Abstract
Molecular dissection was employed to identify minimal independent folding units in dihydrofolate reductase (DHFR) from Escherichia coli. Eight overlapping fragments of DHFR, spanning the entire sequence and ranging in size from 36 to 123 amino acids, were constructed by chemical cleavage. These fragments were designed to examine the effect of tethering multiple elements of secondary structure on folding and to test if the secondary structural domains represent autonomous folding units. CD and fluorescence spectroscopy demonstrated that six fragments containing up to a total of seven alpha-helices or beta-strands and, in three cases, the adenine binding domain (residues 37-86), are largely disordered. A stoichiometric mixture of the two fragments comprising the large discontinuous domain, 1-36 and 87-159, also showed no evidence for folding beyond that observed for the isolated fragments. A fragment containing residues 1-107 appears to have secondary and tertiary structure; however, spontaneous self-association made it impossible to determine if this structure solely reflects the behavior of the monomeric form. In contrast, a monomeric fragment spanning residues 37-159 possesses significant secondary and tertiary structure. The urea-induced unfolding of fragment 37-159 in the presence of 0.5 M ammonium sulfate was found to be a well-defined, two-state process. The observation that fragment 37-159 can adopt a stable native fold with unique, aromatic side-chain packing is quite striking because residues 1-36 form an integral part of the structural core of the full-length protein.
Full Text
The Full Text of this article is available as a PDF (2.6 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alexandrescu A. T., Abeygunawardana C., Shortle D. Structure and dynamics of a denatured 131-residue fragment of staphylococcal nuclease: a heteronuclear NMR study. Biochemistry. 1994 Feb 8;33(5):1063–1072. doi: 10.1021/bi00171a004. [DOI] [PubMed] [Google Scholar]
- Bai Y., Englander S. W. Future directions in folding: the multi-state nature of protein structure. Proteins. 1996 Feb;24(2):145–151. doi: 10.1002/(SICI)1097-0134(199602)24:2<145::AID-PROT1>3.0.CO;2-I. [DOI] [PubMed] [Google Scholar]
- Bai Y., Sosnick T. R., Mayne L., Englander S. W. Protein folding intermediates: native-state hydrogen exchange. Science. 1995 Jul 14;269(5221):192–197. doi: 10.1126/science.7618079. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chaffotte A., Guillou Y., Delepierre M., Hinz H. J., Goldberg M. E. The isolated C-terminal (F2) fragment of the Escherichia coli tryptophan synthase beta 2-subunit folds into a stable, organized nonnative conformation. Biochemistry. 1991 Aug 13;30(32):8067–8074. doi: 10.1021/bi00246a027. [DOI] [PubMed] [Google Scholar]
- Chamberlain A. K., Handel T. M., Marqusee S. Detection of rare partially folded molecules in equilibrium with the native conformation of RNaseH. Nat Struct Biol. 1996 Sep;3(9):782–787. doi: 10.1038/nsb0996-782. [DOI] [PubMed] [Google Scholar]
- Dabora J. M., Pelton J. G., Marqusee S. Structure of the acid state of Escherichia coli ribonuclease HI. Biochemistry. 1996 Sep 17;35(37):11951–11958. doi: 10.1021/bi9611671. [DOI] [PubMed] [Google Scholar]
- Dill K. A., Alonso D. O., Hutchinson K. Thermal stabilities of globular proteins. Biochemistry. 1989 Jun 27;28(13):5439–5449. doi: 10.1021/bi00439a019. [DOI] [PubMed] [Google Scholar]
- Dobson C. M. Protein folding. Solid evidence for molten globules. Curr Biol. 1994 Jul 1;4(7):636–640. doi: 10.1016/s0960-9822(00)00141-x. [DOI] [PubMed] [Google Scholar]
- Dyson H. J., Merutka G., Waltho J. P., Lerner R. A., Wright P. E. Folding of peptide fragments comprising the complete sequence of proteins. Models for initiation of protein folding. I. Myohemerythrin. J Mol Biol. 1992 Aug 5;226(3):795–817. doi: 10.1016/0022-2836(92)90633-u. [DOI] [PubMed] [Google Scholar]
- Dyson H. J., Sayre J. R., Merutka G., Shin H. C., Lerner R. A., Wright P. E. Folding of peptide fragments comprising the complete sequence of proteins. Models for initiation of protein folding. II. Plastocyanin. J Mol Biol. 1992 Aug 5;226(3):819–835. doi: 10.1016/0022-2836(92)90634-v. [DOI] [PubMed] [Google Scholar]
- Eliezer D., Wright P. E. Is apomyoglobin a molten globule? Structural characterization by NMR. J Mol Biol. 1996 Nov 8;263(4):531–538. doi: 10.1006/jmbi.1996.0596. [DOI] [PubMed] [Google Scholar]
