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Abstract 

We demonstrate the applicability of our previously developed Bayesian probabilistic approach for predicting residue 
solvent accessibility to the problem of predicting secondary structure. Using only single-sequence data, this method 
achieves a three-state accuracy of 67% over a database of 473 non-homologous proteins. This approach is more 
amenable to inspection and less likely to overlearn specifics of a dataset than “black box” methods such as neural 
networks. It is also conceptually simpler and less computationally costly. 

We also introduce a novel method for representing and incorporating multiple-sequence alignment information within 
the prediction algorithm, achieving 72% accuracy over a dataset of 304 non-homologous proteins. This  is accomplished 
by creating a statistical model of the evolutionarily derived correlations between patterns of amino acid substitution and 
local protein structure. This model consists of parameter vectors, termed “substitution schemata,” which probabilisti- 
cally encode the structure-based heterogeneity in the distributions of amino acid substitutions found in alignments of 
homologous proteins. The model is optimized for structure prediction by maximizing the mutual information between 
the set of schemata and the database of secondary structures. 

Unlike “expert heuristic” methods, this approach has been demonstrated to work well over large datasets. Unlike the 
opaque neural network algorithms, this approach is physicochemically intelligible. Moreover, the model optimization 
procedure, the formalism for predicting one-dimensional structural features, and our previously developed method for 
tertiary structure recognition all share a common Bayesian probabilistic basis. This consistency starkly contrasts with 
the hybrid and ad hoc nature of methods that have dominated this field in recent years. 

Keywords: Bayesian statistics; evolutionary information; mutual information; probabilistic schemata; secondary 
structure prediction 

The prediction of protein secondary structure by a number of meth- 
ods has benefitted from the use  of aligned sets of homologous 
proteins. The patterns of conservation and variation in amino acid 
residue substitutions at a particular site in a protein convey implicit 
information about the long-range interactions involved in deter- 
mining the local structure at that site. Various techniques have been 
devised to use this information to raise the three-state accuracies to 
around 70-72%. While this summary statistic is universally re- 
ported, a broader evaluation of prediction performance would con- 
sider both the practical and scientific value of the prediction scheme 
in terms of its statistical performance, physicochemical interpret- 
ability, and general applicability (reproducibility and robustness). 
Until now, the success of multiple-sequence alignment-based sec- 
ondary structure prediction methods has been restricted to one or 
two of these attributes. 
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The most common technique for using multiple-sequence align- 
ments is the consensus method. This “signal averaging” approach 
takes the predictions made for individual members of a protein 
family and combines them according to some weighting scheme 
to amve at a consensus prediction. The two most recent appli- 
cations of this approach have yielded high accuracies over large 
datasets (Salamov & Solovyev, 1995; Riis & Krogh, 1996). While 
this approach is generally applicable and can provide competi- 
tive statistical accuracy,  it does not  model  the  underlying sequence- 
to-structure  correlations or evolutionary  process. Thus, few 
questions regarding such relationships can be addressed and this 
technique can be of little use  in furthering structure prediction 
efforts. The widely known artificial neural network method of 
Rost and Sander (1993, 1994) also performs quite well, but it 
too is rather opaque. In that approach, position-specific profiles 
of residue substitutions are fed into an ensemble of complicated 
neural networks; how to make use of this raw information is left 
up to the training algorithm and a large number of highly cou- 
pled adjustable parameters. 
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Dominating the realm of transparent methods is the work of 
Benner and colleagues who focus their efforts on developing pre- 
diction heuristics based on  expert knowledge of protein chemistry 
and evolutionary relationships among proteins (Benner, 1989, 1992). 
Advocates of this approach claim that it allows the predictor to 
develop an understanding of the principles of protein structure 
formation. However, given the slow turn-around time for bona fide 
predictions and the small set of examples, it would be difficult to 
distinguish between heuristics which reflect general principles and 
ad hoc “fixes.” Moreover, with the pervasive contextuality ob- 
served at every level of protein structure, one might wonder at the 
eventual size of a generally applicable “rule table” for predicting 
protein structure. 

A few efforts have been directed at creating automated predic- 
tion methods including explicit models of evolutionarily derived 
correlations in the form of substitution matrices (Wako & Blun- 
dell, 1994a, 1994b; Mehta & Argos, 1995). These algorithms are 
more physicochemically interpretable than the consensus or neural 
network methods but achieve lower accuracies. The recent work of 
Goldman et  al.  (1996)  explores the explicit use of evolutionary 
trees but the statistical performance of the method was left un- 
quantified. The recent approach of King and Sternberg (1996) is 
transparent in its linear decomposition but the method achieves 
70% accuracy only with the addition of global sequence informa- 
tion,  smoothing functions, feedback about predictions, and, finally, 
filtering rules. These researchers report higher accuracies through 
judicious substitution of another algorithm for their own. 

The picture that arises is that large-scale applicability (automat- 
ability) and physicochemical interpretability are somehow incom- 
patible-a view emphasized by some proponents of the more manual 
methods (Benner & Gerloff, 1993; Benner et al., 1997). We cer- 
tainly agree with the scientific necessity for using inspectable mod- 
els to further understanding, and with the criticism of the current 
state-of-the-art automated schemes in this regard. In this paper, we 
present a method that is accurate, biophysically intelligible, and gen- 
erally applicable. It performs comparably to the best of the opaque 
methods over large datasets of non-homologous proteins. Using only 
single-sequence information, our basic Bayesian prediction formal- 
ism yields three-state accuracies as high as  67%  over a dataset of 
473 non-homologous proteins. Using our new method for incorpo- 
rating evolutionary information into prediction algorithms, we ob- 
tain accuracies of 72% for a dataset of 304 non-homologous proteins. 
An additional benefit of our method is that it can be used to predict 
solvent accessibility (Thompson & Goldstein, 1996b). 

Our multiple-sequence alignment-based method employs a prob- 
abilistic model of correlations between protein structure and pat- 
terns  of  amino acid residue substitution that have arisen over the 
course of evolution. The model consists of a set of parametrized 
distributions (schemata) over the 20 amino acids and gaps. These 
schemata are constructed to represent the structurally based het- 
erogeneity of substitutions found in multiple-sequence alignments. 
Based on the substitutions observed at a given location in an align- 
ment, the prediction algorithm assesses the probability that the 
location belongs to (i.e., was generated according to) each of the 
schemata and the probability with which each of the schemata is 
associated with a particular type of local protein structure. This 
information is then incorporated into  our previously developed 
Bayesian formalism for predicting one-dimensional features of pro- 
tein structure (Thompson & Goldstein, 1996b). 

