 
particle in the set). This is tantamount to assuming that only the 
nearest four-tuples actually contribute to  the contact interaction, 
which is  quite reasonable. 

Formally, the Delaunay tessellation is the mathematical dual of 
the Voronoi diagram. The Voronoi diagram is a partitioning of 
three-dimensional space  into  regions or neighborhoods of the orig- 
inal particles (e.g.. the C" carbons). Each region represents that 
portion of space that is closest to one particular particle. The Voronoi 
regions  form polyhedral cells analogous to those in a beehive, but 
of irregular size  and  shape. Two Voronoi regions that share a 
boundary are connected in the Delaunay tessellation. Sets of four 

1 c1 
il 

5 
Fig. 8. Delaunay tessellation of five points in 2D space divides space  into 
non-overlapping triangles. The triangles 2-3-5 and 3-4-5 are  chosen rather 
than 2-3-4 and 2-4-5 since the line segment 3-5 is shorter than 2-4. Ac- 
cordingly, the interaction between particles 3 and 5 is said to "screen out" 
the potential interaction between 2 and 4. An analogous situation pertains 
to 3D space, which is divided into non-overlapping tetrahedra by the De- 
launay tessellation. 

particles that are mutually connected (all six pairwise connections) 
represent four-body contacts, and correspond to rijkl = 1. Thinking 
of the pairwise connections as straight line-segments between the 
C" carbon locations, the four-body contacts are the tetrahedra with 
these line  segments as edges. Interestingly, the probability of hav- 
ing any contacts  of order higher than four is zero. To picture why, 
consider close-packed same-sized spheres. It is easy to picture two, 
three, or four spheres in mutual contact. But it  is impossible to 
place a fifth sphere in mutual contact with a set of four mutually 
contacting spheres. Thus, four-body contacts exhaust the possible 
complexity of this representation. 

It is immediately apparent from  Figure 1 that not all high-order 
contacts implied by the Delaunay tessellation are suitable for in- 
clusion in  our study. Many connections  in  the tessellation are far 
too  long  for residue-residue interaction to be plausible. Thus, we 
filter the raw Delaunay tessellation. The first criterion is  to remove 
any edges of length greater than 9.5 A. The value was chosen as a 
compromise, after observing the effect of the cutoff on the number 
of available tetrahedra and the appearance of typical proteins under 
different cutoffs. Table 4 shows  this effect for cutoffs from 4-12 8. 
Excessively short cutoffs create too many apparent voids inside 
protein cores, while long cutoffs allow too many tetrahedra of 
extensive shape  on  the surface of the protein (Fig. 1C vs. Fig. 1A). 

The second filtering criterion arises naturally from the proper- 
ties of the Delaunay tessellation applied to proteins. One charac- 
teristic of the tetrahedra in the tessellation is the circumsphere 
radius. This  is  the  distance from the Voronoi point to each of the 
four vertices. A small radius implies that the four residues are 
intimately associated while larger radii suggest that the association 
between the four  is tenuous. Figure 9 shows a distribution of radii 
for our dataset, and indicates that the majority (77%) of circum- 
spheres  have radii less than 9.0 A. Inspection of tetrahedra with 
excessively large radii shows them to be primarily on the surface 
of the protein. Thus, to avoid these spurious interactions, tetra- 
hedra with circumsphere radii larger than 9.0 a were filtered out. 
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Table 4. Proportion of 689,549 tetrahedra  excluded 
bv the  maximum painvise distance cutoff or 
by the  circumsphere  radius  cutoff 

Maximum 
painvise Proportion Circumsphere Proportion 
distance excluded radius excluded 
(A) (%) (A)  (S) 

4 
5 
6 
7 
8 
9 
9.5 

10 
1 1  
12 
Inf. 

100 
100 
91 
76 
64 
50 
44 
38 
29 
23 
0 

4 
5 
6 
7 
8 
9 
9.5 

I O  
1 1  
12 
Inf. 