- Falzone C. J., Mayer M. R., Whiteman E. L., Moore C. D., Lecomte J. T. Design challenges for hemoproteins: the solution structure of apocytochrome b5. Biochemistry. 1996 May 28;35(21):6519–6526. doi: 10.1021/bi960501q. [DOI] [PubMed] [Google Scholar]
- Fersht A. R. Optimization of rates of protein folding: the nucleation-condensation mechanism and its implications. Proc Natl Acad Sci U S A. 1995 Nov 21;92(24):10869–10873. doi: 10.1073/pnas.92.24.10869. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hamada D., Segawa S., Goto Y. Non-native alpha-helical intermediate in the refolding of beta-lactoglobulin, a predominantly beta-sheet protein. Nat Struct Biol. 1996 Oct;3(10):868–873. doi: 10.1038/nsb1096-868. [DOI] [PubMed] [Google Scholar]
- Itzhaki L. S., Neira J. L., Ruiz-Sanz J., de Prat Gay G., Fersht A. R. Search for nucleation sites in smaller fragments of chymotrypsin inhibitor 2. J Mol Biol. 1995 Nov 24;254(2):289–304. doi: 10.1006/jmbi.1995.0617. [DOI] [PubMed] [Google Scholar]
- Jaenicke R. Protein folding: local structures, domains, subunits, and assemblies. Biochemistry. 1991 Apr 2;30(13):3147–3161. doi: 10.1021/bi00227a001. [DOI] [PubMed] [Google Scholar]
- Jones B. E., Matthews C. R. Early intermediates in the folding of dihydrofolate reductase from Escherichia coli detected by hydrogen exchange and NMR. Protein Sci. 1995 Feb;4(2):167–177. doi: 10.1002/pro.5560040204. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kim P. S., Baldwin R. L. Specific intermediates in the folding reactions of small proteins and the mechanism of protein folding. Annu Rev Biochem. 1982;51:459–489. doi: 10.1146/annurev.bi.51.070182.002331. [DOI] [PubMed] [Google Scholar]
- Kuwajima K., Garvey E. P., Finn B. E., Matthews C. R., Sugai S. Transient intermediates in the folding of dihydrofolate reductase as detected by far-ultraviolet circular dichroism spectroscopy. Biochemistry. 1991 Aug 6;30(31):7693–7703. doi: 10.1021/bi00245a005. [DOI] [PubMed] [Google Scholar]
- Matthews C. R. Pathways of protein folding. Annu Rev Biochem. 1993;62:653–683. doi: 10.1146/annurev.bi.62.070193.003253. [DOI] [PubMed] [Google Scholar]
- Missiakas D., Betton J. M., Minard P., Yon J. M. Unfolding-refolding of the domains in yeast phosphoglycerate kinase: comparison with the isolated engineered domains. Biochemistry. 1990 Sep 18;29(37):8683–8689. doi: 10.1021/bi00489a025. [DOI] [PubMed] [Google Scholar]
- Peng Z. Y., Kim P. S. A protein dissection study of a molten globule. Biochemistry. 1994 Mar 1;33(8):2136–2141. doi: 10.1021/bi00174a021. [DOI] [PubMed] [Google Scholar]
- Raschke T. M., Marqusee S. The kinetic folding intermediate of ribonuclease H resembles the acid molten globule and partially unfolded molecules detected under native conditions. Nat Struct Biol. 1997 Apr;4(4):298–304. doi: 10.1038/nsb0497-298. [DOI] [PubMed] [Google Scholar]
- Richardson J. S. The anatomy and taxonomy of protein structure. Adv Protein Chem. 1981;34:167–339. doi: 10.1016/s0065-3233(08)60520-3. [DOI] [PubMed] [Google Scholar]
- Sarkar G., Sommer S. S. The "megaprimer" method of site-directed mutagenesis. Biotechniques. 1990 Apr;8(4):404–407. [PubMed] [Google Scholar]
- Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
- Shortle D., Meeker A. K. Mutant forms of staphylococcal nuclease with altered patterns of guanidine hydrochloride and urea denaturation. Proteins. 1986 Sep;1(1):81–89. doi: 10.1002/prot.340010113. [DOI] [PubMed] [Google Scholar]
- Skolnick J., Kolinski A., Godzik A. From independent modules to molten globules: observations on the nature of protein folding intermediates. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2099–2100. doi: 10.1073/pnas.90.6.2099. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sosnick T. R., Mayne L., Hiller R., Englander S. W. The barriers in protein folding. Nat Struct Biol. 1994 Mar;1(3):149–156. doi: 10.1038/nsb0394-149. [DOI] [PubMed] [Google Scholar]
- Wu L. C., Laub P. B., Elöve G. A., Carey J., Roder H. A noncovalent peptide complex as a model for an early folding intermediate of cytochrome c. Biochemistry. 1993 Sep 28;32(38):10271–10276. doi: 10.1021/bi00089a050. [DOI] [PubMed] [Google Scholar]
- de Prat Gay G., Fersht A. R. Generation of a family of protein fragments for structure-folding studies. 1. Folding complementation of two fragments of chymotrypsin inhibitor-2 formed by cleavage at its unique methionine residue. Biochemistry. 1994 Jun 28;33(25):7957–7963. doi: 10.1021/bi00191a024. [DOI] [PubMed] [Google Scholar]