This work extends from our previous method for classifying 
sets of amino acid residue substitutions based on the structural 

information conveyed by the set of classes (Thompson & Gold- 
stein, 1996a). The  difference  in terminology (“classes” vs. “sche- 
mata”)  emphasizes  the  fundamental  difference between these 
approaches; whereas amino acid membership in the previous classes 
was all-or-none, here the representation is probabilistic. The term 
“schemata” is borrowed from the literature of genetic algorithms 
where it describes the “building block” patterns from which a 
solution is constructed (Holland, 1992). As before, our optimiza- 
tion of the schemata is based on maximizing the mutual informa- 
tion between a set of schemata and the  corresponding local 
structures. This work bears some similarity to the work of Sjolan- 
der  et al. (1996), who derived Dirichlet mixture priors. These two 
methods, however, differ significantly in purpose. While those 
researchers sought to construct hidden Markov models of specific 
families for use in finding remote sequence homologs, we seek to 
predict the secondary structure of proteins in general. Our sche- 
mata, though, could be used in database searches for structural 
homologs. 

Theory I. Basic prediction formalism 

We expand on the theoretical basis of our prediction methodology, 
as introduced by Thompson and Goldstein (1996a). 

Structure  determines  sequence 

For each residue site in a protein, we would like to calculate 
P(s,” I{ui}), the conditional probability of observing secondary 
structure sk (where k indexes the types of secondary structure) 
given amino  acids {a,} in a local window of sequence (indexed 
by j )  around the site of interest, i .  

A physical interpretation of this probability implies that the 
structure of a protein is determined by the amino acid sequence. 
On the folding time scale this is true, but on the time scale of 
evolution, it is the relatively fixed protein structures that constrain 
the evolution of the quickly changing protein sequences-a phe- 
nomenon referred to as “structural inertia” (Aronson et al., 1994). 
which has been observed in the simulated evolution of lattice- 
model proteins (Govindarajan & Goldstein, 1997a). As the data- 
base of protein sequences and structures is a product of this 
evolution, it would be more natural to model the protein sequence 
as being probabilistically dependent on the structure, and to write 
P({a,} 1 s,”). Application of Bayes’ theorem accomplishes this 
inversion. 

where P({u,}ls,“) is the conditional probability of the particular set 
of amino acid residues in the window given the particular type of 
secondary structure SF at location i, P((uj}) is the probability of 
observing the set of residues given no structural information, and 
P ( s k )  is the frequency of occurrence of secondary structure type s k  
in the database. Note that P({uj}) is simply a normalization and 
can be computed as Ck~P({a j } l sk‘ )P(sk’ )  where k‘ indexes all the 
types of secondary structure. The actual calculation of this  denom- 
inator is unnecessary in the prediction routine as we take the sec- 
ondary structure with the maximum conditional probability as the 
prediction. 



Secondary structure prediction 1965 

Structural segments 

The  amino acids found in the local window obviously depend upon 
the structure of the whole window, rather than just a  single residue 
location. We refer to the string of secondary structure identities 
capturing the structural information about the local window of the 
protein chain as  a “structural segment,” S” = {sy}, where p de- 
notes the particular segment type. These segments are the same 
length as the window of sequence being considered. 

We can evaluate P ({a,} I s k ) f  ( s k )  as the sum of the probabilities 
for all of the various possible segments of local structure SF that 
have secondary structure type sk at the central segment site i 
(corresponding to the site of interest in the sequence window), 
multiplied by the probability of the sequence given that structural 
segment: 

w 

where G(s,”,sk) is zero unless s,“, the secondary structure at the 
central site in the segment, is the same as sk. 

Bayesian decoupling 

Unfortunately, due to the relatively small sample of non-homologous 
proteins that are available and the typically large size ( 1  3-17 res- 
idues) of sequence windows used, there is an insufficient number 
of examples to get  a good estimate of P ({a,}IS@) in Equation 2. 
This problem can be overcome by the following considerations. 
We assume that the amino acid residue at each site in the segment 
depends only on the structure  at that site in the segment, and is 
independent of the residues at other sites in the segment. This ap- 
proach views the correlations between neighboring amino acid res- 
idues as resulting from underlying structural correlation, which is 
fully accounted for by the use of our structural segments. In par- 
ticular, we might use the probabilities P ”(a, lsr) for the amino 
acids given the secondary structure type at each location in the seg- 
ment. The superscript p on the probability indicates that it would 
be estimated from only the instances of the particular segment Sfi. 
Again, because most structural segments will be observed very few 
times, the estimations of these parameters will be rather poor. As 
an approximation, we assume the amino acid residue only depends 
on the local structure at that site in the segment so that we can 
estimate these values from the entire dataset. This leads to the 
series of equations, 

Substituting this result into Equation 2 yields 

The utility of this “prediction equation” hinges on the decoupling 
capability resulting from the combined Bayesian and evolutionary 

perspectives (Thompson & Goldstein 1996b). These key features 
distinguish our approach from the mathematically similar COR 
method (Robson, 1974). In that pioneering method, an explicit 
consideration of pair-wise dependencies was attempted but was 
constrained by the size of the datasets available (Gibrat et al., 
1987).  Other Bayesian statistical approaches toward protein struc- 
ture prediction have not employed this decoupling concept, either 
(Maxfield & Scheraga, 1979; Stolorz et al., 1992; Zhang et al., 
1992; Goldstein et al., 1994). Such ideas, however, have been used 
in the probabilistic modeling of inter-residue correlations in the 
EF-hand motif (Mamitsuka, 1995) and they are an implicit feature 
of hidden Markov models (Asai et al., 1993; Stultz et al., 1993; 
Krogh et  al., 1994). 

Structure descriptors 

Equation 6 implies that the identity of an amino acid in the se- 
quence will be determined only by the secondary structure at that 
location. In fact, other factors, such as surface accessibility, will be 
major influences. It has been observed that a-helices and P-strands 
can possess characteristic patterns of exposure to solvent, and this 
information has been successfully exploited in previous secondary 
structure predictions (Lim, 1974; Yi & Lander, 1993; Wako & 
Blundell, 1994b; Salamov & Solovyev, 1995). We can capture 
these patterns through the use  of a richer alphabet for denoting 
local structure. 