72 
49 
34 
28 
25 
23 
22 
21 
19 
18 
0 

An alternative to the filtered Delaunay tessellation is provided 
by the alpha complex of Edelsbrunner  (Liang  et a!., 1996). This 
construction begins by placing spheres of radius alpha centered at 
each particle. The spheres  are inflated (starting at alpha = 0) until 
the first contact between spheres is obtained. The contacting sphere 
centers  are joined by a line segment  into a I-simplex and added to 
the growing list or simplicial  complex. The process is continued 
and eventually three particles are  joined into a triangle. If the 
circumcircle  of  this triangle is less than alpha,  this 2-simplex is 
added to the alpha complex. Tetrahedra with circumsphere radius 
less than alpha  are added as 3-simplices. Thus,  at any stage, we 
have a list of points, I-simplices, 2-simplices, and 3-simplices 
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Fig. 9. A: Distribution of radii of circumspheres for all tetrahedra  in De- 
launay tessellation of three representative proteins. B: Distribution of  dis- 
tances between pairs of vertices in  tetrahedra  from A. Peak  at 3.8 A reflects 
vertices linked by  the  protein backbone. 
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satisfying a uniform criterion for  closeness, alpha. The list of 
1-simplices with alpha equal to infinity is equivalent to the De- 
launay tessellation. In the current work, we are using the equiva- 
lent of the 3-simplices of the alpha-complex for a specified alpha. 

Reduction of filtered tessellation  to  tetrahedra 
As described above, we filter the tessellation in two stages; first 

on the basis of pairwise distances. Then, potential order-four con- 
tacts (tetrahedra) are checked for small circumsphere radius. The 
first cutoff is 9.5 A for pairwise distance, and the second is 9.0 8, 
for  circumsphere radius. Thus,  the  entire complexity of the 3D 
organization of all proteins in the dataset is reduced to a list of 
tetrahedra and the identities of each vertex. 

The use of just the tetrahedral interactions is supported by a 
number of factors: First, virtually all relevant pairwise and three- 
way interactions appear as components of the filtered tetrahedra. 
Thus, our representation is a true generalization of commonly used 
pairwise potentials. Second, with reference to the theory of  Mar- 
kov Random Fields, which describe the process of randomly plac- 
ing amino acid residues of various sizes at fixed backbone positions 
under potential energy constraints, it has been noted (Kindermann 
& Snell, 1980; Chellappa & Jain. 1993) that the limiting distribu- 
tion of such a process may be adequately described by the distri- 
bution of residues at all cliques in the connection graph. In our case 
the cliques, or maximal connected subgraphs, are the selected tet- 
rahedra. Thus, knowing the statistical distribution for the tetra- 
hedra, we know the distribution for the entire system. Third, the 
extensive  data reduction allowed by this tessellation argues for  the 
need to investigate its utility as a means of recognizing correct 
versus incorrect sequence-structure matches. Finally, an additional 
reduction is achieved by assuming complete symmetry under per- 
mutation of  the vertices of each tetrahedron. At this stage, it is not 
possible to test the adequacy of this assumption owing to the 
limited data  set size. However, we argue that the symmetry is at 
least reasonable, a priori. At worst, we might be ignoring some 
chiral properties of 4 interacting residues. The beneficial effect of 
assuming symmetry is to reduce the 204 = 160,OOO categories of 
tetrahedra to a manageable 8,855, an approximate 24-fold reduc- 
tion. With the current dataset,  this implies an average category size 
of 44. 

Coordination number 
Coordination number  (number of contacts or neighbors in a 

graph for a particular vertex) is known to be an important factor in 
determining the environment of residue side chains. High coordi- 
nation number implies that the residue position is buried within the 
protein core, while low coordination number implies that a surface 
position is likely. In our scheme, coordination number is general- 
ized to mean the  number of tetrahedra in which a particular particle 
is included (rather than the number of simple connections to that 
particle). However, the effect of coordination number is largely 
unchanged: It remains a measure of the surface exposure of each 
residue environment. 