We take 4J to be the “descriptor” of the structure at each residue 
location, j .  In this work, we explore the use of four categories of 
secondary structure, si ,  combined with one, two, or three catego- 
ries of solvent accessibility, w,. Thus, 4J can take on four, eight, or 
12 values depending on the use of solvent accessibility informa- 
tion. Where we need to distinguish between the use of four, eight, 
or 12 structure categories, we will use the notation 4,(4), 4J(8), 
and 4,(12). Note that in  the case where no solvent accessibility 
information is used (one accessibility category), 4j(4) = s,. 

Since the secondary structure of a residue location is defined in 
terms of local bond angles and hydrogen bonding patterns that ex- 
tend beyond the single location, and since there is statistical evi- 
dence that the 20 amino acids’ residues have differential preferences 
for different regions of secondary structural elements (Richardson 
& Richardson, 1988), we also experimented with the use of a more 
extended definition of the local structure. This was done by com- 
bining the “singlet” descriptors for  a residue location with those of 
its neighbors. We designate these n-tuplets with the superscript n 
(n4i). In particular, we considered the use  of duplets and triplets 
of structure descriptors. In both cases, the n-tuplet can be asym- 
metric about the residue location of interest. Depending on the ter- 
minus to which the n-tuplet extends, we add a label of N or C to the 
superscript. For  example, in the case of structural triplets, ’ ~ 4 ~  = 

Equation 6 can be easily generalized for these more specific 
{$,-z>4JJ17&i>* 34,z{4J-l?4,,4,+~}> and ”‘$,={4JI’4,+~>4,+~)’ 

descriptors. Defining @@ = (4,”); 

where 8(4,” ,sk)  is zero unless the structure descriptor at site i ,  +,”, corresponds to the secondary structure s k  combined with any 
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solvent accessibility category. As the sum is  over all possible sol- 
vent accessibility categories for a given secondary structure, sol- 
vent accessibility information about the target protein is not used. 

Inspection of Equation 7 reveals the algorithmic simplicity of 
this approach. First, we count the number of instances of each type 
of amino acid residue being associated with each type of structure 
descriptor and the number of instances of each type of structural 
segment of a given length. These are converted to probabilities. 
Then,  for each type of secondary structure, given the local window 
of query sequence, we simply take the product over window po- 
sitions and sum over the relevant structural segments. Finally, the 
secondary structure type with the highest probability is taken as 
the prediction. One  clear advantage of this approach is that as the 
protein datasets increase, all that is necessary is to count new 
instances and add them to the old ones. 

Theory 11. Multiple-sequence-based formalism 

Substitution count vectors 

Rather than use a consensus approach, we seek to develop a model 
of the evolutionarily derived relationships between protein se- 
quences and structures. The raw data from which we will build our 
model are the substitutions found at each residue site in the data- 
base of multiple-sequence alignments. Each site j can be repre- 
sented as a vector of counts, 2, = (n,, , n,?, . . . , n/?,,),  where n,, is the 
number of times residues of type a = I , .  . . ,20 are observed. Using 
this representation, we can simply replace a local amino acid se- 
quence, {a,}, with a local string of count-vectors, { i i I } ,  in the der- 
ivation of Equation 7. 

This lacks robustness and scientific merit, as it merely treats 
these count-vectors in a look-up table fashion. A significant frac- 
tion  of positions in the dataset of alignments have a unique com- 
bination of amino acid residues, so this approach is statistically 
infeasible. 

Schemata 

The heterogeneity observed in the number and type of amino acid 
substitutions from position to position in a database of alignments 
arises from a mixture of biophysical generative processes, stochas- 
tic evolutionary mechanisms, and statistical biases. This suggests a 
probabilistic treatment. There are easily detectable patterns among 
the sets of count-vectors derived from multiple-sequence align- 
ments. There is the well-known division between sites with pref- 
erentially hydrophobic substitutions and sites with preferentially 
hydrophilic substitutions corresponding to the characteristic rela- 
tive degrees of solvent exposure of those two types of sites. Res- 
idue sites within the same type of secondary structure share common 
structural constraints, giving rise to specific patterns of substitu- 
tions. Likewise, the counts of substitutions at similarly functional 
sites in various proteins could represent samples from an under- 
lying distribution characteristic of that particular function. 

To capture this statistical and structurally based variation in 
patterns of substitution, we postulate the existence of a number of 
probability distributions (much smaller in number than the number 

of substitution count vectors) from which the count vectors have 
been generated. Each  schema consists of a probability vector, 6” = 
(p:,p,”, . . . ,pJo,p”), where the parameters, p2, represent the prob- 
abilities of “drawing” each of the amino acid types a according to 
the particular probability distribution r]. The parameter p” denotes 
the a priori probability of the schema itself existing at any site in 
a protein (i.e., without reference to count-vectors or secondary 
structure information). 

Assuming each amino acid substitution occurs independently, 
these parameters will allow us  to calculate the conditional proba- 
bility that a particular count-vector would be drawn from a par- 
ticular 7. This is done by taking the product over the probabilities 
of the counts of the amino acids multiplied by the number of ways 
of selecting the particular set of amino acid counts. According to 
the combinatorics of the problem, the number of ways of gener- 
ating the vector, G I ,  is \;,I !/(n,,  !n,2!...n,2,1!) where \$,/I is the sum 
total of the number of amino acids observed at the particular align- 
ment position. Thus, 

In contrast to our earlier substitution classes, a location in the 
multiple alignment of proteins can only be assigned to schemata in 
a probabilistic manner. Again using Bayes’ law, the probability 
that a location with vector 2, was generated by schemata r ]  defined 
by $7 is given by 

Predicting with schemata 

As in our earlier work, we replace the multiple sequence alignment 
with a single sequence characterized by the underlying schemata, 
and consider the correlations between these schemata and the local 
structure in making our predictions. The indeterminacy in assign- 
ing locations to schemata, however, must be included in every part 
of the prediction scheme. Assuming we know the schemata from 
which nature has assembled the proteins in our databases, we can 
calculate P(ii,l #f) in our substitution count vector-based “predic- 
tion equation” (Equation 8) by explicitly summing over all 7. or 

P@jI@) = 2PG;1774f)P(71+:)  ( I  1 )  

= EP(qr])H7l+;) (12) 

I 

TL 

where we have taken advantage of the fact that the probability of a 
count vector only depends on the schemata and not the local structure. 