Neither coordination number nor burial/exposed character is 
explicitly included in our tessellation description of protein orga- 
nization. However, the effect of this  factor is nonetheless felt by 
the resulting statistical descriptions of four-body residue inter- 
actions. Buried residues (high coordination number) contribute to 
the data set more often than do surface residues; thus, residues that 
prefer burial will have a higher propensity to appear in tetrahedra 
than  surface-preferring,  given  their  overall  prevalence in the 
database. 
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Potential estimation and log-linear hierarchical model 

Assuming that the  presence of a particular combination of four 
residues occurs in the database in relationship to its potential energy, 
we can  compute the appropriate energy terms  from  the frequencies. 

The contribution to the potential energy of a single tetrahedron 
with vertex residue  types i 5 j 5 k 5 1 is estimated to  be 

where n i j k l  is the observed frequency of such tetrahedra summed 
over all K distinguishable permutations of the subscripts, pi  is the 
proportion of residue type i in the database, and  N  is the total 
number of tetrahedra in the database. The number of distinguish- 
able permutations depends  on the particular residue types,  in par- 
ticular on the  equivalence relations which exist  in a particular case, 
such as i = j = k. In general there  are  K = k!/(ql !q2! . . . q d  !) 
distinguishable permutations of k objects, where we have d equiv- 
alence classes of sizes ql , . . . , q d  and q1 + q2 + . . . + qd = k. In our 
situation, k = 4, so K(i, i ,  i ,  i )  = 1,  K(i, i ,  i . j )  = 4, K(i ,   iJ , j )  = 6, 
K(i, i ,  j ,   k )  = 12, K( i ,   j .  k, 1 )  = 24, for distinct vertices i < j < k < 1. 
The numerator effectively averages the frequencies over permuta- 
tions,  ensuring satisfaction of the assumption that the potential 
function be fully symmetric. The denominator removes the average 
residue composition effect  from the potential. 

The four-body potential energy may also be estimated with the 
symmetrized observed frequencies nijkl/K replaced by the pre- 
dicted frequency mijkl, where the prediction is based on a reduced 
model, one which postulates only low-order interactions. This tech- 
nique allows  us to keep the form of the potential (a quadruple sum 
over all tetrahedra in  the tessellation) fixed, while we investigate 
the properties of the various interactions. Such predicted tetra- 
hedral frequencies are elegantly provided by the log-linear model. 

Log-linear model for four-way table 
The potential energy function estimated above includes contri- 

butions from all interaction orders (pairwise to four-body); every 
tetrahedron  includes  six  two-body  and four three-body  inter- 
actions,  as well as four one-body terms. To separate these lower 
order interactions, we build a hierarchical log-linear model. Fol- 
lowing Bishop  et  al. (1975), we construct a four-way table  (20 X 
20 X 20 X 20) of the symmetrized, observed frequencies n i j k [ /  

K(i,j ,   k,l).  Using the iterative proportional fitting algorithm, we 
find maximum likelihood estimates  for all the u terms in the model, 
hm$ = u + u, + u, + u k  + u/ one-body  effects 

+ uij + Uik + uil + ujk  + uI1 + Uk, two-body  interaction 

+ uijk + Udjl + Uikl + ujkl  three-body  interaction 

+ Uijkl four-body  interaction 

for  the predicted frequencies m i j k l ,  subject to the symmetry con- 
straint ( m i j k l  = mg(ijk1) for all permutations a). Hierarchical sub- 
models  are  also estimated: 

In &{ = u + uj f uj + u k  + + uij + Uik  + + ujk 

ujl + u k l  + U i j k  + Ujjf + ujkr + U j k l ,  

hm,${ = u + u i  + uj + uk + u/ + uij + u j k  + ujl + ujk 

+ Ujl + u k l y  

ln m,$i = u + ui + uj + u k  + uI, 

lnm${ = u. 