The probabilistic nature of the schemata must also be included 
in the accumulating of statistics, specifically in the calculation of 
P(,J 4;) above, as we can not count instances of the various sche- 
mata in an unambiguous way. We approach this problem by noting 
that P(q1 @) = P(r], @)/P(+,”). The  joint probability P(r],+,?) 
can be written as the probability that location j with its correspond- 
ing count vector 2, can be assigned to schemata r], given by Equa- 
tion 10, summed over all positions in the database that have the 
type of local structure I$,”, and normalized by N ,  the total number 
of positions in the database. 
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where S(+,,,+,”) is 1 if the structure indicated by 4j, is the same 
as that indicated by +r and 0 otherwise. The problem remains how 
to obtain the schemata that would allow us to calculate these 
expressions. 

Optimizing schemata 

Our purpose is to predict protein secondary structure. Therefore, 
we would like our probabilistic knowledge of the different sche- 
mata that may have generated the count vector at a given site in a 
protein to provide us with as much information as possible about 
the secondary structure at that position. More generally, we would 
like a set of schemata that represents the entire database of sub- 
stitution count vectors to provide the maximum possible infor- 
mation  about  the  secondary  structure  identities  at all of the 
corresponding residue sites. In the section below, we describe an 
optimization procedure that allows us to adjust the parameters for 
some number of schemata so as achieve this. 

Mutual information 

As in our previous work in constructing binary-state classes of 
amino acid residue substitution, we have chosen mutual informa- 
tion as our optimization function (Thompson & Goldstein, 1996a). 
This function, taken from information theory, is based on the Shan- 
non entropy function, which quantifies the “uncertainty” with re- 
gard to the state of a random variable (Shannon & Weaver, 1949). 
It is calculated over the probability distribution of states of the 
random variable and behaves as follows: When the probability 
distribution is uniform (all possible states are equally likely) the 
entropy is maximized, and when the probability of one particular 
state is unity (no uncertainty) then the entropy is zero. 

For  our purposes, we can calculate an entropy over  our proba- 
bilistic schemata, 

where T is an index over the schemata. Likewise, we calculate H4 
as the entropy over local protein structures. 

H ,  = -xl‘(+k)lnl‘(+k) 
k 

where k is an index over types of local protein structure. 
It is also possible to calculate a joint entropy over the joint 

probability distribution of two random variables (e.g., a set of 
schemata and local protein structure), 

It is natural to equate a gain in “information” with a reduction in 
“uncertainty.” More generally, information can be defined as a 
difference between entropies. For two random variables, the amount 
of information about the state of one variable conveyed by knowl- 
edge of the state of the other variable is quantified by the mutual 
information (Cover & Thomas, 1991). This function is expressed 
as the difference between the sum of the independent entropies of 
the two random variables and their joint entropy. We write 

Inspection of this equation reveals that if a set of schemata 
has no specific correspondence with local protein structure, then 
H,,, -+ H,, + Hd and M -+ 0. Conversely, if the correspondence 
between the two sets of variables is highly specific, then M is 
maximized. 

To compute the entropies of this mutual information, we need to 
calculate the quantities P(T), l‘(@), and l‘(r],~$~). The probabil- 
ities, l ‘ ( ~ $ ~ ) ,  are taken as frequencies of the local structure types 
denoted by the descriptors + k .  We have already seen how to cal- 
culate l ‘ ( ~ , + ~ )  in Equation 13 from the previous section. The 
terms, P(T), are calculated in a similar manner, except that there is 
no restriction to positions of a particular structural type, 

where j ‘  is an index over all positions. 
The mutual information is calculated based on the parameter 

values that define the set of schemata. These parameters can be 
iteratively updated using a gradient descent algorithm so as to 
maximize the mutual information. This procedure produces a set of 
schemata that represent a structurally optimal compression of the 
count-vector data. This may, however, not be exactly what we 
desire. This could correspond to memorization of specific patterns 
found in the dataset over which the optimization is performed. 
Rather, we seek compression of these data into schemata that will 
be useful in predicting the secondary structures of proteins in 
general. To achieve this, cross-validation techniques are used, as 
discussed in the results section. 

For our secondary structure prediction application, we optimize 
the schemata based on secondary structure information only (no 
solvent accessibility information). As found in our previous work 
optimizing binary-state substitution classes, the solvent accessibil- 
ity information tends to dominate the results of the search (Thomp- 
son & Goldstein, 1996b). Since it is imperfectly correlated with 
secondary structure, this drives the search away from what would 
be optimal for secondary structure prediction. However, schemata 
optimized based on only secondary structure information can be 
used within a prediction setting which makes use of solvent ac- 
cessibility information. 

Materials and methods 

Single-sequence datasets 

Two datasets of proteins were used  in our single-sequence-based 
predictions. The first dataset, comprising 473 protein chains, was 
taken from the March 1996 PDBselect list of representative struc- 
tures with less than 25% sequence identity between any pair of 
chains  (Hobohm & Sander, 1994). The second dataset consists of 
126 protein chains, also with less than 25% pairwise sequence 
identity, compiled by Rost and Sander (1994). 

Multiple-sequence datasets 

The construction of our dataset of proteins with homologs also 
began with the March 1996 PDBselect list. We extracted multiple- 
sequence alignment data from the HSSP files for these proteins 
(Sander & Schneider, 1991). 
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Table 1. Summary  of size, in residues (Nres) and 
secondary structural characteristics for the various 
subsets of proteins used in this worka 

DataSeth Nre,  %a %;.p 7% TC 

413 121150 30  22 21 
126 23348 28 22  28 
151A 31160 29  22 2 1  
150B 31321 29  22 21  
102A 25086 30 22  28 
lOlB 24911 29  22 21 
lOlC 25024 29  23 2 1  

21 
22 
21 
21 
21 
21 
22 

aThe percentages of structure types may not sum to 1 0 0 %  due to round- 

bThe  number  denoting the dataset  indicates  the  number of protein chains 

‘ T  denotes  turn. 
dC denotes coil. 

off error. 

in that dataset. 

Two modifications were made to these multiple-sequence align- 
ments to maximize the usefulness of the information they contain. 
First, we eliminated all homologs with 540% identity with the 
protein of known structure. In earlier work, we found that a 40% 
sequence identity cut-off in the homologs used provided the great- 
est amount of information about local structure in terms of patterns 
of residue substitution (Thompson & Goldstein, 1996a). The sec- 
ond step was to eliminate redundant sequences in the alignments. 
If two members of a given alignment are nearly identical then the 
addition of one of those members after the other member is already 
present provides no additional useful information. The presence of 
these sequences gives rise to “apparent” conservation that would 
mislead the prediction algorithm. Alignments were examined for 
pairs of homologs with >90% identity and one of members of the 
pair was excluded from the alignment. After these modifications, 
we took each protein of known structure that had at least five 
homologs for a minimum at 80% of its residue sites. This resulted 
in a dataset of 304 proteins. For cross-validation purposes, this 
dataset was divided into either two or three subsets. 

Summary statistical information about the various datasets used 
is shown in Table 1. Lists of all sets of proteins used in the single- 
sequence predictions and schemata-based predictions and optimi- 
zation are available by anonymous ftp at chem.lsa.umich.edu in 
directory pub/goldstein/. 

Structure informution 

Information about secondary structure was extracted from the “Dic- 
tionary of Protein Secondary Structure” (DSSP) files of Kabsch 
and  Sander  (1983), which were derived from the Protein Data 
Bank (PDB)  files of three-dimensional coordinates for each pro- 
tein (Bernstein  et al., 1977; Abola et al., 1987). In addition to the 
standard four types of secondary structure-a-helix, P-strand, turn, 
and coil-the DSSP  files contain four  other types that we assigned 
to the standard four according to the following mapping: Five- 
helix to helix, and 310-helix, bend, and @-bridge to turn. The prob- 
abilities for the turn and coil categories were combined. Solvent 
accessibility values were also taken from the DSSP  files  and were 
normalized with maximum values obtained by Shrake and Rupley 

(1973). Solvent accessibility thresholds are needed for defining the 
solvent accessibility states of the residue sites. Thresholds were 
chosen such that equal numbers of residue sites were assigned to 
each of the states. For two-solvent accessibility states the threshold 
for the 126-protein dataset is 23% and for the 473-protein dataset 
it is 19%. To define three solvent accessibility states for the 126- 
protein dataset and the 473-protein dataset, we set thresholds at 9% 
and 36% and at  6% and 36%, respectively. For all datasets in the 
multiple-sequence alignment-based work, a two-state threshold of 
20% was used. In order to use a window-based scheme, virtual 
residue locations were added to the N-  and C-termini of the protein 
chains. These locations were all taken to be  in the fully exposed 
coil state. 

Results and discussion 

Memorization 

Regardless of methodology, one way to improve prediction per- 
formance is to include more information relevant to the sequence- 
to-structure correlations that the prediction algorithm seeks to lean 
and exploit. This can be done by increasing the specificity of the 
structural description at the resolution of the “structural segments” 
(increase the window size) or at the resolution of individual resi- 
due sites (increase the alphabet of structure descriptors). Due to the 
inherent statistical nature of most efforts in this field, the size of 
the local window or the number of structural descriptors cannot be 
increased without bound. For the machine-learning approaches, 
there is not enough data from which to learn, and for the statistical 
schemes, the probabilities become ill-defined. 

While the literature of secondary structure prediction stresses 
the importance of cross-validation or jackknifing in the optimiza- 
tion  of neural network synaptic weights or in the estimation of 
parameters such as P(a,lsk) i n  our model, the selection of more 
global parameters such as the structural descriptors, window sizes, 
number of nearest neighbors, and neural architectures is often left 
uncritiqued. These parameters are frequently selected through mul- 
tiple prediction trials beyond the cross-validation protocols. As 
such, the values of these parameters are potentially specific to the 
dataset being used. 

The most successful methods (in terms of reported accuracies), 
like neural networks and nearest neighbor algorithms, make use of 
“black box” tuning parameters, such as the number of nearest 
neighbors and the neural architectures, in addition to selecting 
descriptor alphabets and window sizes. Moreover, the most recent 
of these two types of approaches have both employed a jury- 
decision scheme  over the prediction outputs of multiple variations 
of their algorithms (Rost & Sander, 1993, 1994; Salamov & So- 
lovyev, 1995). Unlike the descriptor alphabet or the window size, 
however, these methodological parameters do not clearly have 
anything to do with proteins in a physical sense. There is no a 
priori reason to believe that 50 nearest neighbors, or 15 hidden 
units, or a jury decision taken over algorithms using windows of 
11, 17, and 23 residues will give the best results regardless of 
dataset. The fact that the jury-decision procedure (signal averag- 
ing) works for these schemes is evidence that each of the algo- 
rithmic variations of these authors is making systematic errors, 
possibly due to overlearning. 

In contrast, the only parameters that are selected over the entire 
dataset in our method are the alphabet of structure descriptors and 
the window size. In both cases, these parameters control the “spec- 
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ificity" of information being used in the predictions. The predic- 
tions that returned the highest accuracies correspond to the maximum 
specificity of descriptions that can be statistically supported by the 
datasets used. In this sense, it is unlikely that the prediction accu- 
racies for these parameter choices  is an overestimation of the pre- 
dictive capability of our method. For larger future datasets, better 
estimates can be calculated for the various parameters in the model. 
Moreover, larger datasets will support the estimation of additional 
parameters and/or more specific parameterizations of the predic- 
tion problem. 

By using parameter values obtained from our current set of 
proteins, though, this method will not produce accuracies equiva- 
lent to the mean accuracies reported here for new proteins that do 
not match the average characteristics of our dataset. The question, 
then, becomes how likely new proteins are to match the charac- 
teristics of the current database. While this is a complicated issue, 
various researchers have estimated the number of protein folds to 
be in the low thousands, and it is commonly known that a small 
number of protein folds are overwhelmingly populated relative to 
the majority of observed structures. One explanation of this biased 
distribution of sequences  among the various protein tertiary struc- 
tures was provided by a recent lattice-model protein study (Govin- 
darajan & Goldstein, 1996). 

Evaluation I: Single-sequence-based peqomance 

A summary of prediction highlights can be found in Table 2, for 
both the 473-protein and 126-protein datasets. We report Q, scores, 
the percentage of residues correctly predicted in three states, and 
the Matthew's correlation coefficients for cy-helical (C,) andP-strand 
structures (C,) (Matthews, 1975). All evaluations reported here 
were obtained using a single-chain-exclusion jackknife procedure; 
each protein in the dataset was, in turn, left out from the calcula- 
tion of the probabilities used to predict the structure of that protein. 