Comparison of observed frequencies to those based on hierar- 
chical submodels  allows  for testing the significance of the omitted 
high-order terms. Terms of the log-linear model appear simply as 
components of the potential function: 

So, for a particular protein, the relevant potential value or score is 
a weighted sum of the relevant components: 

20 20 20 20 

E = nln(N) + 4n x ln(pi) - nu - 4 x niui - 6 x x nVuD 
~~ 

i =  I i =  1 ,= 1 j =  j 

The u terms within the log-linear model represent components 
of the energy due  to particular interactions of sets of particles; we 
should be able to interpret them in light of physical interactions. It 
is, however, more convenient to isolate terms of particular orders 
(pairwise, three-way, four-way) by subtracting the lower-order from 
the higher order potential values. We shall visualize these potential 
differences as a means of interpreting the underlying physical sig- 
nificance of the components. 

Our potential function values and differences are presented in a 
four-way color-coded conditional plot or co-plot (Tukey & Tukey, 
1983; Cleveland et al., 1992; Cleveland, 1993). Similar plots have 
also been termed trellis plots. Appropriate ordering of the 20 amino 
acid types enhances the appearance of patterns in the data. After 
investigating numerous orderings, we have chosen the following: 
VILAMFHWYPTGSQNDERKC. Here, the  pure hydrophobic res- 
idues (VILAMF) are clustered, as are the positively (RK) and 
negatively (DE) charged ones. Cysteine (C) is located last so that 
its special properties can be gleaned easily. In the co-plot, a 20 by 
20 array of window panes is presented, each pane labeled by the 
letters of the first two amino acid residues in the tetrahedron. 
Within each pane is a 20-pixel by 20-pixel image; each pixel 
representing the potential value for a particular combination of 
four residues. In this way, five dimensions of data can be repre- 
sented in a two-dimensional plot, and all 160,000 terms of the 
potential may be represented. The imposed symmetry of the po- 
tential can easily be detected. 

Owing to the small number of counts in some cells in the four- 
way table, we expect to see considerable statistical noise in the 
corresponding high-order terms of the potential. This is especially 
noticeable for the rarer residues (M, F, H, W). To aid in discerning 
the truly significant high order terms, we present the normalized 
residuals, or difference between observed and expected frequen- 
cies, adjusted for the expected variance of this difference. We use 
the Freeman-Tukey residual (Bishop  et  al., 1975, p. 136). z = 
dZ + - m, where x is  the observed frequency and 
m is the log-linear model predicted frequency. These residuals 
theoretically should have approximately a normal distribution with 
zero mean and variance equal to the number of residual degrees of 
freedom.  They have slightly better properties for the low frequency 
case than do the more familiar components of chi-square residuals 
( z  = (x - m)/m'"). When x = 0, we convert the Poisson proba- 
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bility for  zero counts, given mean m, into  the equivalent standard 
normal deviate. This method effectively highlights the most sig- 
nificant terms  in  the estimated potential differences. 

Comparison of hierarchy 

Four relevant log-linear models (first-, second-, third-, and  fourth- 
order) may be compared by inspecting the  degree to which the 
predicted frequencies (mijkl) agree with the observed frequencies. 
We apply the G2 statistic for this purpose (Bishop et al., 1975), a 
form of the more familiar chi-square goodness-of-fit statistic, ap- 
plicable to log-linear models. The G 2  statistic compares the  dif- 
ference between log-likelihood scores for model pairs, accounting 
for the complexity of each model (in terms of the number of 
parameters u required). Normal approximations to the chi-square 
statistic are satisfactory in this  case  since  the chi-square degrees- 
of-freedom is high. Some caution must be used in interpreting the 
results of these tests as  the occurrences of tetrahedra in the data- 
base are not statistically independent events as required by the G 2  
test. Rather, there is a complex correlation within the observed 
frequencies since each  residue contributes to several tetrahedra. 