Table 2. Best prediction results for our Bayesian method 
(Bayes-TG)  over the set of 126 non-homologous proteins 
compiled by Rost and Sander (1994), and a set 
of 473 non-homologous proteins" 

Method N ,  hart, ,  Pi Ca CP 

Bayes-TG '"4(8) 126 66.2 0.47  0.35 
Bayes-TG ' ~ + ( 8 )  473 67.5 0.50  0.39 
Bayes-TG '"&(S) 8 66.5 - - 

PHD I 26 62. I 0.40 0.35 
eNN  I26 66.3 0.48 0.41 
Homol. 126 67.6 - 

Bayes-SLX 14 61.1 0.33  0.27 
- 

"We also report the results of "blind predictions" made for eight proteins 
in the CASP2 prediction experiment,  as explained in the text. For com- 
parison we show single-sequence-based prediction results over the same 
126-protein dataset reported by other methods, including the neural net- 
work (PHD) of Rost and Sander (1994). the ensemble of neural networks 
(eNN) of Riis and Krogh (1996).  and the nearest-neighbor method (Ho- 
mol.) of Salamov and Solovyev (1995). We also include results obtained 
over  a 14-protein dataset using a Bayesian statistical method developed by 
Stolorz et  al.  (1992). Q 3  is the three-state percentage correct predictions. 
The Matthew's correlation coefficients for cr-helix and P-strand are C, and 
C p ,  respectively (Matthews, 1975). 
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All reported Q3 scores are averaged over residues. In the follow- 
ing, we discuss the performance of the method in terms of Q3 only, 
as the Matthews' correlation coefficients for our various prediction 
runs followed similar trends. 

We find that the use of increased specificity of the structural 
description at the residue level via the use of solvent accessibility 
information is beneficial and relatively robust to the size of the 
window. Over the 126-protein dataset, using no solvent accessi- 
bility information ('4,(4)), the Bayesian method yields a peak 
accuracy of 62.7%, whereas if two or three categories of solvent 
accessibility are used ('4j(S) or '4,(12)), respective peak accura- 
cies of 65.1% and 65.7% are obtained. These results are shown in 
Figure 1A. All these peaks occur for window sizes in the range of 
19  to  23 residues and memorization (decline in the jackknifed 

4 9 4  I- 49 - 
1 3 5 7  9 11 13 15 17 19 21 23 

Window Size 

Fig. 1. A: Prediction accuracies ( Q 3 )  over the 126-protein dataset as a  func- 
tion of window size for three types of singlet descriptors '4,(4) (-e-), 
' & j ( S )  (--@--), and '4j(12) (...O...), as explained in Materials and 
methods. B: Same  as the previous plot, but for the duplet descriptors, 
*"4,(4) (-e-), ZN4,1(8) (--E--), and 2"4,(12) (...O...) . C: Same 
as the previous plots but for the triplet descriptors, '~4,(4) (-e-), 
'"@,(8) (--@--), and ' ~ 4 ~ ( 1 2 )  (...o...) . 
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accuracies) does not occur until larger window sizes are attempted 
(data not shown). 

With even greater specificity of structural description at the 
residue level, the phenomenon of memorization becomes increas- 
ingly apparent, as shown in Figures 1B and 1C for the use of 
structural n-tuplets, '"4, and ')v+, over the 126-protein dataset. 
The peaks in accuracy for all curves are shifted to smaller window 
sizes relative to results obtained with singlet descriptors. While the 
use of two solvent accessibility categories is beneficial for both 
duplets and triplets ( 2 " + j ( S )  and 3"+,(8)), the use of three solvent 
accessibility categories in combination with n-tuplets provides overly 
specific  information.  Overall,  the  best  accuracy  (66.2%)  was 
achieved with duplets (2Nq5i (S))  for  a window of 17 residues. 

In general, the problem of memorization can most easily be 
addressed through the use of larger datasets, and so we would 
expect that larger datasets could support the use of richer structural 
descriptions. The highest accuracy (67.4%) for the 473-protein 
dataset was obtained using structural triplets ( 3 ~ + 1 ( 8 ) )  rather than 
duplets. For this dataset, as with the 126-protein dataset, the com- 
bination of n-tuplets and three solvent accessibility categories 
showed a decline in accuracy (data not shown). 

In the above discussion and accompanying figures, all accura- 
cies have been reported for the N-terminal asymmetric n-tuplets 
because these consistently yield higher accuracies than the sym- 
metric or C-terminal asymmetric n-tuplets. For instance, compared 
to the accuracy of 66.2% obtained over the 126-protein dataset 
with ' ~ + ~ ( 8 ) ,  the accuracy for the corresponding C-terminal asym- 
metric duplet, 'c+l(8) was 65.9%. With the triplet descriptors over 
the 473-protein dataset, the accuracies were 67.4%, 67.1%, and 
66.7% for ' ~ + ~ ( 8 ) ,  3+i(8), and 'c~$~(8), respectively. Although 
these results may not be statistically significant, it is possible that 
the amino acid residues of a protein have a propensity to interact 
more strongly with their neighbors to one side rather than to the 
other. If this is the case, then according to the asymmetry observed 
in the accuracies using the n-tuplets, the structure to the N-terminal 
side of a residue location more strongly influences the amino acid 
identities at that location than does the structure to the C-terminal 
side. This implies that the inverse relationship should be true from 
the point of view of the sequence; the amino acid residues to the 
C-terminal side of a residue location should provide more infor- 
mation about the structure of that location than the residues to the 
N-terminal side. To explore this possibility, we made predictions at 
each of the positions in the window, rather than at just the central 
site. This  was done over the 126-protein for two test cases-with 
I 4i(8) and a 13-residue window and with I +j(  12) and a 19-residue 
window. The results of this are shown in Figure 2A. The asym- 
metric distribution of accuracies over the positions in the window 
is quite clear, with the highest values occumng at positions in the 
N-terminal side of the the window. As expected, then, regarding 
the structural state of a given residue location, there is more useful 
information to be found in the neighboring residues extending 
toward the C-terminus of the protein. 

Finally, we examined the accuracies as  a function of window 
position for the parameter settings where the best performance for 
each dataset was observed.  For the 126-protein dataset, using 
' 1 ~ 4 ~ ( 8 ) ,  the best accuracy (66.2%) was found at the eighth position 
in a  19-residue window. For the  473-protein dataset, using 
3~+ , (8 ) ,  the best accuracy (67.5%) was found at the ninth position 
in a 21 -residue window. In both cases, the asymmetric distribution 
of accuracies is  clear  (Fig. 2B), but the differences in the perfor- 
mances between the peaks and the central positions are small. 
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Fig. 2. A: Prediction  accuracies (a3)  over the 126-protein dataset  as  a 
function of window  position  for '4,(8) and a  13-residue  window (-0-), 
and  for '+,(l2) and a  19-residue  window ( . . .O.. . )  . B: Prediction accura- 
cies  as a function of window  position using asymmetric  duplet  descriptors. 
'~#4,((8), and  a  window  of 17 residues  over the 126 protein dataset (-0-1 
and using asymmetric triplet descriptors, ',v4,(8), and  a  window of 21 
residues  over the 473-protein  dataset ( . . .O. . . )  . j is a general position index 
over the local window of sequence, with j = 0 indicating the central 
position. 

CASP2 performance 
Using our single-sequence based method with a window of 19 

residues and structural triplets of eight local structure categories 
(3"4i(S)), we submitted predictions for  a number of protein targets 
in the recent CASP2 prediction experiment. The purpose of this 
experiment was to gather predictions from various researchers in 
the field of protein structure prediction for several types of struc- 
ture prediction. These predictions were made on proteins whose 
structures were not solved at the time of prediction, thus making 
them "blind predictions." The intent of the experiment and sub- 
sequent conference was to make objective comparisons of the 
various methods available. Results from CASP2 can be examined 
at http://predictioncenter.llnl.gov. For the eight protein targets for 
which we submitted predictions, we achieved a 66.5% accuracy. 
While this is a small sample of proteins, these results indicate that 
our method can perform at levels reported in the section above for 
proteins not included in our datasets. 
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Table 3. Summary of the statistical performance of our method, 
Bayes-TG ( ' N C # J j ( 8 )  and a  window of 17 residues), over the three 
subsets of the 304-protein databasea 

Dataset Q3 C, c, 

102A 71.6 0.58 0.47 
lOlB  73.0 0.61 0.50 
l0lC 70.2 0.56 0.44 
304 71.6 0.58 0.47 

"The  last row gives  the  combined  results  over  the  subsets.  Performance 
measures  are as in Table 2. 

Evaluation II: Schemata-based performance 

As we are using multiple-sequence alignments, our method re- 
quires two  types of cross-validation. The actual prediction calcu- 
lations based either on amino acids or on substitution schemata are 
jackknifed in a single-chain exclusion procedure; all summations 
over residue sites in the calculations of the theory section are 
performed over all the proteins in the dataset  except the one that is 
being predicted. 

The cross-validation of the schemata, however, cannot be per- 
formed in a single-chain exclusion procedure because the optimi- 
zation  of the schemata is computationally intensive. Instead, similarly 
to the cross-validated training of neural networks, we divide the 
dataset into larger subsets for training and testing. In this work, we 
employed two variations of this idea. 

Threefold cross-validation 
First, we split our dataset of 304 proteins into thirds labeled 

102A, 101B, and lOlC to indicate the number of chains in each 
set. The optimization routine searched for sets of 44 schemata 
using structural duplets and no solvent accessibility information, 
2N4,(4). The  choice of 44 for the number of schemata is somewhat 
arbitrary. We used duplet structure descriptors in the optimization 
of these schemata. 

The cross-validation was performed as in this example: The 
optimization of schemata was performed over 102A, with the set 
of schemata at each step of the search then used to predict the 
structures in 101B. Memorization occurs when the mutual infor- 
mation continues to increase over  102A, but the prediction accu- 
racy declines over 101B. Taking the set of schemata prior to the 
onset of overlearning, we find the set of descriptors and the win- 
dow size that maximizes the prediction accuracy over 101B. Fi- 
nally, with this set of schemata derived from the dataset 102A, and 
with descriptor and window choices made for dataset 101B, we 

Table 4. Summary of the statistical performance of our method, 
Bayes-TG ('NC#JJ(8) and a  window of 17 residues), over the over 
the two subsets of the 304 protein database" 

Dataset Q 3  C, c, 

I52A 72.0 0.60 0.48 
152B 72.6 0.61 0.49 
304 12.3 0.60 0.49 

aThe last row is their  combined  results.  Performance  measures  are as in 
Table 2. 
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Table 5. Best prediction results for our method, Bayes-TG 
t3NC#Jj(8) and a window of 17 residues), using the twofold and 
threefold cross-validated schemata over  304  proteins" 

Method Nc h a r m  Q3 CCZ CP 

Matrix-WB 13 69.0h - 

Matrix-MA' 36 70.9h - - 

eNN' 126 71.3 0.59 0.52 
Homol.' 126 72.2 0.64 0.50 
DSC'.d 126 70.1 0.58 0.51 
Bayes-TG 3-fold 304 71.6 0.58  0.47 
Bayes-TG  2-fold 304  72.3 0.60  0.49 

- 

PHD~.* 126 71.6 0.61 0.52 

"For comparison we show  prediction  results reported by other  methods, 
including  the  substitution  matrix-based  methods  (Matrix) of Wako and 
Blundell (1 994b) and  of  Mehta  et al. ( 1  995). the neural network (PHD) of 
Rost and Sander (1994), the  ensemble of neural networks (eNN) of Riis 
and Krogh (1996), the local homology  method  (Homol.)  of  Salamov and 
Solovyev (1995), and the linear  discriminant  analysis ( D X )  of King and 
Sternberg (1996). Performance  measures are as in previous  tables. 

bReported  accuracies are averages  over per-chain accuracies instead of 
per-residue  accuracy. 

'Employs  post-prediction  filtering. 
dIncludes  global  information,  such as the fractions of residue types. 

fractions of predicted secondary  structure  types, and distances  to N and C 
termini. 

make predictions for the proteins in 101C. Thus, absolutely no 
information about the lOlC dataset has been used in predicting the 
structures in that dataset, either through the statistical parameters 
or through the window size and descriptor alphabet choices. Per- 
muting this procedure over the three subsets of proteins gives an 
estimate of 71.6% for the accuracy over the entire 304 proteins. 
These results are shown in Table 3. While the optimization of the 
schemata was performed using structural duplets (*N4,(4)), the 
highest prediction accuracies were achieved with structural triplets 
and two solvent accessibility categories (3N4,(8) )  and a window of 
17 residues. This was true for each of the three permutations of the 
cross-validation. 

C 
0 .- 
c) u E 
L 0.4- 

0.3 - 
0.2- 
0.1- 

Fig. 3. (-O-) denotes the fraction of the dataset predicted with a reli- 
ability  score, R ,  greater than R,,,. (...O...) denotes the fraction of these 
R > R,,, predictions which were  correct. 
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Twofold cross-validation 
It would be beneficial to use larger datasets for the purpose of 

getting improved estimates of the various statistical parameters in 
our model. Therefore, we developed another cross-validation tech- 
nique that divides the data into larger subsets. What we need is an 
estimate of the mutual information value that could, in general, 
indicate the onset of memorization. This value has to be obtained 
over a dataset different from the one  over which we will estimate 
our prediction accuracy. To achieve this, we did the following. 