An intuitive appreciation of the relative merit of these models 
may be obtained by noting the equivalence of the log-likelihood 
values and theoretical information. The proportion of the total 
log-likelihood explained by each successive stage  in  the hierarchy 
is a good measure of the importance of that new step of complexity. 

Sequence-structure recognition tests 

A more incisive test of the performance of these potentials requires 
them to distinguish pairs of protein sequences threaded onto the 
same structure. The native sequence should produce a significantly 
lower energy value (score) than a sequence from another protein of 
equal length if the potential is performing well. This is the structure- 
recognizes-sequence test. 'helve pairs of same-length proteins 
from Holm and Sander  (1992) were evaluated. All sequences in 
the calibration data  set  showing detectable homology (BLAST 
p-value < 0.1) to any of these 24 proteins were removed. Con- 
versely, a useful potential will also correctly choose the correct 
structure for new sequences. Thus, a sequence-recognizes-structure 
test was also made, wherein the same sequence was threaded through 
two structures having the same length. The native structure for the 
sequence should again have significantly lower score. Adequacy of 
the potentials may be judged by how many pairs are correctly 
distinguished in either test, and the degree to which the native 
energy differs from the incorrect energy. 

Dataset 

The calibration dataset consisted of 608 proteins of known struc- 
ture, having less than 35%  pairwise sequence identity (Hobohm 
et al., 1992; Hobohm & Sander, 1994). These structures all had a 
resolution less than 3.0 A, and an R-factor of less than 28%, and 
are listed in Table 5. An updated list can be obtained via anony- 
mous ftp  to site ftp.emb1-heidelberg.de/pub/databases/protein- 
extras/pdb-select. The test data set consisting of 12 pairs is listed 
in Table 3. The following proteins were  found to be significant 
homologues to  one of these 24 and  were removed from the 608 
proteins to provide a new calibration dataset of 581 proteins to be 
used with the test set: Icis,  lcse,  lezm,  lfca,  Igdm,  lhip,  Ihuc, 
lilr,  lplc,  lpmy,  lpoa,  Ippa,  lppn,  lppt,  Irhd, 2cbh, k d v ,  2cr0, 
2cy3, 2tld, 2ts1, 3b5c,  6fab, 7ccp, 8ilb, 81x1, 8tln. 

Table 5. List of 608 PDB identljiers 

125d, laaf, laaj, laak, lab2,  labk,  labrb,  ladd,  lads,  laep,  lafp,  lagx, 
lalka,  lamg,  lamp,  laora,  laoza,  laplc,  lapme,  larb,  lars,  lash,  lasza, 
latna,  laty,  lbaa,  lbabb,  lbam,  Ibara,  lbbl,  lbbpa,  lbbtl,  lbbt2,  lbcfa, 
Ibet,  lbgeb,  lbgu,  lbip,  Ibmda,  lbpb,  lbsaa,  lbvpl,  lbw4,  lc5a,  lcaua, 
Icaub,  lcbn,  lcbp,  lccf,  lccr,  lcdta,  lcela,  lcewi,  lcfb,  Icgt,  Ichl,  lchma, 
lchra,  Icid,  lcksa,  lclc,  lcmca,  lcola,  lcpca,  Icpcb,  lcpt,  Icrl,  Icsei, 
lcska,  lcsp,  lctaa,  lctl,  lctm,  lctn,  lctt,  lcus,  lddt,  ldec,  Idfna,  ldhr, 
ldlc,  ldmc, Idsba, Idts,  Idyna,  leca,  lede,  left,  leng,  lenh,  lepab,  lepta, 
lerd,  lerh,  leria,  lerl,  lerp,  letbl,  lfbaa,  lfca,  Ifcda,  lfcdc,  lfct,  Itha, 
Ifiab,  lfkf,  lfnc,  lfod4,  lfrpa,  Ifrub,  Ifxra,  lgal,  lgara,  lgata,  lgbs,  Igca, 
lgdha,  lgdm,  lghsa,  lgky,  Iglcg,  lglt,  lgmfa,  lgof,  Igox,  lgpla,  Igpb, 
lgphl,  lgpr,  lgps, l g j ,  lgsq,  lgtra,  lhar,  Ihbq,  Ihce,  Ihcgb,  lhcna,  lhcnb, 
lhcra,  lhdca,  lhdgo,  lhex,  Ihfc,  lhfi,  lhft,  lhgja,  Ihjra,  Ihks,  Ihlb,  Ihlea, 
lhleb,  lhmcb,  Ihmpa,  lhmy,  lhnf, Ihns, lhoe,  lhph,  lhrf,  lhrnb, Ihrti, 
lhsla,  lhtmd,  lhtp,  lhtrp,  lhucb,  lhuma,  lhuw,  lhvd,  liae,  liag,  lica,  lifa, 
lifc,  ligp,  lilk,  lilrl,  lirk,  lisca,  lisua,  livd,  Ikab,  Ikana,  Iknb,  lknt, 
lktx, 1192, Ilba,  llena,  Ilgaa,  Ilis, Ilk, lllda,  llobd,  Ilpbb,  llpe,  lltsa, 
lltsc,  lltsd,  llyp,  lmat,  lmdc,  Imina,  Iminb,  Immob,  lmmog,  Imrb,  lmrj, 
lmsc,  Imsec,  Imup,  Imylb,  lmypc,  lnar,  lnbaa,  lnfp,  Inhkl,  Inipa,  lnnt, 
lnrd,  lolba,  loma,  lomp,  loxy,  loyb,  lpaa,  Ipbe,  lpbp,  lpcl,  lpcrh, 
lpcrm,  lpdc,  lpdga,  Ipeta,  lpfia,  lpga,  lpho,  lphp,  lphy,  Ipii,  lpkn,  lplq, 
lpls, Ipmy, lpnt,  lpoa,  Ipoc,  lpoxa,  lppbl,  lppi,  Ippn,  lppt,  lprcc,  Iprs, 
lprta,  Iprtc,  lprtd,  lprtf,  Ipsm,  lpspa,  Ipte,  lptx,  Ipxtb,  Ipyab,  Ipyda, 
Ipyp,  Iqora,  Irblm,  lrcb,  lrec,  lret,  lrgd,  lriba,  lropa,  lrpa, Irsy, Irtml, 
Irtpl,  lrvaa, lsO1, lsaca,  Iscma,  lscmc,  Iscua,  Iscub,  lscy,  Islta,  Ispf, 
Isrga,  lsrya,  lsto,  ltabi,  ltadc,  ltap,  ltca,  Itfi,  Itgsi,  Ithta, Ithv, Itib,  ltie, 
1 tlca, ltlk, 1 tml, 1 tnra, 1 tnrr, 1 tph 1, 1 tpla, 1 tpn, 1 tpt, 1 trb, 1 trka, 1 trt, 1 trzb, 