We divided the 304-protein dataset into halves labeled 152A and 
152B. Here we searched for  sets of 40 schemata using triplets of 
secondary  structure  and  no  solvent  accessibility  information, 
‘~4~(4). First, we optimized a set of schemata over  the 152A 
dataset. For  each set of schemata along the search pathway we 
obtained a prediction accuracy over the 152B dataset. Prior to the 
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onset of memorization of the 152A dataset, we noted the mutual 
information value of the optimization over 152A. We then opti- 
mized a set of schemata over the 152B dataset. From this search, 
we selected the set of schemata whose mutual information value 
was nearest to that of the previous search. This set of schemata was 
used to predict the structures of the 152A dataset. Thus,  this  was 
done without knowledge of the prediction accuracies obtainable 
over the 152A dataset using schemata optimized over the 152B. 
There is no reason, a priori, to expect that the estimated “best” 
mutual information value obtained by the optimization over 152A 
should be able to pick out the schemata optimized over 152B that 
maximize the prediction accuracy over 152A. 

To obtain a performance evaluation over the entire 304-protein 
dataset. we also performed the inverse of the above procedure. 
These results are given in Table 4. Using structural triplets and two 

1 5 10 15 20  2 5  3 0  35 40 

Schemata 
Fig. 4. Density plot representing the joint parameter values, P (a, ,q),  for each of the amino acids (ai) and each of the schemata, q. Rows 
arc labeled by the single-letter code of the 20 amino acids. X denotes gap. The first row (unlabeled) denotes the a priori probabilities 
( p q )  of the schemata. The parameter values range from 0 (white) to I (black).  These schemata were optimized over the dataset 152A 
and used to predict 152B. 
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solvent accessibility categories (.'~,4~(8)) and a window of 17 res- 
idues, an accuracy of 72.3% was achieved. In Table 5 ,  we report 
prediction summaries of the two cross-validation protocols along 
with the best results reported by other authors. 

Reliability 
We note that with these probabilistic formalisms there is an easy 

means for  calculating a confidence measure, R, for the predictions. 

A 

In Figure 3 we plot the fraction of predictions made with an R 
value above a cut-off value ranging from 0 to 1 and the fraction of 
these subsets of the predictions that were correct. This measure is 
monotonic with prediction accuracy. 
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Physicochemical  interpretability 

The advantage of our method is the physicochemically trans- 
parent nature of the models we employ. Our prediction formalism 
is based on a simple  evolutionary  perspective of sequence 
dependence on structure, and our schemata represent a structurally 
meaningful condensation of the information derived from multiple- 
sequence alignments. Unlike the optimized weights of a neural 
network, the parameters of our model have a biophysical inter- 
pretation. Although it bears some mathematical similarity to the 
recent work of Goldman et al., our approach is diametrically op- 
posed. Whereas they employ evolutionary information (phyloge- 
netic trees) (Goldman et al., 1996). we use evolutionarily derived 
information (substitution schemata). Whereas they seek to model 
the structural information conveyed by "phylogenetic inertia" (Har- 
vey & Pagel, 1991 ), we concentrate on modeling the correlations 
between patterns of substitution and local protein structure result- 

I i I I '  

1 
1 5 10 15 20 2 5  3 0   3 5  40 

Schemata 

Fig. 5. Density plot  representing  the  probability  with which each schema (same set and  order of schemata as in Fig. 2) is associated 
with each of eight types of local  structure. P ( ~ , s ' ) .  H denotes a-helix, S denotes P-strand. T denotes turn.  and C denotes coil. The 
prefixes i -  and 0- denote "inside"  and  "outside" (520% and >20% solvent accessible surface area). respectively. The parameter values 
range  from 0 (white) to I (black). 
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ing from the “structural inertia” (Aronson et al., 1994) of protein 
evolution. 

The parameters of our schemata can be taken as estimates of the 
probabilities that a particular amino acid would be “generated” 
according to each of the schemata. These probability estimates  for 
the set of schemata derived from dataset 152B and used to predict 
152A are shown graphically in Figure 4. In Figure 5, we display 
the probabilities with which each schemata is associated with each 
type of triplet structure. While we claim our method is transparent, 
we make no claims about the simplicity of the result. It is possible 
to pick out some patterns which fit with general intuition about the 
physicochemical identity of residues and their membership in these 
schemata. However, the information depicted in Figures 4 and 5  is 
rather complex. This is testimony to the pervasive contextuality of 
relationships between protein sequences and structures. This con- 
textuality and the diversity of protein structures suggest that find- 
ing a general-purpose set of “expert heuristic” structure prediction 
rules of manageable size is unlikely. However, the pursuit of such 
rules leads to insights into protein structure formation that can be 
incorporated into probabilistic models, particularly within simple 
and mathematically rigorous formalisms such as ours. 

Summary 

We have demonstrated our simple Bayesian prediction formalism 
to the problem of predicting secondary structure. The advantages 
of our basic approach include its conceptual simplicity, ease of 
implementation, lack of ad hoc parameters, and low computational 
cost. With our method, overlearning or memorization is simply a 
problem with ill-defined probabilities resulting from overly spe- 
cific structural descriptions-either the window size or alphabet of 
structure descriptors is too large. Moreover, as the database of 
proteins increases, this method requires no retraining like a neural 
network, or reconfiguring of the algorithmic architecture and re- 
choosing of the various parameter settings as in a more ad hoc 
approach like the nearest neighbor (local alignment) scheme. It is 
enough to merely add the new probabilities to the pre-existing ones. 

We have also introduced a novel method for including evolu- 
tionary-derived sequence-to-structure correlations within our pre- 
diction method. This extended schemata-based formalism performs 
comparably to the best of methods using multiple-sequence align- 
ment information. The use of a biophysically interpretable model 
makes this approach superior to neural network algorithms for the 
development of biophysical insight. The statistical performance 
and reproducibility of this method give it greater practical value 
than that of the expert heuristic methods. Thus,  our method occu- 
pies a new niche in the field of secondary structure prediction- 
possessing some of the transparent qualities of the expert heuristic 
methods while having a demonstrated ability to perform well over 
large datasets. Lastly, this approach fits into a larger Bayesian 
framework which has already provided successful applications to 
solvent accessibility prediction and tertiary fold recognition (Gold- 
stein et al., 1992, 1994; Thompson & Goldstein, 1996b). 
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