Itssa,  ltvt,  lula,  lurk,  Ivaaa,  Ivil,  Iwas,  lwfba,  Iwhta,  Iwhtb, Iwsya. 
Iwsyb,  Ixnb,  Ixsoa,  lxys,  lyptb,  lytba,  lzaac, Zacg, 2achb, 2ak3b, 2alp, 
2atcb. 2ayh, 2azaa, 2bbkh, 2bbvc, 2bds. 2bopa, 2bpal,2bpa2,2bpa3,2btfp, 
2cas, 2cba, 2cbh, 2cdv, 2chsa, 2cnd, 2cp4, 2cp1, 2crd, 2cr0, 2ctc, 2dkb. 
2dnja, 2dri, 2drpa, 2ebn, 2ech, 2end, 2er7e. 2fcr, 2gsta, 2hbg. 2bhma, 
2hipa, 2hmza. 2hnq. 2hnte, 2hpda, 2hsp, 2ih1, 2ila, 2kaib. 2kaub, 2kauc, 
2lgsa. 21iv, 2madl, 2mevl. 2mge. 2mhu. 2mnr. 2mtac, 2ohxa, 2pac, 2pcda. 
2pde, 2pf1, 2pPnd, 2pgd, 2pia, 2pmga, 2por, 2reb, 2m2, 2rslb, 2rspb, 2sas. 
2scpa, 2sh1, 2si1, 2sn3, 2snv, 2stv, 2tbva, 2tgi, 2tmda. 2tmvp, ttpra,  2tsl. 
2ztaa. 3aaha, 3aahb. 3cd4, 3chy, 3cla,  COX, 3dfr, 3ebx, 3egf. 3gapb, 3gly. 
3hhrc, 3hsc, 3i18, 3mdda, 3mona, 3sdha, 3sgbi, 4blma, 4cpai, 4en1, 4fxn. 
4gcr, 4rhv1, 4rhv3, 4rhv4, 4sbva, 4sgbi, 4tgf, 4xiaa. 4znf. 5p21, Sruba, 
Sznf, 6fab1, 6taa. 7apib. 7ccp, 7pti, 7rsa, Sabp, Sacn, Satca, 8cata, Sfabb, 
Srxna, Sthe,  9mt, 9wgaa. laba, 1 ack, 1 acp, ladr,  lamy,  lang,  lapa,  laps, 
lavda,  layaa,  Ibbre,  lbct,  Ibgh,  Ibhb,  lbmta,  lbn21,  Ibnh,  Ibova,  Ibrsd, 
lbyb,  lc53,  lcbs,  lcd8,  lchc,  Icis,  lclh,  Icroa,  Icxa,  Idlha,  ldlhb,  Idpi, 
ldrf,  leaf,  lego, led,  lexg,  lezm,  lfas,  Iflp,  lfna,  lfrd,  Igmpa,  Igsra, 
lhdp,  Ihip,  lhma,  Ihmx,  lhrha,  lhsta,  linp,  litha,  Ilac,  Ileb,  llfb,  Ilid, 
llmb3,  Ilpba,  llpt,  lmdka,  lmdyb,  Immod,  lmpp,  lmypa,  lncia,  Inrca, 
lnsca,  lntr,  lonc,  Ipba,  lpcrl,  lpda, Ipgs, lpkp,  Ipkt,  Iplc,  lpoh,  lpou, 
lppa,  Ipse,  lput,  Ipvua,  Ipyaa,  lrfba,  lrhd,  lrip,  Iris,  Isbp,  Isema,  Ishfa, 
lshg,  Ispha, Isrp, Isso, lstfi,  lsvr,  Isxl,  ltaha,  Iten,  ltin,  Itnn,  Itnt,  lubi, 
ludpa,  lukz,  lutg,  lvmoa,  Ivsga,  lwapb, 256ba, 2at2a, 2blta, 2ccya, 2cmd, 
2cy3, 2fx2, 2kaua. 21hb. 2mcm, 2mev2, 2mev3, 2nada, 2pcdm. 2plea. 
2pola, 2ptl, 2sblb, 2sga, 2spca, 2tldi, 2trxa, Zwrpr, 3b5c, 3dpa, 3lada, 3rubl. 
3tg1, 4dfra, 4icb, 4rhv2, 7icd, 8il b 

After computing the tessellations and filtering, the  608 proteins 
provided N = 386,425 tetrahedra, which implies an average ef- 
fective cell size of 44.6 in  the symmetrized four-way table. Using 
the purged calibration dataset of 581 proteins, N = 374,791 tetra- 
hedra were obtained. 
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